高中數學說課稿
作為一名教職工,很有必要精心設計一份說課稿,說課稿有助于學生理解并掌握系統的知識。怎么樣才能寫出優秀的說課稿呢?下面是小編精心整理的高中數學說課稿,歡迎大家分享。
高中數學說課稿1
大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學設計。
一、教材分析
本節知識是必修五第一章《解三角形》的第一節內容,與初中學習的三角形的邊和角的基本關系有密切的聯系與判定三角形的全等也有密切聯系,在日常生活和工業生產中也時常有解三角形的問題,而且解三角形和三角函數聯系在高考當中也時常考一些解答題。因此,正弦定理和余弦定理的知識非常重要。
根據上述教材內容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:
認知目標:通過創設問題情境,引導學生發現正弦定理的內容,掌握正弦定理的內容及其證明方法,使學生會運用正弦定理解決兩類基本的解三角形問題。
能力目標:引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養學生的創新意識和觀察與邏輯思維能力,能體會用向量作為數形結合的工具,將幾何問題轉化為代數問題。
情感目標:面向全體學生,創造平等的教學氛圍,通過學生之間、師生之間的交流、合作和評價,調動學生的主動性和積極性,激發學生學習的興趣。
教學重點:正弦定理的內容,正弦定理的證明及基本應用。 教學難點:已知兩邊和其中一邊的對角解三角形時判斷解的個數。
二、教法
根據教材的內容和編排的特點,為是更有效地突出重點,空破難點,以學業生的發展為本,遵照學生的認識規律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想, 采用探究式課堂教學模式,即在教學過程中,在教師的啟發引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發現”為基本探究內容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。
三、學法
指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現學生的主體地位,增強學生由特殊到一般的數學思維能力,形成了實事求是的科學態度,增強了鍥而不舍的求學精神。
四、教學過程
(一)創設情境(3分鐘)
“興趣是最好的老師”,如果一節課有個好的開頭,那就意味著成功了一半,本節課由一個實際問題引入,“工人師傅的一個三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。
(二)猜想—推理—證明(15分鐘)
激發學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發現正弦定理。 提問:那結論對任意三角形都適用嗎?(讓學生分小組討論,并得出猜想)
在三角形中,角與所對的邊滿足關系
注意:1.強調將猜想轉化為定理,需要嚴格的理論證明。
2.鼓勵學生通過作高轉化為熟悉的直角三角形進行證明。
3.提示學生思考哪些知識能把長度和三角函數聯系起來,繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學思想。
(三)總結--應用(3分鐘)
1.正弦定理的內容,討論可以解決哪幾類有關三角形的'問題。
2.運用正弦定理求解本節課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發學生知識后用于實際的價值觀。
(四)講解例題(8分鐘)
1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1簡單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。
2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中
一邊的對角時解三角形的各種情形。完了把時間交給學生。
(五)課堂練習(8分鐘)
1.在△ABC中,已知下列條件,解三角形. (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm
2. 在△ABC中,已知下列條件,解三角形. (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°
學生板演,老師巡視,及時發現問題,并解答。
(六)小結反思(3分鐘)
1.它表述了三角形的邊與對角的正弦值的關系。
2.定理證明分別從直角、銳角、鈍角出發,運用分類討論的思想。
3.會用向量作為數形結合的工具,將幾何問題轉化為代數問題。
五、教學反思
從實際問題出發,通過猜想、實驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調研究性學習方法,注重學生的主體地位,調動學生積極性,使數學教學成為數學活動的教學。
高中數學說課稿2
各位老師:
大家好!我叫周婷婷,來自湖南科技大學。我說課的題目是《算法的概念》,內容選自于新課程人教A版必修3第一章第一節,課時安排為兩個課時,本節課內容為第一課時。下面我將從教材分析、教學目標分析、教學方法分析、學情分析、教學過程分析等五大方面來闡述我對這節課的分析和設計:
一、教材分析
1.教材所處的地位和作用
現代社會是一個信息技術發展很快的社會,算法進入高中數學正是反映了時代的需要,它是當今社會必備的基礎知識,算法的學習是使用計算機處理問題前的一個必要的步驟,它可以讓學生們知道如何利用現代技術解決問題。又由于算法的具體實現上可以和信息技術相結合。因此,算法的學習十分有利于提高學生的邏輯思維能力,培養學生的理性精神和實踐能力。
2.教學的重點和難點
重點:初步理解算法的定義,體會算法思想,能夠用自然語言描述算法難點:把自然語言轉化為算法語言。
二、教學目標分析
1.知識目標:了解算法的含義,體會算法的思想;能夠用自然語言描述解決具體問題的算法;理解正確的算法應滿足的要求。
2.能力目標:讓學生感悟人們認識事物的一般規律:由具體到抽象,再有抽象到具體,培養學生的觀察能力,表達能力和邏輯思維能力。
3.情感目標:對計算機的算法語言有一個基本的了解,明確算法的要求,認識到計算機是人類征服自然的一有力工具,進一步提高探索、認識世界的能力。
三、教學方法分析
采用"問題探究式"教學法,以多媒體為輔助手段,讓學生主動發現問題、分析問題、解決問題,培養學生的探究論證、邏輯思維能力。
四、學情分析
算法這部分的使用性很強,與日常生活聯系緊密,雖然是新引入的章節,但很容易激發學生的學習興趣。在教師的引導下,通過多媒體輔助教學,學生比較容易掌握本節課的內容。
五、教學過程分析
1.創設情景:我首先向學生們展示章頭圖,介紹圖中的后景是取自宋朝數學家朱世杰的數學作品《四元玉鑒》,告訴學生們章頭圖正是體現了中國古代數學與現代計算機科學的聯系,它們的基礎都是"算法".
「設計意圖」是為了充分挖掘章頭圖的教學價值,體現
1)算法概念的由來;
2)我們將要學習的算法與計算機有關;
3)展示中國古代數學的成就;
4)激發學生學習算法的興趣。從而順其自然的過渡到本節課要討論的話題。(約4分鐘)
2.引入新課:在這一環節我首先和學生們一起回顧如何解二元一次方程組,并引導他們歸納二元一次方程組的求解步驟,從而讓學生經歷算法分析的基本過程,培養思維的條理性,引導學生關注更具一般性解法,形成解法向算法過渡的準備,為建立算法概念打下基礎。緊接著在此基礎上進一步復習回顧解一般的二元一次方程組的步驟,引導學生分析解題過程的結構,寫出求一般的'二元一次方程組的解的算法,并把它編成程序,讓學生輸入數據,體驗計算機直接給出方程組的解。目的是讓學生明白算法是用來解決某一類問題的,從而提高學生對算法的普遍適用性的認識,為建立算法的概念做好鋪墊。
之后,我就向學生們提出問題:到底什么是算法?如何用語言來表達算法的涵義?這里讓學生們根據剛剛的探索交流、思考并回答,然后老師進行歸納,得出算法的基本概念,并幫助學生認識算法的概念,指出有窮性,確定性,可行性。這樣可以讓學生們真正參與到算法概念的形成過程中來,體會算法思想。(約8分鐘)
3.例題講解:在這一環節我安排了兩道例題,以幫助學生們能更好地理解算法的基本概念,并應用到實際解決問題中去,而不只是單純的對數學思想的領悟。
這兩道例題均選自課本的例1和例2.
