1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教學論文>數學論文>數學建模論文

    數學建模論文

    時間:2023-07-21 16:58:08 數學論文 我要投稿

    數學建模論文模板【精華15篇】

      在現實的學習、工作中,大家總少不了接觸論文吧,論文是進行各個學術領域研究和描述學術研究成果的一種說理文章。那么一般論文是怎么寫的呢?以下是小編幫大家整理的數學建模論文模板,僅供參考,大家一起來看看吧。

    數學建模論文模板【精華15篇】

    數學建模論文模板1

      【摘 要】首先闡述數學建模內涵;其次分析數學建模與數學教學的關系;最后總結出提高數學教學效果的幾點思考。

      【關鍵詞】數學建模;數學教學;教學模式

      什么是數學建模,為什么要把數學建模的思想運用到數學課堂教學中去?經過反復閱讀有關數學建模與數學教學的文章,仔細研修數十個高校的數學建模精品課程,數學建模優秀教學案例等,筆者對數學教學與數學建模進行初步探索,形成一定認識。

      一、數學建模

      數學建模即運用數學知識與數學思想,通過對實際問題數學化,建立數學模型,并運用計算機計算出結果,對實際問題給出合理解決方案、建議等。系統的談數學建模需從以下三個方面談起。

      1.數學建模課程。

      “數學建!闭n程特色鮮明,以綜合門類為基礎,重實踐,重應用。旨在使學生打好數學基礎,增強應用數學意識,提高實踐能力,建立數學模型解決實際問題。注重培養學生參與現代科研活動主動性與參與工程技術開發興趣,注重培養學生創新思維及創新能力等相關素質。

      2.數學建模競賽。

      1985年,美國工業與應用數學學會發起的一項大學生競賽活動名為“數學建模競賽”。旨在提高學生學習數學主動性,提高學生運用計算機技術與數學知識和數學思想解決實際問題綜合能力。學生參與這項活動可以拓寬知識面,培養自己團隊意識與創新精神。同時這項活動推動了數學教師與數學教學專家對數學體系、教學方式與教學知識重新認識。1992年,教育部高教司和中國工業與數學學會創辦了“全國大學生數學建模競賽”。截止20xx年10月已舉辦有21屆。大力推進了我國高校數學教學改革進程。

      3.數學建模與創新教育。

      創新教育是現代教育思想的靈魂。數學建模競賽是實現數學教育創新的重要載體。如20xx年A題,葡萄酒的評價中,要求學生對葡萄酒原料與釀造、儲存于葡萄酒色澤、口味等有全面認識;而20xx年D題,機器人行走避障問題,要求學生了解對機器人行走特點;20xx年B題,乘公交看奧運,要求學生了解公交換乘系統。大學生數學建模競賽試題涉及不是單一數學知識。因此數學教師在數學教學中必須融合其它學科知識。同時學生參與數學建模競賽有助于增強其積極思考應用數學知識創造性解決實際問題的意識。

      二、數學建模與數學教學的'關系

      數學建模是數學應用與實踐的重要載體;數學教學旨在傳授數學知識與數學思想,激發學生應用數學解決實際問題的意識。數學建模與數學教學相輔相成,數學建模思想與數學教學將有助于提高教學效果,反之傳統應試扼殺了學生學習數學的興趣與主觀能動性;數學教學效果,在數學建模過程中體現顯著。

      三、數學教學

      1.數學教學“教”什么。電子科技大學的黃廷祝老師說:“數學教學,最重要的就是數學的精神、思想和方法,而數學知識是第二位的!币虼藬祵W教師不僅要傳授數學知識,更要讓學生知道數學的來龍去脈,領會數學精神實質。

      2.如何提高數學教學效果。提高數學教師自身素質是關鍵,創新數學教學模式是手段,革新評價機制是保障。

      ①提高數學教師自身素質。

      數學教師自身素質是提高數學教學效果的關鍵。20xx年胡書記在《國務院關于加強教師隊伍建設的意見》中明確提出,我國教育出了問題,問題關鍵在教師隊伍。數學學科特點鮮明。若數學教師數學素養與綜合能力不強,則提高數學教學效果將無從談起。因此數學教師需通過如參加培訓、學習精品課程、同行評教、與專家探討等途徑努力提高自身素養。

      ②創新數學教學模式 。

      (1)必須轉變教學理念。首先要轉變繼承性教育理念,注重培養學生綜合素質與實際操作能力。其次要轉變注入式教育理念,注重發揮學生主體能動性。再次要轉變應試教育理念。注重素質的培養是長久發展之計。最后要轉變傳統教學模式?萍及l展為教育教學實現提供多種選擇。教育工作者應提供多種教學模式以提高學習效果。

      (2)必須改革數學教學模式。傳統講授式教學模式有很多不足,學生參與不夠,不能發揮學生的主體能動性。因此,在今后數學教學中,要注重發揮學生的主體能動性,如增加課題互動環節,采用小組討論,教師引導等方式。