例1是讓我們設定一個程序以判斷一個數是否為質數。質數是我們之前已經學習的內容,為了能更順利地完成解題過程,這里有必要引導學生們回顧一下質數應滿足的條件,然后再根據這個來探索解題步驟。通過例1讓學生認識到求解結構中存在"重復".為導出一般問題的算法創造條件,也為學習算法的自然語言表示提供前提。告訴學生們本算法就是用自然語言的形式描述的。并且設計算法一定要做到以下要求:
。1)寫出的算法必須能解決一類問題,并且能夠重復使用。
。2)要使算法盡量簡單、步驟盡量少。
。3)要保證算法正確,且計算機能夠執行。
在例1的基礎上我們繼續研究例2,例2是要求我們設計一個利用二分法來求解方程的近似根的程序。我們首先要對算法作分析,回顧用二分法求解方程近似根的過程,然后設計出解題步驟。二分法是算法中的經典問題,具有明顯的順序和可操作的特點。因此通過例2可以讓學生進一步了解算法的邏輯結構,領會算法的思想,體會算法的的特征。同時也可以鞏固用自然語言描述算法,提高用自然語言描述算法的表達水平。另外,借助例題加強學生對算法概念的理解,體會算法具有程序性、有限性、構造性、精確性、指向性的特點,算法以問題為載體,泛泛而談沒有意義。(約20分鐘)
4.課堂小結:
。1)算法的概念和算法的基本特征
(2)算法的描述方法,算法可以用自然語言描述。
。3)能利用算法的思想和方法解決實際問題,并能寫出一此簡單問題的算法課堂小結是一堂課內容的概括和總結,有利于學生把握本節課的重點,對所學知識有一個系統整體的認識。(約6分鐘)
5.布置作業:課本練習1、2題
課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度以及實際接受情況,并促使學生進一步鞏固和掌握所學內容。對作業實施分層設置,分必做和選做,利于拓展學生的自主發展的空間。
高中數學說課稿3
一、說教材
1、教材的地位與作用《分類計數原理與分步計數原理》,是高中數學第十章排列、組合的第一節課。分類計數原理和分步計數原理是排列、組合的基礎,學生對這兩個原理的理解,掌握和運用,成為學好本章的一個關鍵。
2、教學目標
(1)知識目標掌握計數的兩個基本原理,并能正確的用它們分析和解決一些簡單的問題。
。2)能力目標通過計數基本原理的理解和運用,提高學生分析問題和解決問題的能力,開發學生的邏輯思維能力。
(3)情感目標培養學生勇于探索、勇于創新的精神,面對現實生活中復雜的事物和現象,能夠作出正確的分析,準確的判斷,進而拿出完善的處理方案,提高實際的應變能力。
3、重點、難點重點是分類計數原理與分步計數原理難點是正確運用分類計數原理與分步計數原理
二、說教法啟發引導式
三、說學法指導學生運用觀察分析討論總結的學習方法。
四、教具、學具多媒體
五、教學程序
1、提出課題——引入新課
首先,提出本節課的課題分類計數原理與分步計數原理設計意圖:明確任務,激發興趣。
2、觀察歸納——形成概念:
首先,我結合圖給出問題1:
問題1:從北京到上海,可以乘火車,也可以乘汽車。一天中有火車3班,汽車有2班。那么一天中,乘坐這些交通工具從北京到上海共有多少種不同的走法?(答案:3+2=5)由這個問題我們得到分類計數原理:完成一件事,有n類辦法,在第1類辦法中有m1種不同的方法,在第2類辦法中有m2種不同的方法‥‥‥,在第n類辦法中有mn種不同的方法,那么完成這件事共有:N=m1+m2++mn種不同的方法接下來,我再結合圖給出問題2:
問題2:從北京到上海,要從北京先乘火車到鄭州,再于第二天從鄭州乘汽車到上海。一天中從北京到鄭州的火車有3班,從鄭州到上海的汽車有2班。那么兩天中,從北京到上海共有多少種不同的走法?(答案:3x2=6)。
由這個問題我們得到分步計數原理:完成一件事,需要分成n個步驟,做第1步有m1種不同的方法,做第2步有m2種不同的方法‥‥‥,做第n步有mn種不同的方法,那么完成這件事共有N=m1×m2××mn種不同的方法。
設計意圖:由兩個實際問題,引導學生得到分類計數原理與分步計數原理,培養學生的觀察、歸納能力。
3、比較歸納深化概念兩個原理的比較:
1)共同點:都是計數原理,即統計完成某件事不同方法種數的原理,因此都要先弄清是怎樣一件事,如何才算完成這件事。
2)不同點:分類計數原理中的n類辦法相互獨立,且每類里的每種方法都可獨立完成該事件;分步計數原理中的n個步驟缺一不可,每一步都不能獨立完成該件事,只有這n個步驟都完成之后,這件事才算完成。
設計意圖:通過兩個原理的比較,讓更好的掌握原理的使用。
4、學以致用——培養能力
例1、書架的第一層放有4本不同的.計算機書,第二層放有3本不同的文藝書,第3層放有2本不同的體育書。
。1)從書架上任取1本書,有多少種不同的取法?
(2)從書架的第1、2、3層各取1本書,有多少種不同的取法?(書架取書問題)引導學生分析解答,注意區分是分類還是分步。
例2、一種號碼鎖有4個撥號盤,每個撥號盤上有從0到9共10個數字,這4個撥號盤可以組成多少個四位數字的號碼?
例3、如圖是廣場中心的一個大花壇,國慶期間要在A、B、C、D四個區域擺放鮮花,有4種不同顏色的鮮花可供選擇,規定每個區域只準擺放一種顏色的鮮花,相鄰區域鮮花顏色不同,問共有多少種不同的擺花方案?
設計意圖:為了使學生達到對知識的深化理解,從而達到鞏固提高的效果。
5、任務后延——自主探究
。1)填空:
①一件工作可以用2種方法完成,有5人會第一種方法完成,另有4人會用第2種方法完成,從中選出1人來完成這件工作,不同的選法的種數是9。
、趶腁村去B村的道路有3條,從B村去C村的道路有2條,從A村經B村去C村,不同走法的種數是6。
。2)現有高中一年級的學生3名,高中二年級的學生5名,高中三年級的學生4名。
①從中選1人參加接待外賓的活動,有多少種不同的選法?12
、趶3個年級各選1人參加接待外賓的活動,有多少種不同的選法?60
(3)把(a1+a2+a3)(b1+b2+b3+b4+b5)(c1+c2+c3+c4)展開后不合并時共有多少項?60
設計意圖:培養學生靈活運用所學知識解決實際問題的能力。
6、總結反思——提高認識本節課學習了以下內容(1)分類計數原理(2)分步計數原理(3)兩個原理的比較(4)用兩個原理解題的步驟
設計意圖:突出重點,幫助學生對所學知識系統化、條理化
7、布置作業——知識拓展P97習題10。11,2,3題設計意圖:鞏固所學知識,發現和彌補教學中的遺漏和不足,培養學生良好的學習習慣。
六、板書設計(略)
高中數學說課稿4
我擔任高職單招輔導班的數學科教學,可以說每節課都是復習課。今天,我說的是復習課這種課型。內容是《函數》這一章中的“反函數”這一節。
一、教材分析:
反函數這一節在《函數》這章中是一個難點,篇幅不多(課時少),在高考考綱中的要求也比較簡單。但我個人這樣認為,復習課應盡量把與本節內容相關的新舊知識系統地串在一起,所以在備課時要找一條能把知識點連在一起的線索。這線索就是函數的三要素:
。ㄒ唬┙虒W目標:
、偈箤W生掌握反函數的概念并能求出簡單函數的反函數(考綱要求)。
、诨榉春瘮档膬蓚函數具有的性質,以及這些性質在解題中的運用。
③通過知識的系統性,培養學生的逆向思維能力和邏輯思維能力。
。ǘ┲攸c、難點:
、僦攸c:使學生能求出簡單函數的反函數。
、陔y點:反函數概念的理解。
二、教學方法:
整節課采用傳統的講解法。
首先要認識反函數應先有函數的概念這知識,用例子來說明反函數的求法以及讓學生來完成一題沒有反函數的函數,從而得出一個不滿足函數定義的關系式,通過分析來得到一個函數具有反函數的條件。這里是用“欲擒故縱”的手法,加深對概念的理解,也是突破難點的.關鍵。
三、學生學習方法:
學生認識了反函數的求法(步驟),在老師的引導下得出三個結論,并運用這些結論來解題。希望能達到提高學生性質的解題能力和思維能力的目標。
四、教學過程:
。ㄒ唬毓剩汉瘮档母拍睢⑷
。ǘ┬抡n:例1:求y=2x+1的反函數
解:
即(x∈R)
注意步驟,新關系式滿足從R到R是一個函數關系式。
互這反函數的特點:
、龠\算互逆;②順序倒置
例2:y=x2(x∈R)用y的代數表示x
得x=這x不是y的函數,不滿足函數定義
若對,y=x2的定義域改為x≥0
可得x=,即y=(x≥0)
當逆對應滿足函數定義,原函數才存在反函數。
得到結論①互為反函數的定義域、值域交換
即
分別在同一坐標上畫出以上互為反函數的圖象
得到結論②圖象關于y=x對稱
、蹎握{性一致
。ㄈ┚毩
1、求的反函數,并求出反函數的值域。
2、函數的圖象關于對稱,求a的值。
講評:略。
(四)小結:
(五)布置作業:
高中數學說課稿5
一、教學目標
。1)知識與能力目標:學習橢圓的定義,掌握橢圓標準方程的兩種形式及其推
導過程;能根據條件確定橢圓的標準方程,掌握用待定系數法求橢圓的標準方程。
。2)過程與方法目標:通過對橢圓概念的引入教學,培養學生的觀察能力和探
索能力;通過對橢圓標準方程的推導,使學生進一步掌握求曲線方程的一般方法,提高學生運用坐標法解決幾何問題的能力,并滲透數形結合和等價轉化的數學思想方法。
。3)情感、態度與價值觀目標:通過讓學生大膽探索橢圓的定義和標準方程,激發學生學習數學的積極性,培養學生的學習興趣和創新意識,培養學生勇于探索的精神和滲透辯證唯物主義的方法論和認識論。
二、教學重點、難點
。1)教學重點:橢圓的定義及橢圓標準方程,用待定系數法和定義法求曲線方程。
。2)教學難點:橢圓標準方程的建立和推導。
三、教學過程
(一)創設情境,引入概念
1、動畫演示,描繪出橢圓軌跡圖形。
2、實驗演示。
思考:橢圓是滿足什么條件的點的軌跡呢?
(二)實驗探究,形成概念
1、動手實驗:學生分組動手畫出橢圓。
實驗探究:
保持繩長不變,改變兩個圖釘之間的距離,畫出的橢圓有什么變化?
思考:根據上面探究實踐回答,橢圓是滿足什么條件的點的軌跡?
2、概括橢圓定義
引導學生概括橢圓定義橢圓定義:平面內與兩個定點距離的和等于常數(大于)的點的軌跡叫橢圓。
教師指出:這兩個定點叫橢圓的焦點,兩焦點的距離叫橢圓的焦距。
思考:焦點為的橢圓上任一點M,有什么性質?
令橢圓上任一點M,則有
(三)研討探究,推導方程
1、知識回顧:利用坐標法求曲線方程的一般方法和步驟是什么?
2、研討探究
問題:如圖已知焦點為的橢圓,且=2c,對橢圓上任一點M,有
,嘗試推導橢圓的方程。
思考:如何建立坐標系,使求出的方程更為簡單?
將各組學生的討論方案歸納起來評議,選定以下兩種方案,由各組學生自己完成設點、列式、化簡。
方案一方案二
按方案一建立坐標系,師生研討探究得到橢圓標準方程
=1(),其中b2=a2-c2(b>0);
選定方案二建立坐標系,由學生完成方程化簡過程,可得出=1,同樣也有a2-c2=b2(b>0)。
教師指出:我們所得的兩個方程=1和=1()都是橢圓的標準方程。
(四)歸納概括,方程特征
1、觀察橢圓圖形及其標準方程,師生共同總結歸納
。1)橢圓標準方程對應的橢圓中心在原點,以焦點所在軸為坐標軸;
。2)橢圓標準方程形式:左邊是兩個分式的平方和,右邊是1;
。3)橢圓標準方程中三個參數a,b,c關系:;
。4)橢圓焦點的位置由標準方程中分母的大小確定;
(5)求橢圓標準方程時,可運用待定系數法求出a,b的值。
2、在歸納總結的基礎上,填下表
標準方程
圖形a,b,c關系焦點坐標焦點位置
在x軸上
在y軸上
(五)例題研討,變式精析
例1、求適合下列條件的橢圓的標準方程
(1)兩個焦點的坐標分別是,橢圓上一點P到兩焦點距離和等于10。
(2)兩焦點坐標分別是,并且橢圓經過點。
例2、(1)若橢圓標準方程為及焦點坐標。
。2)若橢圓經過兩點求橢圓標準方程。
。3)若橢圓的一個焦點是,則k的值為。
。ˋ)(B)8(C)(D)32
例3、如圖,已知一個圓的圓心為坐標原點,半徑為2,從這個圓上任意一點P向x軸作垂線段,求線段中點M的軌跡。
(六)變式訓練,探索創新
1、寫出適合下列條件的橢圓標準方程
。1),焦點在x軸上;
。2)焦點在x軸上,焦距等于4,并且經過點P;
2、若方程表示焦點在y軸上的'橢圓,則k的范圍。
3、已知B,C是兩個定點,周長為16,求頂點A的軌跡方程。
4、已知橢圓的焦距相等,求實數m的值。
5、在橢圓上上求一點,使它與兩個焦點連線互相垂直。
6、已知P是橢圓上一點,其中為其焦點且,求三解形面積。
(七)小結歸納,提高認識
師生共同歸納本節所學內容、知識規律以及所學的數學思想和方法。
(八)作業訓練,鞏固提高
課本第96頁習題§8。1第3題、第5題、第6題。
課后思考題:
1、知是橢圓的兩個焦點,AB是過的弦,則周長是。
。ˋ)2a(B)4a(C)8a(D)2a2b
2、的兩個頂點A,B的坐標分別是邊AC,BC所在直線的斜
率之積等于,求頂點C的軌跡方程。
2、與圓外切,同時與圓內切,求動圓圓心的軌跡方程,并說明它是什么樣的曲線?
教學設計說明
橢圓是圓錐曲線中重要的一種,本節內容的學習是后繼學習其它圓錐曲線的基礎,坐標法是解析幾何中的重要數學方法,橢圓方程的推導是利用坐標法求曲線方程的很好應用實例。本節課內容的學習能很好地在課堂教學中展現新課程的理念,主要采用學生自主探究學習的方式,使培養學生的探索精神和創新能力的教學思想貫穿于本節課教學設計的始終。
橢圓是生活中常見的圖形,通過實驗演示,創設生動而直觀的情境,使學生親身體會橢圓與生活聯系,有助于激發學生對橢圓知識的學習興趣;在橢圓概念引入的過程中,改變了直接給出橢圓概念和動畫畫出橢圓的方式,而采用學生動手畫橢圓并合作探究的學習方式,讓學生親身經歷橢圓概念形成的數學化過程,有利于培養學生觀察分析、抽象概括的能力。
橢圓方程的化簡是學生從未經歷的問題,方程的推導過程采用學生分組探究,師生共同研討方程的化簡和方程的特征,可以讓學生主體參與橢圓方程建立的具體過程,使學生真正了解橢圓標準方程的來源,并在這種師生嘗試探究、合作討論的活動中,使學生體會成功的快樂,提高學生的數學探究能力,培養學生獨立主動獲取知識的能力。
設計例題、習題的研討探究變式訓練,是為了讓學生能靈活地運用橢圓的知識解決問題,同時也是為了更好地調動、活躍學生的思維,發展學生數學思維能力,讓學生在解決問題中發展學生的數學應用意識和創新能力,同時培養學生大膽實踐、勇于探索的精神,開闊學生知識應用視野。
高中數學說課稿6
新課標指出,高中數學課程的教學要能提高學生的“四基、四能”,根據這一課程目標,本節課我將從教材分析、教學目標、教學過程等幾個方面來展開我的說課。
一、說教材
本節課選自人教A版高中數學必修3第三章。本節課的內容是在古典概型基礎上的進一步發展,是等可能事件的概念從有限向無限的延伸。通過本節課的學習,學生能進一步體會實驗結果的隨機性與規律性,并體會到對事物的看法不應該持絕對化的觀點。
二、說學情
高中生智力發育已趨于成熟,對于未知事物有著很強的探究欲望,且此前古典概型的學習為本節課打下了良好的基礎。但基本事件有無數多個的發現以及此種情況下概率該如何計算,學生并不容易想到。因此我會從具體的生活、實踐問題入手,組織學生開展活動,在觀察、思考中抽象、概括本節課的要點。
三、說教學目標
結合以上分析,我制定本節課教學目標如下:
(一)知識與技能
初步體會幾何概型的意義,掌握幾何概型的概率計算公式,并能進行簡單應用。
(二)過程與方法
在通過幾何概型特點概括出幾何概型概率計算公式的過程中,進一步發展合情推理能力,學會運用數形結合的思想解決概率計算問題。
(三)情感、態度與價值觀
通過貼近生活的素材,激發學習數學的興趣,體會用科學的態度、辯證的思想去觀察、分析、研究客觀世界。
四、說教學重難點
同時,本節課教學重點為:幾何概型的意義及概率計算公式。教學難點為:幾何概型概率計算公式的`推導。
五、說教法和學法
教學的一切活動都必須以強調學生的主動性、積極性為出發點,根據這一教學理念,本節課我將采用講授法、自主探究法、練習法等教學方法。
六、說教學過程
下面說說我的教學過程。
(一)引入新課
首先我會帶領學生復習確定隨機事件發生的概率的兩種方法,一是通過頻率估算概率,二是用古典概型的概率公式來計算事件發生的概率。但古典概型是基于試驗的所有結果是有限個,當試驗的所有可能結果有無窮多個時,無法利用之前的方法進行計算,進而進入本節課的學習。
利用復習導入,一來可以鞏固之前所學,二來將等可能事件從有限拓展到無限,引發學生的認知沖突,體現出學習本節課的必要性。
(二)講解新知
接下來是新知講解。為了讓學生初步感知幾何概型的基本特點,我會舉例:
(1)一個人到單位的時間可能是8:00~9:00之間任一時刻。
(2)往一方格中投一個石子。并請學生說說此人到達單位的時間點以及石子落在方格的哪個位置,會不會在某一時間點到達或落在某一位置的概率比較大。學生結合生活經驗能夠發現,此時基本事件有無數多個,且基本事件發生是等可能的。
僅僅知道特點還是不夠的,還要知道相應概率的求法。為了讓學生有更直觀的感知,我會出示具體問題:如圖,甲、乙兩人玩轉盤游戲,規定當指針指向B區域時,甲獲勝,否則乙獲勝。請學生思考在兩種情況下甲獲勝的概率分別是多少。
高中數學說課稿7
一、說教材
1.從在教材中的地位與作用來看
《等比數列的前n項和》是數列這一章中的一個重要內容,它不僅在現實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關計算等等,而且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今后學習和工作中必備的數學素養.
2.從學生認知角度看
從學生的思維特點看,很容易把本節內容與等差數列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應因勢利導.不利因素是:本節公式的推導與等差數列前n項和公式的推導有著本質的不同,這對學生的思維是一個突破,另外,對于q=1這一特殊情況,學生往往容易忽視,尤其是在后面使用的過程中容易出錯.
3.學情分析
教學對象是剛進入高中的學生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴謹.
4.重點、難點
教學重點:公式的推導、公式的特點和公式的運用.
教學難點:公式的推導方法和公式的靈活運用.
公式推導所使用的“錯位相減法”是高中數學數列求和方法中最常用的方法之一,它蘊含了重要的數學思想,所以既是重點也是難點.
二、說目標
知識與技能目標:
理解并掌握等比數列前n項和公式的推導過程、公式的特點,在此基礎上能初步應用公式解決與之有關的問題.
過程與方法目標:
通過對公式推導方法的探索與發現,向學生滲透特殊到一般、類比與轉化、分類討論等數學思想,培養學生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力.