      在數學教學過程中,要巧用提問。教師可針對某一具體教學內容根據數學思維方式特點巧設提問,讓學生回答,教師在關鍵的地方進行啟發點撥,并適當的總結。在問答過程中,培養學生分析和思考問題、解決問題能力;在數學教學過程中,可采用分組討論形式。采用小組討論與集體展示、互評相結合。旨在教育學生學會傾聽,分析不同;學會表達,勇于提出見解,培養學生團隊意識。

      在數學課堂上可通過對典型案例的剖析,使學生親歷發現問題、認識問題和解決問題的過程。培養學生實際動手操作能力。

      (3)建立多元化評價機制。一是要建立多元化教師教學評價機制。采用多元化考核、綜合評定教師教學效果的方法,有利于教師發展。二是要建立多元化學生學習效果評價機制。多元化評價機制對學生評價更客觀、公正,有利于發揮學生主觀能動性。

    數學建模論文模板2

      一、高數教學里的量化指標與線性關系

      要將數學建模應用于高等數學教學中,首先,要取得建模所需的一些參數;其次,要分析出各個參數之間的線性關系;然后,才能建立模型的計算公式,并進行測算、校驗及修正。

      在選取參數之前,我們先要明確我們建立模型的目的。在這里,我們建立數學模型的目的是:建立課堂上的教學質量,與期中期末考試之間的某種聯系,從而達到提升考試成績的目的。

      經驗表明,教學質量好,學生的整體成績也會好。如果學生的整體成績都不盡如人意,那么在教學的過程中就可能出現了問題。如何從細節上及早分析出教學的過程是否出現了問題,將對考試的成績造成怎樣的影響,正是我們建立這一數學模型的目的所在。

      二、分析數學建模中的相關參數

      我們分析一下在數學模型中將用到的一些量化指標,也就是模型的參數:

     。1)學生的上課簽到情況;

     。2)課堂問答的情況;

     。3)作業的情況;

     。4)測驗的成績。

      這四項參數,與考試的成績之間,有著某些必然的聯系。下面我們對這些參數進行逐項分析:

      1.學生上課簽到情況。如果簽到率達到100%,那么授課是有保障的。反之,如果降為0(當然這是一種極端的情況),那么除非學生自學成才了,否則教學質量將是沒有保障的。所以,課堂上的簽到情況,與成績之間,有一個乘數關系。

      2.課堂問答。課堂問答,包括學生的主動提問,教師的例行提問以及下課后的一些補充問答。課堂問答的多少,與兩方面有關系。第一,是學生的學習積極性。如果學生對學習沒有積極性,那么,主動提問的情況就不多。第二,是教學內容的難易度。如果教學的內容很簡單,一般學生的提問也相對會減少。所以,對于課堂提問的情況,要一分為二地分析。當課堂提問的數量上升時,既有可能是學生的學習積極性上升,也可能是教學內容相對有難度。學習積極性上升,則成績有可能提高。但如果是教學內容有難度,則成績反而有可能下降。因此,對于課堂問答的情況,除了進行縱向對比外,還需進行歷史同期數據的橫向對比。

      所謂縱向對比,就是這一期學生,在學習高數的過程中,各階段的課堂提問情況。橫向對比,則是與前幾期學生,以及同期別的班的學生相比,這一班學生的課堂問答情況。當然,也有可能出現學生不積極提問,同時教學難度也不大的'情況。這時候就要用到下一個關鍵參數——測驗。

      3.測驗的成績。課堂問答相當于抽檢,而測驗則是一次小規模的普查。測驗的結果可以較為真實的反映出學生的學習成果。不過,測驗不可能頻繁的進行。因為課時安排主要還是以授課為主。過多的測試,有可能導致本末倒置。

      4.作業的情況。除了測試之外,一個比較好的檢測學生學習狀況的方法,就是作業。大學的作業,由于教學安排的原因,不像中小學作業那樣密集。同時,教授的主要工作也不是批改作業。但抽查作業的完成情況,仍然可以對了解學生的學習情況起到一些輔助作用。

      三、建立數學模型

      分析了數學建模的相關參數,我們就要著手進行數學建模。盡管模型中的幾項參數,與考試成績之間都是乘數關系,但是各項參數之間并不是簡單的乘數關系,而是相互有一個比例。所以,在建立模型時,我們采用將參數域對象相乘,然后相加,取和,然后在分析與考試成績之間的線性關系。

      我們設立這樣一個方程式:

      上課簽到情況×參數值A×權重值1+課堂問答情況×參數值B×權重值2+作業情況×參數值C×權重值3+測驗情況×參數值D×權重值4=考試成績。

      然后,實際成績進行比對。

      在這個過程中,調整參數對象的值,以及四個權重值,推算出接近于考試成績的公式,這樣就可以建立起一個初步的數學模型。

      四、對數學模型進行應用和修正

      建立了數學模型后,還需要根據實際的教學情況,進行修正,是數學模型與真實情況相接近,從而對教學工作有真正的應用價值。

      當數學模型經過修正逐漸完善后,根據各項教學指標,就可以有預見性地調整教學工作。比如,課堂提問數量的上升,作業的情況良好,則教學情況有可能是在向好的方向發展。反之,就可及時進行調整。比如,增加與學生的交流,看是哪些地方還不盡理解,或者有些什么別的因素在影響,及早排查,從而確保期末考試成績不出現大的波動,影響教學質量。