情感與態度價值觀:
通過對公式推導方法的探索與發現,優化學生的思維品質,滲透事物之間等價轉化和理論聯系實際的辯證唯物主義觀點.
三、說過程
學生是認知的主體,設計教學過程必須遵循學生的認知規律,盡可能地讓學生去經歷知識的形成與發展過程,結合本節課的特點,我設計了如下的教學過程:
1.創設情境,提出問題
在古印度,有個名叫西薩的人,發明了國際象棋,當時的印度國王大為贊賞,對他說:我可以滿足你的任何要求.西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格.國王令宮廷數學家計算,結果出來后,國王大吃一驚.為什么呢?
設計意圖:設計這個情境目的是在引入課題的同時激發學生的興趣,調動學習的積極性.故事內容緊扣本節課的主題與重點.
此時我問:同學們,你們知道西薩要的是多少粒小麥嗎?引導學生寫出麥粒總數.帶著這樣的問題,學生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和.這時我對他們的這種思路給予肯定.
設計意圖:在實際教學中,由于受課堂時間限制,教師舍不得花時間讓學生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學生的認知規律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個教學關鍵處學生難以轉過彎來,因而在教學中應舍得花時間營造知識形成過程的氛圍,突破學生學習的障礙.同時,形成繁難的情境激起了學生的求知欲,迫使學生急于尋求解決問題的.新方法,為后面的教學埋下伏筆.
2.師生互動,探究問題
在肯定他們的思路后,我接著問:1,2,22,…,263是什么數列?有何特征?應歸結為什么數學問題呢?
探討1:,記為(1)式,注意觀察每一項的特征,有何聯系?(學生會發現,后一項都是前一項的2倍)
探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式.比較(1)(2)兩式,你有什么發現?
設計意圖:留出時間讓學生充分地比較,等比數列前n項和的公式推導關鍵是變“加”為“減”,在教師看來這是“天經地義”的,但在學生看來卻是“不可思議”的,因此教學中應著力在這兒做文章,從而抓住培養學生的辯證思維能力的良好契機.
經過比較、研究,學生發現:(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:.老師指出:這就是錯位相減法,并要求學生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?
設計意圖:經過繁難的計算之苦后,突然發現上述解法,不禁驚呼:真是太簡潔了!讓學生在探索過程中,充分感受到成功的情感體驗,從而增強學習數學的興趣和學好數學的信心.
3.類比聯想,解決問題
這時我再順勢引導學生將結論一般化,
這里,讓學生自主完成,并喊一名學生上黑板,然后對個別學生進行指導.
設計意圖:在教師的指導下,讓學生從特殊到一般,從已知到未知,步步深入,讓學生自己探究公式,從而體驗到學習的愉快和成就感.
對不對?這里的q能不能等于1?等比數列中的公比能不能為1?q=1時是什么數列?此時sn=?(這里引導學生對q進行分類討論,得出公式,同時為后面的例題教學打下基礎.)
再次追問:結合等比數列的通項公式an=a1qn-1,如何把sn用a1、an、q表示出來?(引導學生得出公式的另一形式)
設計意圖:通過反問精講,一方面使學生加深對知識的認識,完善知識結構,另一方面使學生由簡單地模仿和接受,變為對知識的主動認識,從而進一步提高分析、類比和綜合的能力.這一環節非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用.
4.討論交流,延伸拓展
高中數學說課稿8
一、教材分析
本節是人教A版高中數學必修三第二章《統計》中的第三節 “變量間的相關關系” 的第二課時。在上一課時,學生已經懂得根據兩個相關變量的數據作出散點圖,并利用散點圖直觀認識變量間的相關關系。這節課是在上一節課的基礎上介紹了用線性回歸的方法研究兩個變量的相關性和最小二乘法的思想。
從全章的內容上看,線性回歸方程的建立不僅是本節的難點,也是本章內容的難點之一。線性回歸是最簡單的回歸分析,學好回歸分析是學好統計學的重要基礎。
二、教學目標
根據課標的要求及前面的分析,結合高二學生的認知特點確定本節課的教學目標如下:
知識與技能:
1. 知道最小二乘法和回歸分析的思想;
2. 能根據線性回歸方程系數公式求出回歸方程
過程與方法:
經歷線性回歸分析過程,借助圖形計算器得出回歸直線,增強數學應用和使用技術的意識。
情感態度與價值觀
通過合作學習,養成傾聽別人意見和建議的良好品質
三、重點難點分析:
根據目標分析,確定教學重點和難點如下:
教學重點:
1. 知道最小二乘法和回歸分析的思想;
2.會求回歸直線
教學難點:
建立回歸思想,會求回歸直線
四、教學設計
提出問題
理論探究
驗證結論
小結提升
應用實踐
作業設計
教學環節
內容及說明
創設情境
探究:在一次對人體脂肪含量和年齡關系的研究中,研究人員獲得了一組樣本數據:
問題與引導設計
師生活動
設計意圖
問題1. 利用圖形計算器作出散點圖,并指出上面的兩個變量是正相關還是負相關?
教師提問,學生
通過動手操作得
出散點圖并回答
以舊“探”新:對舊的知識進行簡要的提問復習,為本節課學生能夠更好的建構新的知識做好充分的準備;尤其為一些后進生能夠順利的完成本節課的內容提供必要的基礎。
教師引導:通過上節課的學習,我們知道散點圖是研究兩個變量相關關系的一種重要手段。下面,請同學們根據得出的散點圖,思考下面的問題2.
問題2. 甲同學判斷某人年齡在65歲時體內脂肪含量百分比可能為34,乙同學判斷可能為25,而丙同學則判斷可能為37,你對甲,
乙,丙三個同學的.判斷有什么看法?
學生能夠表達自己的看法。有的學生可能會認為乙同學的判斷是錯誤的;有的學生可能認為甲乙丙三個同學的判斷都是對的,答案不唯一
該問題具有探究性、啟發性和開放性。鼓勵學生大膽表達自己的看法。通過設計該問題,引導學生自己發現問題,注意到散點圖中點的分布具有一定規律,體會觀測點與回歸直線的關系;進而引起學生的對本節課內容的興趣。
問題3. 反思問題,你還可以提出哪些問題嗎?小組討論,看哪個小組提出的問題多
在小組討論的形式下和比較哪個小組提出的問題多,學生之間會充分的進行交流,提出問題
通過小組討論比較,調動學生的學習積極性和興趣,活躍課堂氣氛,達到學生自己提出問題的效果,培養學生的學生創新思維和問題意識。
學生可能提出的問題:
、贋槭裁醇、丙同學的判斷結果正確的可能性較大,而乙同學判斷結果正確的可能性較小?
、谀橙四挲g在65歲時體內脂肪含量百分比最可能是多少?在其它年齡時呢?
、圻@些樣本數據揭示出兩個相關變量之間怎樣的關系呢?
④怎樣用數學的方法研究變量之間的相關關系呢?每個問題都是學生“火熱的思考”成果
高中數學說課稿9
尊敬的各位評委、各位老師:
大家好!我說課的題目是《直線的點斜式方程》,選自人民教育出版社普通高中課程標準試驗教科書數學必修2(A版),是第三章直線與方程中的第2節的第一課時3.2.1直線的點斜式方程的內容。下面我將從教學背景、教學方法、教學過程及教學特點等四個方面具體說明。
一、教學背景的分析
1、教材分析直線的方程是學生在初中學習了一次函數的概念和圖象及高中學習了直線的斜率后進行研究的。直線的方程屬于解析幾何學的基礎知識,是研究解析幾何學的開始,對后續研究兩條直線的位置關系、圓的方程、直線與圓的位置關系、圓錐曲線等內容,無論在知識上還是方法上都是地位顯要,作用非同尋常,是本章的重點內容之一!爸本的點斜式方程”可以說是直線的方程的形式中最重要、最基本的形式,在此花多大的時間和精力都不為過。直線作為常見的最簡單的曲線,在實際生活和生產實踐中有著廣泛的應用。同時在這一節中利用坐標法來研究曲線的數形結合、幾何直觀等數學思想將貫穿于我們整個高中數學教學。
2、學情分析我校的生源較差,學生的基礎和學習習慣都有待加強。又由于剛開始學習解析幾何,第一次用坐標法來求曲線的方程,在學習過程中,會出現“數”與“形”相互轉化的困難。另外我校學生在探究問題的能力,合作交流的意識等方面更有待加強。根據上述教材分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標:
3、教學目標
(1)了解直線的方程的概念和直線的點斜式方程的推導過程及方法;
。2)明確點斜式、斜截式方程的形式特點和適用范圍;初步學會準確地使用直線的點斜式、斜截式方程;
。3)從實例入手,通過類比、推廣、特殊化等,使學生體會從特殊到一般再到特殊的認知規律;
。4)提倡學生用舊知識解決新問題,通過體會直線的斜截式方程與一次函數的關系等活動,培養學生主動探究知識、合作交流的意識,并初步了解數形結合在解析幾何中的應用。
4、教學重點與難點
。1)重點:直線點斜式、斜截式方程的特點及其初步應用。
。2)難點:直線的方程的概念,點斜式方程的推導及點斜式、斜截式方程的應用。
二、教法學法分析
1.教法分析:根據學情,為了能調動學生學習的積極性,本節課采用“實例引導的啟發式”問題教學法。幫助學生將幾何問題代數化,用代數的語言描述直線的幾何要素及其關系,進而將直線的問題轉化為直線方程的問題,通過對直線的方程的研究,最終解決有關直線的一些簡單的問題。另外可以恰當的利用多媒體課件進行輔助教學,激發學生的學習興趣。
2.學法分析:學生從問題中嘗試、總結、質疑、運用,體會學習數學的樂趣;通過推導直線的點斜式方程的學習,要了解用坐標法求方程的思想;通過一個點和方向可以確定一條直線,進而可求出直線的點斜式方程,要能體會“形”與“數”的轉化思想。下面我就對具體的教學過程和設計加以說明:
三、教學過程的設計及實施
整個教學過程是由六個問題組成,共分為四個環節,學習或涉及四個概念:溫故知新,澄清概念————直線的方程深入探究,獲得新知————————點斜式拓展知識,再獲新知————————斜截式小結引申,思維延續————————兩點式平面上的點可以用坐標表示,直線的傾斜程度可以用斜率表示,那么平面上的直線如何表示呢?這就是本節要學習的內容。
。ㄒ唬毓手,澄清概念————直線的方程問題一:畫出一次函數y=2x+1的圖象;y=2x+1是一個方程嗎?若是,那么方程的解與圖象上的點的坐標有何關系?