      通過在高等數學教學中,融入數學建模的思想,我們可以發現,以往那些不太理解的量化指標,確實是與教學質量之間有著必然聯系的。通過數學建模,我們不僅促進了對科學化的教學方式的理解,也對數學建模這一工具方法本身,有了更多更深刻的了解。

    數學建模論文模板3

      《新課程標準》對學生提出了新的教學要求,要求學生:

      (1)學會提出問題和明確探究方向;

      (2)體驗數學活動的過程;

      (3)培養創新精神和應用能力。

      其中,創新意識與實踐能力是新課標中最突出的特點之一,數學學習不僅要在數學基礎知識,基本技能和思維能力,運算能力,空間想象能力等方面得到訓練和提高,而且在應用數學分析和解決實際問題的能力方面同樣需要得到訓練和提高,而培養學生的分析和解決實際問題的能力僅僅靠課堂教學是不夠的,必須要有實踐、培養學生的創新意識和實踐能力是數學教學的一個重要目的和一條基本原則,要使學生學會提出問題并明確探究方向,能夠運用已有的知識進行交流,并將實際問題抽象為數學問題,就必須建立數學模型,從而形成比較完整的數學知識結構。

      數學模型是數學知識與數學應用的橋梁,研究和學習數學模型,能幫助學生探索數學的應用,產生對數學學習的興趣,培養學生的創新意識和實踐能力,加強數學建模教學與學習對學生的智力開發具有深遠的意義。

      數學建模活動是一種使學生在探究性活動中受到數學教育的學習方式,是應用已有的數學知識解決問題的教與學的雙邊活動,是學生圍繞某個數學問題,自主探究、學習的過程。新的高中數學課程標準要求把數學探究、數學建模的思想以不同的形式滲透在各模塊和專題內容之中,突出強調建立科學探究的學習方式,讓學生通過探究活動來學習數學知識和方法,增進對數學的理解,體驗探究的樂趣。但是《新課標》雖然提到了“數學模型”這個概念,但在操作層面上的指導意見并不多。如何理解課標的上述理念?怎樣開展高中數學建模活動?

      數學建模的教學本身是一個不斷探索、不斷創新、不斷完善和提高的過程。通過教學使學生了解利用數學理論和方法去分折和解決問題的全過程,提高他們分折問題和解決問題的能力;提高他們學習數學的興趣和應用數學的意識與能力。數學建模以學生為主,教師利用一些事先設計好的問題,引導學生主動查閱文獻資料和學習新知識,鼓勵學生積極開展討論和辯論,主動探索解決之法。教學過程的重點是創造一個環境去誘導學生的學習欲望、培養他們的自學能力,增強他們的數學素質和創新能力,強調的是獲取新知識的能力,是解決問題的過程,而不是知識與結果。

      一、在教學中傳授學生初步的數學建模知識

      中學數學建模的目的旨在培養學生的數學應用意識,掌握數學建模的方法,為將來的學習、工作打下堅實的基礎。在教學時將數學建模中最基本的過程教給學生:利用現行的數學教材,向學生介紹一些常用的、典型的數學模型。如函數模型、不等式模型、數列模型、幾何模型、三角模型、方程模型等。教師應研究在各個教學章節中可引入哪些數學基本模型問題,如儲蓄問題、信用貸款問題可結合在數列教學中。教師可以通過教材中一些不大復雜的應用問題,帶著學生一起來完成數學化的.過程,給學生一些數學應用和數學建模的初步體驗。 二、培養學生的數學應用意識,增強數學建模意識

      在數學教學和對學生數學學習的指導中,介紹知識的來龍去脈時多與實際生活相聯系。例如,日常生活中存在著“不同形式的等量關系和不等量關系”以及“變量間的函數對應關系”、“變相間的非確切的相關關系”、“事物發生的可預測性,可能性大小”等,這些正是數學中引入“方程”、“不等式”、“函數”“變量間的線性相關”、“概率”的實際背景。另外鍛煉學生學會運用數學語言描述周圍世界出現的數學現象。數學是一種“世界通用語言”它能夠準確、清楚、間接地刻畫和描述日常生活中的許多現象。應讓學生養成運用數學語言進行交流的習慣。例如,當學生乘坐出租車時,他應能意識到付費與行駛時間或路程之間具有一定的函數關系。鼓勵學生運用數學建模解決實際問題。首先通過觀察分析、提煉出實際問題的數學模型,然后再把數學模型納入某知識系統去處理,當然這不但要求學生有一定的抽象能力,而且要有相當的觀察、分析、綜合、類比能力。