[學生活動]
通過動手畫圖,思考并嘗試用語言進行初步的表述。
[教師活動]
對于不同學生的表述進行分析、歸納,用規范的語言對方程和直線的方程進行描述。
[設計意圖]
從學生熟知的舊知識出發澄清直線的方程的概念,試圖做到“用學生已有的數學知識去學數學”,從而突破難點。通過對這個問題的研究,一方面認識到以方程的解為坐標的點在直線上,另一方面認識到直線上的點的坐標滿足方程;從而使同學意識到直線可以由直線上任意一點P(x,y)的坐標x和y之間的等量關系來表示。問題二:若直線經過點A(—1,3),斜率為—2,點P在直線l上。
。1)若點P在直線l上從A點開始運動,橫坐標增加1時,點P的坐標是;
。2)畫出直線l,你能求出直線l的方程嗎?
(3)若點P在直線l上運動,設P點的坐標為(x,y),你會有什么方法找到x,y滿足的關系式?
[學生活動]
學生獨立思考5分鐘,必要的話可進行分組討論、合作交流。
[教師活動]
巡視?隙▽W生的各種方法及大膽嘗試的行為;并引導學生觀察發現,得到當點P在直線l上運動時(除點A外),點P與定點A(—1,3)所確定的直線的斜率恒等于—2,體會“動中有靜”的思維策略。
[設計意圖]
復習斜率公式;待定系數法;初步體會坐標法。同時引導學生注意為什么要把分式化簡?(若不化簡,就少一點),感受數學簡潔的美感和嚴謹性。還要指出這樣的事實:當點P在直線l上運動時,P的坐標(x,y)滿足方程2x+y—1=0。反過來,以方程2x+y—1=0的解為坐標的點在直線l上。把學生的思維引到用坐標法研究直線的方程上來,此時再把問題深入,進入第二環節。
。ǘ┥钊胩骄,獲得新知————點斜式
問題三:
、偃糁本l經過點P0(x0,y0),且斜率為k,求直線l的方程。
、谥本的點斜式方程能否表示經過P0(x0,y0)的所有直線?
[學生活動]
、賹W生敘述,老師板書,強調斜率公式與點斜式的區別。
、谥笇W生用筆轉一轉不難發現,當直線l的傾斜角α=90°時,斜率k不存在,當然不存在點斜式方程;討論k=0的情況;觀察并總結點斜式方程的特征。
[設計意圖]
由特殊到一般的學習思路,突破難點,培養學生的歸納概括能力。通過對這個問題的探究使學生獲得直線點斜式方程;由②知:當直線斜率k不存在時,不能用點斜式方程表示直線,培養思維的嚴謹性,這時直線l與y軸平行,它上面的每一點的橫坐標都等于x0,直線l的方程是:x=x0;通過學生的觀察討論總結,明確點斜式方程的形式特點和適用范圍,通過下面的例題和基礎練習,突破重難點。
問題四:分別求經過點且滿足下列條件的直線的方程(1)斜率;(2)傾斜角;(3)與軸平行;(4)與軸垂直。[練習]P95.1、2。
[學生活動]
學生獨立完成并展示或敘述,老師點評。
[設計意圖]
充分用好教材的例題和習題,因為這些題都是專家精心編排的,充分體現必要性及合理性;做到及時反饋,便于反思本環節的教學,指導下個環節的安排;突破重點內容后,進入第三環節。
(三)拓展知識,再獲新知————斜截式
問題五:(1)一條直線與y軸交于點(0,3),直線的斜率為2,求這條直線的方程。(2)若直線l斜率為k,且與y軸的交點是P(0,b),求直線l的方程。
[學生活動]
學生獨立完成后口述,教師板書。
[設計意圖]
由一般到特殊再到一般,培養學生的推理能力,同時引出截距的概念及斜截式方程,強調截距不是距離。類比點斜式明確斜截式方程的形式特點和適用范圍及幾何意義,并討論其與一次函數的關系。通過下面的.基礎練習,突破重點。
[練習]P95.3。
[設計意圖]
充分用好教材習題,及時反饋本環節的教學情況,指導下個環節的安排。
。ㄋ模┬〗Y引申,思維延續————兩點式
課堂小結
1、有哪些收獲?(點斜式方程:;斜截式方程:;求直線方程的方法:公式法、等斜率法、待定系數法。)
2、哪些地方還沒有學好?
問題六:
。1)直線l過(1,0)點,且與直線平行,求直線l的方程。
(2)直線l過點(2,—1)和點(3,—3),求直線l的方程。
[學生活動]
學生獨立思考并嘗試自主完成,可以相互討論,探討解題思路。
[教師活動]
教師深入學生中,與學生交流,了解學生思考問題的進展過程,有時間的話,可以讓學生口述解題思路,也可以投影學生的證明過程,糾正出現的錯誤,規范書寫的格式;沒時間就布置分層作業。
[設計意圖]
(1)小題與上一節的平行綜合,學生應該有思路求出方程;
(2)小題解決方法較多,預設有利用公式法、等斜率法、待定系數法,讓好一點的學生有一些發散思維的機會,以及課后學習的空間,使探究氣氛有一點高潮。另外也為下節課研究直線的兩點式方程作了重要的準備。分層作業必做題:P100。A組:1、(1)(2)(3)、5。選做題:P100。A組:1、(4)(5)(6)。
[設計意圖]
通過分層作業,做到因材施教,使不同的學生在數學上得到不同的發展,讓每一個學生都得到符合自身實踐的感悟,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生自主發展。
四、教學特點分析
。ㄒ唬⿲嵗龑А
在字母運算、公式推導之前,總是用實例作為鋪墊,使學生有學習知識的可能和興趣,關注學困生的成長與發展。
(二)啟發式教學。
教學中總是以提問的方式敘述所學內容,如:
1、直角坐標系內的所有直線都有點斜式方程嗎?
2、截距是距離嗎?它可以是負數嗎?
3、你會求直線在軸上的截距嗎?