      三、在教學中注意聯系相關學科加以運用

      在數學建模教學中應該重視選用數學與物理、化學、生物、美學等知識相結合的跨學科問題和大量與日常生活相聯系(如投資買賣、銀行儲蓄、測量、乘車、運動等方面)的數學問題,從其它學科中選擇應用題,通過構建模型,培養學生應用數學工具解決該學科難題的能力。例如,高中生物學科以描述性的語言為主,有的學生往往以為學好生物學是與數學沒有關系的。他們尚未樹立理科意識,缺乏理科思維。比如:他們不會用數學上的排列與組合來分析減數分裂過程配子的基因組成;也不會用數學上的概率的相加、相乘原理來解決一些遺傳病機率的等等。這些需要教師在平時相應的課堂內容教學中引導學生進行數學建模。因此我們在教學中應注意與其它學科的呼應,這不但可以幫助學生加深對其它學科的理解,也是培養學生建模意識的一個不可忽視的途徑。又例如教了正弦函數后,可引導學生用模型函數寫出物理中振動圖象或交流圖象的數學表達式。

      最后,為了培養學生的建模意識,中學數學教師應首先需要提高自己的建模意識。中學數學教師除需要了解數學的和發展動態之外,還需要不斷地學習一些新的數學建模理論,并且努力鉆研如何把中學數學知識應用于現實生活。中學教師只有通過對數學建模的系統學習和研究,才能準確地的把握數學建模問題的深度和難度,更好地推動中學數學建模教學的發展。

    數學建模論文模板4

      一、問題教學法的教學模式

      問題教學法是一種新的教學模式,與傳統教學有很大的區別。在傳統的教學中,教師考慮最多的是“教什么、怎樣教”的問題,很少顧及學生“學什么、怎樣學”,限制了學生學習的主動性和創造性。[1]為了改變這種現狀,美國神經病學教授HowardBarrows于1969年創立了基于問題和項目的學習(ProblemBasedLearning)理念教學法。[2]這種方法不像傳統教學模式那樣先學習理論知識再解決問題,而是讓學生圍繞問題尋求解決方案。它強調讓學生置身于復雜的、有意義的問題情境中,并讓學生成為該問題情境的主體,自己去分析問題,學習解決該問題所需的知識,進而通過合作解決問題。此外,教師在該過程中也可以通過提問的方式,不斷地激發學生去思考、探索,培養學生自主學習的能力。與傳統的教學模式相比,問題教學模式更注重對學生自學能力、創新能力、發現問題和解決問題能力的培養。問題教學模式剛開始主要被應用于醫學、市場營銷、實驗教學、畢業論文的寫作等領域。[3]近年來,一些學者開始探索將這種教學模式引入到“數學建模”課程的教學中。黃河科技學院從20xx級信息與計算科學專業的學生開始,在“數學建模”教學活動引入問題教學模式,已經取得了初步的成效。

      二、基于問題教學法的實施步驟

      1.教師提出問題

      教師在每次上課之前要精心設計適合學生自學的問題體系,目的是為了誘導學生的思維,激發學生的學習興趣,讓學生置身于特定的問題環境中,營造一種質疑、探究、討論、和諧互動的學習氛圍。這一步驟要求教師不僅需要熟悉教學內容,還必須更好地了解學生的實際情況,這是成功實施問題教學模式的基礎。

      2.積極分析問題

      問題教學法的基本特點是教學環節由一連串問題組成,并且問題與問題之間的`聯系具有鏈接性和層次性。前一個問題是后一個問題的鋪墊,后一個問題又是前一個問題的深化和拓展。在學生熟悉了相關知識的基礎上,根據給出的實際問題,教師引導學生進行探索。探索活動一般包括自學教材、觀察實驗、小組討論等方式。學生一方面要充分利用原有認知結構中存儲的有關知識信息,另一方面可以利用教材、實驗或教師提供的閱讀材料,獲取解決問題的方法。在對問題討論中教師要創設和諧民主的教學環境,要讓學生充分發表自己的見解,大膽質疑,相互答辯,相互啟發。

      3.解決問題

      當所有學生都對問題的解決方案有了一定的思路之后,教師組織課堂發言。讓每一小組推薦一位表達能力強的學生,在課堂上把他們對解決問題的方法及結論的合理性進行講解。在每組講解完之后,其他學生可以對他們進行提問,而發言小組的學生要向其他同學和老師進行解釋。教師在主持和引導的同時,也可以向學生提問。這樣通過對一個又一個問題的提問,推動學生思考,將問題引向縱深層次,一步步朝著解決問題的方向發展。

      4.對問題的結果進行評價

      問題教學法不僅以問題為開端,還以問題為終結。教學的最終結果不是傳授知識來消滅問題,而是在解決已有問題的基礎上引發更多、更廣泛的問題。因此教師在對問題的結果進行總結時要注意引導學生反思“這個問題為什么要這樣解決”,“這個問題還可以怎樣解決”,“從解決這個問題中我學到了什么”以及“這種解決方案還有什么不足之處”等等,從而激發他們提出新的問題,這是問題教學中最重要、最有教益的一個方面。

      三、基于問題教學法的實施案例

      在基于問題教學的過程中,每次討論的問題都圍繞某一專題進行討論學習,下面以“公平的席位分配問題”[4]為例,說明在“數學建!敝腥绾芜\用問題教學法。

      1.合理設計問題

      獎學金評定是學生比較關心的問題,筆者根據學生的興趣及認知水平選擇“獎學金名額分配問題”。設某校有5個系A、B、C、D、E,各系學生數分別為345、72、894、68、39,現在有74個獎學金名額,問每個系分配幾個名額比較公平?[5]在給出問題后,我們將相關問題印發給學生,并讓學生課下先收集關于“公平的席位分配問題”的模型及相關求解方法并認真研讀。

      2.小組討論分析問題

      根據課下學生收集的求解方案,上課時首先以小組為單位初步討論。首先提出如果讓同學們進行分配的話,他們會使用什么方法進行分配,讓他們進行討論。學生首先會給出比例分配方案,如果按人數比例分配到各系的名額恰好都是整數,可以得到完全公平的分配方案。但在很多情況下,按人數比例分配到各系的名額帶有小數。比如在這個問題中各系分配的名額數分別為:18.00、3.76、46.65、3.55、2.04,有小數部分?梢韵劝颜麛捣峙渫辏@時各系分配的名額數為:18、3、46、3、2。共分配了72名額,還有2個名額該如何分配?大家經過討論,會提出誰的小數部分大就把名額給誰的分配方案,于是第73個名額給B系,第74個名額給C系。最終的方案是各系名額數分別為:18、4、47、3、2。接著老師會提出下面的問題,這種分配方案對誰最不公平?學生會進一步討論每個名額代表的人數,A為19.17人,B為18人,C為19.02人,D為22.67人,E為19.5人,說明這種分配方案對D系最不公平,而B系最占便宜,兩個系中每個名額代表的人數相差了4.67人。那么要重點討論有沒有相對來說比較公平的席位分配方案。

      3.學生進行發言討論

      在所有小組都討論完之后,教師組織各組學生進行課堂發言和討論,讓每組選一人報告本小組討論結果。教師對各組的報告進行評價,指出在討論過程中的問題及不足之處。在這個問題中,學生根據課下收集的文獻資料會逐步提出Q值分配方案,Q值分配方案的改進,Q值+D’Hondt分配方案,席位分配的平均公平度方案等等。每種方案都是前面方案的改進,最后我們提出問題,這些分配方案公平度如何?讓學生逐一討論,從而營造出一個討論主題鮮明、學習氛圍良好的課堂環境。

      4.教師對結果進行評價總結

      在這個問題中,經過逐一討論,大部分學生認為問題已經圓滿解決了,不會再對結果進行歸納整理,不會反思問題解決的思路。因此在最初的問題解決后,老師要引導學生進行評價總結,比如:“各個方案的公平度如何”,“我們還有沒有更公平的分配方案”,“公平的席位分配方案應滿足什么原則”等等。

      四、結論

      從“公平的席位分配問題”這個案例可以看到,在教學中為學生設計一個真實的問題進行教學,學生可以通過真實問題進行學習,并且以一個真實問題的解決為主線,激發學生的學習興趣和探索精神,再通過結果反饋信息,引導學生逐步深入理解學習內容。學生在研究問題的過程中不僅學習了課本上的知識,而且還親身體會了解決實際問題的樂趣,為學生以后自主學習提供了極大的幫助。[6]四、結語當然,在“數學建!闭n程的教學過程中問題教學模式也存在不足之處,比如課程內容多、課時少,問題討論時間和講授時間出現矛盾,對有的專題討論不夠深入,學生參與度不夠,學生發言的深度和廣度都有待于進一步提高等等。這需要教師認真歸納講課內容,盡量分離出較多比較有吸引力的專題供學生討論,以問題為中心規劃教學內容,讓學生圍繞問題尋求解決方案,從而提高學生學習的主動性,提高學生在教學過程中的參與程度,激發學生的求知欲!皵祵W建!闭n程教學的本身就是一個不斷探索、創新和提高的過程,選擇正確有效的教學方法能更好培養學生的創新能力,激發學生對數學建模的興趣。

    數學建模論文模板5

      摘要:高校數學教育是高等教育的基礎學科,占據重要的一席之地。如何改變學生對數學枯燥乏味的學習狀態,讓學生輕松愉快地參與到數學學習中,是當前高校數學教學者面臨的一個重要課題。在高校數學教學中開展數學建模競賽,不僅能培養學生的創新思維,還能有效提高提高學生的創新能力、綜合素質和對數學的應用能力。本文對高校開展數學建模競賽與創新思維培養進行了分析闡述,并對此進行了一定的思考。