4、觀察方程,它的形式具有什么特點?它與我們學過的一次函數有什么關系?等等。啟發學生的思維,作好與學生的對話與交流活動。
。ㄈ┳⒅刈灾魈骄俊TO計問題鏈,環環相扣,使學生的探究活動貫穿始終。教師總是站在學生思維的最近發展區上,布設了由淺入深的學習環境突破重點、難點,引導學生逐步發現知識的形成過程。設計了兩次思維發散點,分別是問題二和問題六的第(2)問,要求學生分組討論,合作交流,為學生創造充分的探究空間,學生在交流成果的過程中,高效的完成教學任務。
附:
板書設計
屏幕3.2直線的方程3.2.1直線的點斜式方程
問題一:直線的方程
問題二:實例引導
問題三:直線的點斜式方程
問題四:練習答案
問題五:直線的斜截式方程截距
問題六:實例引導,思維延續
高中數學說課稿10
一、教材分析:
1、教材的地位與作用。
本節內容是在學生學習了“事件的可能性的基礎上來學習如何預測不確定事件(隨機事件)發生的可能性的大小!庇酶怕暑A測隨機發生的可能性大小,在日常生活、自然、科技領域有著廣泛的應用,學習本單元知識,無論是今后繼續深造(高中學習概率的乘法定理)還是參加社會實踐活動都是十分必要的。概率的概念比較抽象,概率的定義學生較難理解。
在教材的處理上,采取小單元教學,本節課安排讓學生了解求隨機事件概率的兩種方法,目的是讓學生能夠比較系統地理解概率的意義及求概率的方法,為下面學習求比較復雜的情況的'概率打下基礎。
2、重點與難點。
重點:對概率意義的理解,通過多次重復實驗,用頻率預測概率的方法,以及用列舉法求概率的方法。
難點:對概率意義的理解和用列舉法求概率過程中在各種可能性相同條件下某一事件可能發生的總數及總的結果數的分析。
二、目的分析:
知識與技能:掌握用頻率預測概率和用列舉法求概率方法。
過程與方法:組織學生自主探究,合作交流,引導學生觀察試驗和統計的結果,進而進行分析、歸納、總結,了解并感受概率的定義的過程,引導學生從數學的視角觀察客觀世界,用數學的思維思考客觀世界,以數學的語言描述客觀世界。
情感態度價值觀:學生經歷觀察、分析、歸納、確認等數學活動,感受數學活動充滿了探索性與創造性,感受量變與質變的對立統一規律,同時為概率的精準、新穎、獨特的思維方法所震撼,激發學生學習數學的熱情,增強對數學價值觀的認識。
三、教法、學法分析:
引導學生自主探究、合作交流、觀察分析、歸納總結,讓學生經歷知識(概率定義計算公式)的產生和發展過程,讓學生在數學活動中學習數學、掌握數學,并能應用數學解決現實生活中的實際問題,教師是學生學習的組織者、合作者和指導者,精心設計教學情境,有序組織學生活動,讓課堂充滿生機活力,體現“教” 為“學”服務這一宗旨。
四、教學過程分析:
1、引導學生探究
精心設計問題一,學生通過對問題一的探究,一方面復習前面學過的“確定事件和不確定事件”的知識,為學好本節內容理清知識障礙,二是讓學生明確為什么要學習概率(如何預測隨機事件可能性發生大小)。引導學生對問題二的探究與觀察實驗數據,使學生了解概率這一重要概念的實際背景,感受并相信隨機事件的發生中存在著統計規律性,感受數學規律的真實的發現過程。
2、歸納概括
學生從試驗中得到的統計數字及概率呈現穩定在某一數值附近這一規律,讓學生明確概率定義的由來。
引導學生重新對問題一和問題二的探究,分析某事件發生的各種可能性在全部可能發生結果中所占比例,得到用列舉法求概率的公式,引導學生進行理性思維,邏輯分析,既培養學生的分析問題能力,又讓學生明確用列舉法求概率這一簡便快捷方法的合理性。
P(A)= = = (m
3、舉例應用
、乓龑W生對教材書例題、問題一、問題二中問題的進一步分析與探究,讓學生掌握用列舉法求概率的方法。
⑵引導學生對練習中的問題思考與探究,鞏固對概率公式的應用及加深對概率意義的理解。
深化發展
⑴設置3個小題目,引導學生歸納、分析、總結,加深對知識與方法的理解,并學會靈活運用。
、谱寣W生設計活動內容,對知識進行升華和拓展,引導學生創造性地運用知識思考問題和解決問題,從而培養學生的創新意識和創新能力。
高中數學說課稿11
各位領導、專家、同仁:您們好!
我說課的內容是高中數學第二冊(上冊)第七章《直線和圓的方程》中的第六節“曲線和方程”的第一課時,下面我的說課將從以下幾個方面進行闡述:
一、教材分析
教材的地位和作用
“曲線和方程”這節教材揭示了幾何中的形與代數中的數相統一的關系,為“作形判數”與“就數論形”的相互轉化開辟了途徑,這正體現了解析幾何這門課的基本思想,對全部解析幾何教學有著深遠的影響。學生只有透徹理解了曲線和方程的意義,才算是尋得了解析幾何學習的入門之徑。如果以為學生不真正領悟曲線和方程的關系,照樣能求出方程、照樣能計算某些難題,因而可以忽視這個基本概念的教學,這不能不說是一種“舍本逐題”的偏見,應該認識到這節“曲線和方程”的開頭課是解析幾何教學的“重頭戲”!
根據以上分析,確立教學重點是:“曲線的方程”與“方程的曲線”的概念;難點是:怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程。
二、教學目標
根據教學大綱的要求以及本教材的地位和作用,結合高二學生的認知特點確定教學目標如下:
知識目標:
1、了解曲線上的點與方程的解之間的一一對應關系;
2、初步領會“曲線的方程”與“方程的曲線”的概念;
3、學會根據已有的情景資料找規律,進而分析、判斷、歸納結論;
4、強化“形”與“數”一致并相互轉化的思想方法。
能力目標:
1、通過直線方程的引入,加強學生對方程的解和曲線上的點的一一對應關系的認識;
2、在形成曲線和方程的概念的教學中,學生經歷觀察、分析、討論等數學活動過程,探索出結論,并能有條理的闡述自己的觀點;
3、能用所學知識理解新的概念,并能運用概念解決實際問題,從中體會轉化化歸的思想方法,提高思維品質,發展應用意識。
情感目標:
1、通過概念的引入,讓學生感受從特殊到一般的認知規律;
2、通過反例辨析和問題解決,培養合作交流、獨立思考等良好的個性品質,以及勇于批判、敢于創新的科學精神。
三、重難點突破
“曲線的方程”與“方程的曲線”的概念是本節的重點,這是由于本節課是由直觀表象上升到抽象概念的過程,學生容易對定義中為什么要規定兩個關系產生困惑,原因是不理解兩者缺一都將擴大概念的外延。由于學生已經具備了用方程表示直線、拋物線等實際模型,積累了感性認識的'基礎,所以可用舉反例的方法來解決困惑,通過反例揭示“兩者缺一”與直覺的矛盾,從而又促使學生對概念表述的嚴密性進行探索,自然地得出定義。為了強化其認識,又決定用集合相等的概念來解釋曲線和方程的對應關系,并以此為工具來分析實例,這將有助于學生的理解,有助于學生通其法,知其理。
怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程是本節的難點。因為學生在作業中容易犯想當然的錯誤,通常在由已知曲線建立方程的時候,不驗證方程的解為坐標的點在曲線上,就斷然得出所求的是曲線方程。這種現象在高考中也屢見不鮮。為了突破難點,本節課設計了三種層次的問題,幻燈片9是概念的直接運用,幻燈片10是概念的逆向運用,幻燈片11是證明曲線的方程。通過這些例題讓學生再一次體會“二者”缺一不可。
四、學情分析
此前,學生已知,在建立了直角坐標系后平面內的點和有序實數對之間建立了一一對應關系,已有了用方程(有時以函數式的形式出現)表示曲線的感性認識(特別是二元一次方程表示直線),現在要進一步研究平面內的曲線和含有兩個變數的方程之間的關系,是由直觀表象上升到抽象概念的過程,對學生有相當大的難度。學生在學習時容易產生的問題是,不理解“曲線上的點的坐標都是方程的解”和“以這個方程的解為坐標的點都是曲線上的點”這兩句話在揭示“曲線和方程”關系時各自所起的作用。本節課的教學目標也只能是初步領會,要求學生能答出曲線和方程間必須滿足兩個關系時才能稱作“曲線的方程”和“方程的曲線”,兩者缺一不可,并能借助實例指出兩個關系的區別。
五、教法分析
新課程強調教師要調整自己的角色,改變傳統的教育方式,教師要由傳統意義上的知識的傳授者和學生的管理者,轉變為學生發展的促進者和幫助者,簡單的教書匠轉變為實踐的研究者,或研究的實踐者,在教育方式上,也要體現出以人為本,以學生為中心,讓學生真正成為學習的主人而不是知識的奴隸,基于此,本節課遵循了概念學習的四個基本步驟,重點采用了問題探究和啟發式相結合的教學方法。
從實例、到類比、到推廣的問題探究,它對激發學生學習興趣,培養學習能力都十分有利。啟發引導學生得出概念,深化概念,并應用它去討論、研究和解決問題。在生生合作,師生互動中解決問題,為提高學生分析問題、解決問題的能力打下了基礎。
利用多媒體輔助教學,節省了時間,增大了信息量,增強了直觀形象性。
六、學法分析