      關鍵詞:高校數學;建模競賽;創新思維;培養

      1數學建模競賽

      數學建模是一種融合數學邏輯思想的思考方法,通過運用抽象性的數學語言和數學邏輯思考方法,創造性的解決數學問題。當前很多高校中開始引入數學建模思想來加強學生創新能力的培養,可以使學生的邏輯思維能力和運用數學邏輯創新解決問題的能力得到提升。數學建模競賽起源于1985年的美國,幾年后國內幾所高校數學建模教師組織學生開始參與美國的數學建模大賽,促進了數學建模思維的快速發展。直到1992中國首屆數學建模大賽召開,而后一發不可收拾,至今仍以每年20%左右的速度增長,呈現一派繁榮景象。

      2當前中國數學建模競賽的特點

      2.1數學建模競賽自主性較強。自主性首先體現在在數學建模過程中學生可以根據自己的建模需要通過一切可以利用的資源、工具來進行資料查閱和收集,建模比賽隊員可以根據自己的意見和思維進行靈活自由解答,形式不拘一格。其次體現在數學建模競賽的組織形式呈現多元化特點,組織制度上也較為靈活多樣,數學建模主要側重于分析思想,沒有標準答案可以參考分享。2.2建模隊伍呈日益燎原之勢。1992年首屆中國數學建模大賽開展以來,其影響力與日俱增,高校和社會各界對數學建模頗為重視,參賽隊伍、參賽學生的質量一直處于上升狀態,數學模型也日漸合理科學,學生團隊在國際數學建模大賽中屢創驕人戰績。2.3組織培訓日益加強。數學建模競賽對學生數學知識的掌握及靈活運用、口套表達、語言邏輯思維、綜合素質都有著非常高的要求,因此高校遴選參賽選手都投入了很大的精力,組織培訓的時間很長,培訓內容也很豐富,為數學建模競賽取得好成績奠定了堅實的基礎。

      3數學建模競賽開展培養大學生創新能力的效果分析

      3.1學生的團隊協作能力和意識得到增強。數學建模競賽的團隊組織形式活潑自由,通常采用學生組隊模式開展,數學建模競賽隊伍形成一個團結戰斗的整體,代表著不僅僅是學校的聲譽,還一定程度上展示著國家的形象。經過長時間的培訓,對數學模型的研究和分析,根據學生訓練中的優勢和特長,進行合理科學的小組分工,讓學生快速高效地完成整個數學建模,在建模過程中學生統籌協作、密切配合,發揮各自的優勢和長處,確保數學建模取得最大效用,學生的團隊協作能力和意識得到鍛煉,責任感和榮譽感進一步增強,通過建模競賽彰顯團隊的合作能力和中國數學建模方面的發展。

      3.2高校學生參賽積極性高漲。近年來大學生數學建模競賽的參與性高漲,參賽人數保持著20%左右的上漲幅度,參賽成績也較為理想,創新能力得到了較好的鍛煉和培養,綜合素質得到提高,數學的應用能力提升。

      3.3高校學生數學邏輯思維能力和靈活運用知識的能力得到提升。數學建模競賽充滿著刺激性和挑戰性,是學生各方面綜合能力的一個展示。在數學建模競賽中,學生不僅要需要扎實豐厚的數學知識儲備,還需要具備清晰的數學邏輯思維和語言表達能力。同時要有機智的'臨場發揮能力和應變能力,不怯場、不驚慌,有充分的思想準備,能輕松應對其他參賽選手和評委的提問,能組織條理性、邏輯性的語言進行表述,將參賽小組數學模型的含義和設計清晰完整的傳達給評委和其他參賽選手。在這個過程中,無疑會使學生的數學邏輯思維和語言表達能力及靈活運用數學知識的能力有一個較大的提升。

      3.4學生的自學能力和意志力得到鍛。數學建模競賽對參賽學生的綜合知識和能力要求非常高,難度也非常大,需要與眾不同的智慧和能力。可以說數學建模過程中,有許多高深的知識難于理解,有的日常學習過程中根本接觸不到,需要數學建模參賽小組成員的互助合作,充分發揮各自優勢和平時培訓中的知識積淀,通過借助大量的工具書及參考資料,加上團隊的理解分析去摸索,探尋數學建模所需要的基礎知識,無疑這對學生的自學能力培養是一個很好的鍛煉。另外,搜尋資料、學習數學建模知識的過程是枯燥乏味的,需要長久的耐力和信心,無疑這對學生的堅毅不畏難的品質是一個很好的培養和磨煉。

      3.5創新思維與能力得到有效提升。經過艱苦復雜的數學建模訓練,高校學生信息收集與處理復雜問題的能力得到培養鍛煉,學生數量觀念得到增強,能夠養成敏銳觀察事物數量變化的能力,數學的嚴謹推導也使學生養成認真細心、一絲不茍的習慣,邏輯思維能力得到提高,思路變得更加富有條理性,能靈活地處理各種復雜問題,有效解決數學疑難,數學理論能更好第應用于實踐,數學素養進一步得到提升。

      4結語

      綜上所述,高校學生數學建模競賽的開展,能較高地提升學生的創新能力和綜合素養,團隊合作能力、競爭能力、表達交流能力、邏輯思維能力、意志品質能力等都能得到良好的塑造。高校要積極組織和開展數學建模競賽,使學生的綜合素質得到發展和鍛煉。學校用重視和鼓勵全體學生參與數學建模競賽,通過競賽實現學生各方面能力尤其是創新能力的培養。

      參考文獻:

      [1]趙剛.高校數學建模競賽與創新思維培養探究[J].才智,20xx(06).

      [2]陳羽,徐小紅,房少梅.數學建模實踐及其對培養學生創新思維的影響分析[J].科技創業月刊,20xx(08).

      [3]趙建英.數學建模競賽對高校創新人才培養的促進作用分析[J].科技展望,20xx(08)5.

      [4]畢波,杜輝.關于高校開展數學建模競賽與創新思維培養的思考[J].中國校外教育,20xx(12).

    數學建模論文模板6

      【摘 要】文章闡述了我們應用數學的發展現狀,分析了應用數學建模的意義,提出在應用數學中滲透建模思想的措施,以期能夠對當前應用數學建模思想的發展提供參考。

      【關鍵詞】應用數學; 數學建模;建模思想

      將建模的思想有效的滲透到應用數學的教學過程中去,是我們當前開展應用數學教育的未來發展趨勢,怎樣才能夠使應用數學更好的服務社會經濟的發展,充分發揮數學工具在實際問題解決中的重要作用,是我們當前進行應用數學研究的核心問題,而建模思想在應用數學中的運用則能夠很好的解決這一問題。

      1 當前應用數學的發展現狀以及未來發展趨勢

      數學教育至少應該涵蓋純粹數學和應用數學兩方面內容,目前我國數學教育內容以純粹數學為主,極少包括應用數學內容,這割裂了數學與外部世界的血肉聯系,使數學變成了多數學生眼中的抽象、枯燥、無用的思維游戲,而厭學成風。因此,大家對現行的數學教育不滿意,期望改革,期望找到方法激發學生的學習興趣、培養學生利用數學解決各種實際問題的能力。在不改變傳統的教學體系的前提下,有機地融入應用數學內容,應是解決現存問題的有效方法。事實上,數學發展的根本原動力,它的最初的根源,是來自客觀實際的需要,數學教學中理應突出數學思想的來龍去脈,揭示數學概念和公式的實際來源和應用,恢復并暢通數學與外部世界的血肉聯系。伴隨著社會生產力的不斷發展,多個學科交叉發展,使得應用數學逐漸發展成擁有眾多發展方向的學科,應用數學所運用的領域不斷延伸,已經不再局限于傳統的、而是想著更為寬闊的、新興的學科以及高新技術領域發展,應用數學目前已經滲透到社會經濟發展的各個行業,在這一大背景下,應用數學的研究者就擁有了極大的發展空間以及展示才能的舞臺,也迎來了應用數學發展的新機遇。

      2 開展數學建模的意義

      數學這一學科不僅具有概念抽象性、邏輯嚴密性、體系完整性以及結論確定性,而且還具備非常明顯的應用廣泛性,伴隨著計算機網絡在社會生活中的廣泛運用,人們對于實踐問題的解決要求越來越精確,這就給應用數學的廣泛運用帶來了前所未有的機遇。應用數學在這一背景下也已經成為當前高科技水平的一個重要內容,應用數學建模思想的引入與使用能夠極大的提升自身應用數學的綜合水平以及思維意識,開展應用數學建模不僅能夠有效的提升自己的學習熱情與探究意識,而且還能夠將專業知識同建模密切結合在一起,對于專業知識的有效掌握是非常有益的。

      3 滲透建模思想的對策措施

      3. 1充分重視建模的橋梁作用

      建模是實現數學知識與現實問題相聯系的橋梁與紐帶,通過進行建模能夠有效的`將實際問題進行簡化。在這一轉化的過程中,應當深入實際進行調查、收集相關數據信息,認真分析對象的獨特特征及規律,構建起反映實際問題的數學關系,運用數學理論進行問題的解決。這正是各個學科之間進行有效聯系的結合點,通過引進建模思想,不僅能夠使我們有效掌握數學理論之外的實踐問題,還能夠推動創新意識的提升,因此,我們應當充分重視建模的作用。

      3. 2將建模的方法以及相關理論引入到數學教學中來

      我國當前數學課程教學體系的現狀包括高等數學、線性代數、概率論與數理統計等幾個部分。當前應用數學的發展,滿足這一學科的建設以及其他學科對這一學科的需要,教師在教學中應當將問題的背景介紹清楚,并列出幾種解決方案,啟發學生進行討論并構建數學模型。學生們在課堂上就能夠獲得更多的思考和討論的機會,能夠充分調動學生們的積極性,使其能夠立足實際進行思考,這樣一來就形成了以實際問題為基礎的數學建模教學特色。