基礎教育課程改革要求加強學習方式的改變,提倡學習方式的多樣化,各學科課程通過引導學生主動參與,親身實踐,獨立思考,合作探究,發展學生搜集處理信息的能力,獲取新知識的能力,分析和解決問題的能力,以及交流合作的能力,基于此,本節課從實例引入→類比→推廣→得概念→概念挖掘深化→具體應用→作業中的研究性問題的思考,始終讓學生主動參與,親身實踐,獨立思考,與合作探究相結合,在生生合作,師生互動中,使學生真正成為知識的發現者和知識的研究者。
七、教學過程分析
1、感性認識階段——以舊帶新、提出課題
高中數學說課稿12
一、說教材
1、 教材的地位和作用
《集合的概念》是人教版第一章的內容(中職數學)。本節課的主要內容:集合以及集合有關的概念,元素與集合間的關系。初中數學課本中已現了一些數和點的集合,如:自然數的集合、有理數的集合、不等式解的集合等,但學生并不清楚“集合”在數學中的含義,集合是一個基礎性的概念,也是也是中職數學的開篇,是我們后續學習的重要工具,如:用集合的語言表示函數的定義域、值域、方程與不等式的解集,曲線上點的集合等。通過本章節的學習,能讓學生領會到數學語言的簡潔和準確性,幫助學生學會用集合的語言描述客觀,發展學生運用數學語言交流的能力。
2、 教學目標
。1)知識目標:a、通過實例了解集合的含義,理解集合以及有關概念;
b、初步體會元素與集合的“屬于”關系,掌握元素與集合關系的表示方法。
。2)能力目標:a、讓學生感知數學知識與實際生活得密切聯系,培養學生解決實際的能力;
b、學會借助實例分析,探究數學問題,發展學生的觀察歸納能力。
(3)情感目標:a、通過聯系生活,提高學生學習數學的積極性,形成積極的學習態度;
b、通過主動探究,合作交流,感受探索的樂趣和成功的體驗,體會數學的理性和嚴謹。
3、重點和難點
重點:集合的概念,元素與集合的關系。
難點:準確理解集合的概念。
二、學情分析(說學情)
對于中職生來說,學生的數學基礎相對薄弱,他們還沒具備一定的觀察、分析理解、解決實際問題的能力,在運算能力、思維能力等方面參差不齊,學生學好數學的自信心不強,學習積極性不高,有厭學情緒。
三、說教法
針對學生的實際情況,采用探究式教學法進行教學。首先從學生較熟悉的實例出發,提高學生的注意力和激發學生的學習興趣。在創設情境認知策略上給予適當的點撥和引導,引導學生主動思、交流、討論,提出問題。在此基礎上教師層層深入,啟發學生積極思維,逐步提升學生的數學學習能力。集合概念的形成遵循由感性到理性,由具體到抽象,便于學生的理解和掌握。
四、學習指導(說學法)
教學的矛盾主要方面是學生的學,學是中心,會學是目的,因此在教學中要不斷指導學生學會學習。根據數學的特點這節課主要是教學生動腦思考、多訓練、勤鉆研的研討,這樣做增加了學生主動參與的機會,增強了參與的意識,教學生獲取知識的途徑,思考問題的方法,使學生成為教學的主體,進而才能達到預期的教學目的和效果。
五、教學過程
1、引入新課:
a、創設情境,揭示本課主題,同時對集合的整體性有個初步的感性認識。
b、介紹集合論的創始者康托爾
2、究竟什么是集合?(實例探究)切合學生現有的認知水平, 以學生熟悉的事物(物體),以實際生活為背景進行探究, 為本課教學創造出一種自然和諧的氛圍,充分調動學生的學習熱情接待探究過程學生積極思考、交流、作答,教師針對學生的回答啟發,引導學生尋找實例中的共同特征,培養學生觀察,總結能力范圍由具體到抽象,由感性到理性,為下面水到渠成的介紹集合概念做好鋪墊。
3、集合的.概念,本課的重點。結合探究中的實例,讓學生說出集合和元素各是什么?知識的呈現由抽象到具體進一步熟悉元素與集合的概念,讓學生分清實際問題中的集合和元素為后面學習兩者間的關系做好鋪墊。
教師在這一環節做好學習指導,確定的對象組成的整體叫集合,如果對象不確定,就不能確定為集合(舉例)加深對概念的理解。
4、 熟悉鞏固集合的概念通過例題,練習、幫助學生進一步熟悉和理解集合的概念。
5、 集合的符號記法,為本節重點做好鋪墊。
6、 從實例入行手,探索元素和集合的關系,學生能用文字語言描述,如何用數學語言描述,給出元素與集合關系符號表示,在這個環節教師適當引導學生積極主動參與到知識逐步形成過程,便于學生理解和掌握,落實本課的重點,學習指導:⑴集合元素的確定。⑵理解兩符號的含義。
7、 思考交流本課的重要環節在課堂上給學生提供充分的活動時間和空間。通過自由舉例,能深化概念。同時還能提升學生的分析能力表達自己見解的能力。
8、 從所舉的例子中抽象出數集的概念,并給出常見數集的記法。
9、 學生練習:通過練習,識記常見數集的記法,同時進一步鞏固元素與集合間的關系。
10、知識的實際應用:
問題不難,落實課本能力目標,培養學生運用數學的意識和能力初步培養學生應用集合的眼光觀看世界。
11、課堂小節
以學生小節為主教師幫助為輔,鞏固所學知識,幫助學生認識到要學會梳理所學內容,要學會總結反思,使學生的認識進一步升華,培養學生的鬼納總結能力。
六、評價
教學評價的及時能有效調動課堂氣氛,感染學生的情緒,對課堂教學發揮著積極作用,教學過程遵重學生之間的差異培養學生應用集合的眼光看研究對象,注重過程評價與多元評價將教學評價貫穿于本堂課的每個教學環節。
七、教學反思
1、 通過現實生活中的實例,從特殊到一般,在具體感知基礎上得出集合的描述概念,便于學生理解接受。
2、 啟發探究教學,營造學生的學習氛圍,培養學生自主學習,合作交流的能力。
八、板書設計
高中數學說課稿13
今天我說課的題目是《函數的單調性》,下面我將圍繞本節課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學目標分析、教學重難點分析、教法與學法、教學過程五方面逐一加以分析和說明。
一、說教材
1、教材的地位和作用
本節內容選自北師大版高中數學必修1,第二章第3節。函數是高中數學的課程,它是描述事物運動變化的模型,而函數的單調性是函數的一大特征,它為我們之后的學習奠定重要基礎。
2、學情分析
本節課的學生是高一學生,他們在初中階段,通過一次函數、二次函數、反比例函數的學習已經對函數的增減性有了初步的感性認識。在高中階段,用符號語言刻畫圖形語言,用定量分析解釋定性結果,有利于培養學生的理性思維,為后續函數的學習作準備,也為利用倒數研究單調性的相關知識奠定了基礎。
教學目標分析
基于以上對教材和學情的分析以及新課標教學理念,我將教學目標分為以下三個部分:
1、知識與技能(1)理解函數的單調性和單調函數的意義;
(2)會判斷和證明簡單函數的單調性。
2、過程與方法
(1)培養從概念出發,進一步研究性質的意識及能力;
。2)體會數形結合、分類討論的數學思想。
3、情感態度與價值觀
由合適的例子引發學生探求數學知識的欲望,突出學生的主觀能動性,激發學生學習數學的興趣。
三、教學重難點分析
通過以上對教材和學生的分析以及教學目標,我將本節課的重難點
重點:
函數單調性的概念,判斷和證明簡單函數的單調性。
難點:
1、函數單調性概念的認知
。1)自然語言到符號語言的轉化;
。2)常量到變量的轉化。
2、應用定義證明單調性的代數推理論證。
四、教法與學法分析
1、教法分析
基于以上對教材、學情的分析以及新課標的教學理念,本節課我采用啟發式教學、多媒體輔助教學和討論法。學生可以在多媒體中感受到數學在生活中的應用,啟發式教學和討論法發散學生思維,培養學生善于思考的能力。
2、學法分析
新課改理念告訴我們,學生不僅要學知識,更重要的是要學會怎樣學習,為終生學習奠定扎實的基礎。所以本節課我將引導學生通過合作交流、自主探索的方法理解函數的單調性及特征。
五、教學過程
為了更好的實現本課的三維目標,并突破重難點,我設計以下五個環節來進行我的教學。
(一)知識導入
溫故而知新,我將先從之前學習的知識引入,給出一些函數,比如y=x、y=-x、y=|x|,讓學生作出這些函數的圖像,然后讓學生討論這些函數圖像是上升的還是下降的,由此引入到我的新課。在這個過程中不僅可以檢查學生掌握基本初等函數圖像的情況,而且符合學生的認知結構,通過學生自主探究,從知識產生、發展的過程中構建新概念,有利于激發學生的思維和學習的積極主動性。
(二)講授新課
1.問題:分別做出函數y=x2,y=x+2的圖像,指出上面的函數圖象在哪個區間是上升的,在哪個區間是下降的?
通過學生熟悉的圖像,及時引導學生觀察,函數圖像上A點的運動情況,引導學生能用自然語言描述出,隨著x增大時圖像變化規律。讓學生大膽的去說,老師逐步修正、完善學生的說法,最后給出正確答案。
2、觀察函數y=x2隨自變量x變化的情況,設置啟發式問題:
(1)在y軸的右側部分圖象具有什么特點?
(2)如果在y軸右側部分取兩個點(x1,y1),(x2,y2),當x1< p="">
。3)如何用數學符號語言來描述這個規律?
教師補充:這時我們就說函數y=x2在(0,+∞)上是增函數。
。4)反過來,如果y=f(x)在(0,+∞)上是增函數,我們能不能得到自變量與函數值的`變化規律呢?
類似地分析圖象在y軸的左側部分。
通過對以上問題的分析,從正、反兩方面領會函數單調性。師生共同總結出單調增函數的定義,并解讀定義中的關鍵詞,如:區間內,任意,當x1< p="">
仿照單調增函數定義,由學生說出單調減函數的定義。
教師總結歸納單調性和單調區間的定義。注意強調:函數的單調性是函數在定義域某個區間上的局部性質,也就是說,一個函數在不同的區間上可以有不同的單調性。
(我將給出函數y=x2,并畫出這個函數的圖像,讓學生觀察函數圖像的特點,讓他們描述函數圖像的增減性,慢慢得到函數單調性的概念。在這個過程中,學生把對圖像的感性認識轉化為了數學關系,這種從特殊到一般的學習過程有利于學生對概念的理解)
。ㄈ╈柟叹毩
1練習1:說出函數f(x)=的單調區間,并指明在該區間上的單調性。x
練習2:練習2:判斷下列說法是否正確
、俣x在R上的函數f(x)滿足f(2)>f(1),則函數是R上的增函數。
、诙x在R上的函數f(x)滿足f(2)>f(1),則函數是R上不是減函數。
1③已知函數y=,因為f(-1)< p="">
1我將給出一些具體的函數,如y=,f(x)=3x+2讓學生說出函數的單調區間,并指明在該區間x
上的單調性。通過這種練習的方式,幫助學生鞏固對知識的掌握。
。ㄋ模w納總結
我先讓學生進行小結,函數單調性定義,判斷函數單調性的方法(圖像、定義),然后教師進行補充,在這樣一個過程中既有利于學生鞏固知識,也有利于教師對學生的學習情況有一定的了解,為下一節課的教學過程做好準備。
(五)布置作業
必做題:習題2-3A組第2,4,5題。
選做題:習題2-3B組第2題。
新課程理念告訴我們,不同的人在數學上可以獲得不同的發展,因此要設計不同程度要求的習題。
高中數學說課稿14
一、教材分析:
集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。
二、目標分析:
教學重點、難點
重點:集合的含義與表示方法。
難點:表示法的恰當選擇。
教學目標
l.知識與技能
(1)通過實例,了解集合的含義,體會元素與集合的屬于關系;
(2)知道常用數集及其專用記號;
。3)了解集合中元素的確定性。互異性。無序性;
。4)會用集合語言表示有關數學對象;
2. 過程與方法
(1)讓學生經歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義。
(2)讓學生歸納整理本節所學知識。
3. 情感、態度與價值觀
使學生感受到學習集合的必要性,增強學習的積極性。
三、教法分析
1. 教學方法:學生通過閱讀教材,自主學習。思考。交流。討論和概括,從而更好地完成本節課的教學目標。
2. 教學手段:在教學中使用投影儀來輔助教學。
四、過程分析
。ㄒ唬﹦撛O情景,揭示課題
1、教師首先提出問題:
(1)介紹自己的家庭、原來就讀的學校、現在的班級。
。2)問題:像"家庭"、"學校"、"班級"等,有什么共同特征?
引導學生互相交流。 與此同時,教師對學生的活動給予評價。
2.活動:
。1)列舉生活中的集合的例子;
(2)分析、概括各實例的共同特征
由此引出這節要學的內容。
設計意圖:既激發了學生濃厚的學習興趣,又為新知作好鋪墊
。ǘ┭刑叫轮嫺拍
1.教師利用多媒體設備向學生投影出下面7個實例:
。1)1-20以內的所有質數;
。2)我國古代的四大發明;
。3)所有的安理會常任理事國;
。4)所有的正方形;
。5)海南省在20xx年9月之前建成的所有立交橋;
(6)到一個角的兩邊距離相等的所有的點;
。7)國興中學20xx年9月入學的高一學生的全體。
2.教師組織學生分組討論:這7個實例的共同特征是什么?
3.每個小組選出--位同學發表本組的討論結果,在此基礎上,師生共同概括出7個實例的特征,并給出集合的含義。
一般地,指定的某些對象的全體稱為集合(簡稱為集)。集合中的每個對象叫作這個集合的元素。
4.教師指出:集合常用大寫字母A,B,C,D,…表示,元素常用小寫字母…表示。
設計意圖:通過實例讓學生感受集合的概念,激發學習的興趣,培養學生樂于求索的精神
(三)質疑答辯,發展思維
1.教師引導學生閱讀教材中的相關內容,思考:集合中元素有什么特點?并注意個別輔導,解答學生疑難。使學生明確集合元素的三大特性,即:確定性;ギ愋院蜔o序性。只要構成兩個集合的元素是一樣的,我們就稱這兩個集合相等。
2.教師組織引導學生思考以下問題:
判斷以下元素的全體是否組成集合,并說明理由:
(1)大于3小于11的偶數;
。2)我國的小河流。
讓學生充分發表自己的建解。
3. 讓學生自己舉出一些能夠構成集合的.例子以及不能構成集合的例子,并說明理由。教師對學生的學習活動給予及時的評價。
4.教師提出問題,讓學生思考
。1)如果用A表示高-(3)班全體學生組成的集合,用表示高一(3)班的一位同學,是高一(4)班的一位同學,那么與集合A分別有什么關系?由此引導學生得出元素與集合的關系有兩種:屬于和不屬于。
如果是集合A的元素,就說屬于集合A,記作。
如果不是集合A的元素,就說不屬于集合A,記作。
(2)如果用A表示"所有的安理會常任理事國"組成的集合,則中國。日本與集合A的關系分別是什么?請用數學符號分別表示。
。3)讓學生完成教材第6頁練習第1題。
5.教師引導學生回憶數集擴充過程,然后閱讀教材中的相交內容,寫出常用數集的記號。并讓學生完成習題1.1A組第1題。
6.教師引導學生閱讀教材中的相關內容,并思考。討論下列問題:
(1)要表示一個集合共有幾種方式?
。2)試比較自然語言。列舉法和描述法在表示集合時,各自有什么特點?適用的對象是什么?
。3)如何根據問題選擇適當的集合表示法?
使學生弄清楚三種表示方式的優缺點和體會它們存在的必要性和適用對象。
設計意圖:明確集合元素的三大特性,使學生弄清楚三種表示方式的優缺點,從而突破難點。
。ㄋ模╈柟躺罨,反饋矯正
教師投影學習:
。1)用自然語言描述集合{1,3,5,7,9};
。2)用例舉法表示集合
。3)試選擇適當的方法表示下列集合:教材第6頁練習第2題。
設計意圖:使學生及時鞏固所學新知,體會三種表示方式存在的必要性和適用對象(五)歸納小結,布置作業
小結:在師生互動中,讓學生了解或體會下例問題:
1.本節課我們學習了哪些知識內容?
2.你認為學習集合有什么意義?
3.選擇集合的表示法時應注意些什么?
設計意圖:通過回顧,對概念的發生與發展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。
作業:
1.課后書面作業:第13頁習題1.1A組第4題。
2. 元素與集合的關系有多少種?如何表示?類似地集合與集合間的關系又有多少種呢?如何表示?請同學們通過預習教材。
高中數學說課稿15
課題《數列的概念與簡單表示方法(一)》選自普通高中課程標準試驗教科書人教版A版數學必修5第二章第一節的第一課時。我將從教材分析、學情分析、教學目標分析、教法分析、教學過程這五個方面來匯報我對這節課的教學設想。
一、教材分析
1、教材的地位和作用
數列是高中數學的重要內容之一,它的地位作用可以從三個方面來看:
。1)數列有著廣泛的實際應用。如堆放的物品的總數計算要用到數列的前n項和,又如分期儲蓄、付款公式的有關計算也要用到數列的一些知識。
(2)數列起著承前啟后的作用。一方面,初中數學的許多內容在解決數列的某些問題中得到了充分運用,數列是前面函數知識的延伸及應用,可以使學生加深對函數概念的理解;另一方面,學習數列又為進一步學習數列的極限,等差數列、等比數列的前n項和以及通項公式打好了鋪墊。因此就有必要講好、學好數列。
(3)數列是培養學生數學能力的良好題材。是進行計算,推理等基本訓練,綜合訓練的重要教材。學習數列,要經常觀察、分析、歸納、猜想,還要綜合運用前面的知識解決數列中的一些問題,這些都有助于學生數學能力的提高。
二、學情分析
從學生知識層面看:學生對數列已有初步的認識,對方程、函數、數學公式的運用已有一定的基礎,對方程、函數思想的體會也逐漸深刻。
從學生素質層面看:從高一新生入學開始,我就很注意學生自主探究習慣的養成,F階段我的學生思維活躍,課堂參與意識較強,而且已經具有一定的分析、推理能力。
三、教學目標分析
根據上面的教材分析以及學情分析,確定了本節課的教學目標:
(1)知識目標:認識數列的特點,掌握數列的概念及表示方法,并明白數列與集合的不同點。了解數列通項公式的意義及數列分類。能由數列的通項公式求出數列的各項,反之,又能由數列的前幾項寫出數列的一個通項公式。
(2)能力目標:通過對數列概念以及通項公式的探究、推導、應用等過程,鍛煉了學生的觀察、歸納、類比等分析問題的能力。同時更深層次的理解了數學知識之間的相互滲透性思想。
。3)情感目標:在教學中使學生體會教學知識與現實世界的聯系,并且利用各種有趣的,貼近學生生活的素材激發學生的學習興趣,培養熱愛生活的'情感。
四、教學重點與難點
根據教學目標以及學生的理解能力與認知水平,我確定了如下的教學重難點。
重點:理解數列的概念,能由函數的觀點去認識數列,以及對通項公式的理解。
難點:根據數列的前幾項的特點,通過多角度、多層次的觀察分析歸納出數列的一個通項公式。
五、教法分析
根據本節課的內容和學生的實際情況,結合波利亞的先猜后證理論,本節課主要以講解法為主,引導發現為輔,由老師帶領同學們發現問題,分析問題,并解決問題.考慮到學生的認知過程,本節課會采用由易到難的教學進程以及實例給出與練習設置,讓學生們充分體會到事物的發展規律。同時為了增大課堂容量,提高教學效率,更吸引同學們的眼光,提高學習熱情,本節課還會采用常規手段與現代手段相結合的辦法,充分利用多媒體,將引例、例題具體呈現.
【高中數學說課稿】相關文章:
高中數學優秀說課稿(通用12篇)05-26
有關高中數學說課稿模板集合九篇06-26
高中數學培訓心得03-18
高中數學教案08-16
高中數學聽課心得12-28
高中數學并集教案12-30
高中數學 數列教案01-03
高中數學數列教案12-30
高中數學教案12-30