      3. 3積極參加數學模型課等相關課程與活動

      數學應用綜合性的實驗,要求我們掌握數學知識的綜合性運用,做法是老師先講一些數學建模的一些應用實例,然后學生上機實踐,強調學生的動手實踐。數學實驗 課應該說是數學模型的輔助課程,主要培養我們的數學思維和創新能力,還應當組織一些建模比賽,不斷提升數學建模的綜合水平。

      上述幾個部分的論述與分析,我們看到,在應用數學中加強建模思想具有非常重要的意義,不僅需要在課堂學習過程中認真掌握數學理論知識,還應當深入了解數學理論在實際生活中的可用之處,盡可能的使應用數學與自身所學專業相聯系,這樣,才能夠使應用數學的能力與水平在日常實踐過程中得到提升。就當前高等數學的現狀來看,加強創新意識以及將實際問題轉化為數學問題能力的培養,提升綜合運用本專業知識以來解決實踐問題的能力,使創新思維得到最大限度的發揮。

      參考文獻:

      [1]余荷香,趙益民.數學建模在高職數學教學中的應用研究 [J].出國與就業(就業版),20xx(10).

      [2]關淮海.培養數學建模思想與方法高職高專數學教 改之趨勢[J].職大學報,20xx(02).

      [3]李傳欣.數學建模在工程類專業數學教學中的應用研究 [J].中國科教創新導刊,20xx(35).

      [4]李秀林.高等數學教學中滲透數學建模的探討[J].吉林省 教育學院學報(學科版),20xx(08).

      [5]吳健輝,黃志堅,汪龍虎.對數學建模思想融入高等數學教.學中的探討[J].景德鎮高專學報,20xx(04).

    數學建模論文模板7

      數學建模隨著人類的進步,科技的發展和社會的日趨數字化,應用領域越來越廣泛,人們身邊的數學內容越來越豐富。強調數學應用及培養應用數學意識對推動素質教育的實施意義十分巨大。數學建模在數學教育中的地位被提到了新的高度,通過數學建模解數學應用題,提高學生的綜合素質。本文將結合數學應用題的特點,把怎樣利用數學建模解好數學應用問題進行剖析,希望得到同仁的幫助和指正。

      一、數學應用題的`特點

      我們常把來源于客觀世界的實際,具有實際意義或實際背景,要通過數學建模的方法將問題轉化為數學形式表示,從而獲得解決的一類數學問題叫做數學應用題。數學應用題具有如下特點:

      第一、數學應用題的本身具有實際意義或實際背景。這里的實際是指生產實際、社會實際、生活實際等現實世界的各個方面的實際。如與課本知識密切聯系的源于實際生活的應用題;與模向學科知識網絡交匯點有聯系的應用題;與現代科技發展、社會市場經濟、環境保護、實事政治等有關的應用題等。

      第二、數學應用題的求解需要采用數學建模的方法,使所求問題數學化,即將問題轉化成數學形式來表示后再求解。

      第三、數學應用題涉及的知識點多。是對綜合運用數學知識和方法解決實際問題能力的檢驗,考查的是學生的綜合能力,涉及的知識點一般在三個以上,如果某一知識點掌握的不過關,很難將問題正確解答。

      二、數學應用題如何建模

      第一層次:直接建模。

      根據題設條件,套用現成的數學公式、定理等數學模型,注解圖為:

      第二層次:直接建模?衫矛F成的數學模型,但必須概括這個數學模型,對應用題進行分析,然后確定解題所需要的具體數學模型或數學模型中所需數學量需進一步求出,然后才能使用現有數學模型。

      第三層次:多重建模。對復雜的關系進行提煉加工,忽略次要因素,建立若干個數學模型方能解決問題。

      第四層次:假設建模。要進行分析、加工和作出假設,然后才能建立數學模型。如研究十字路口車流量問題,假設車流平穩,沒有突發事件等才能建模。

      三、建立數學模型應具備的能力

      從實際問題中建立數學模型,解決數學問題從而解決實際問題,這一數學全過程的教學關鍵是建立數學模型,數學建模能力的強弱,直接關系到數學應用題的解題質量,同時也體現一個學生的綜合能力。

      1提高分析、理解、閱讀能力。

      2強化將文字語言敘述轉譯成數學符號語言的能力。

      3增強選擇數學模型的能力。

      4加強數學運算能力。

      數學應用題一般運算量較大、較復雜,且有近似計算。有的盡管思路正確、建模合理,但計算能力欠缺,就會前功盡棄。所以加強數學運算推理能力是使數學建模正確求解的關鍵所在,忽視運算能力,特別是計算能力的培養,只重視推理過程,不重視計算過程的做法是不可取的。

    數學建模論文模板8

      摘要:以文獻綜述法為主要策略,查閱知網和萬方數據庫中有關高職數學建模教學的相關文獻,對高職數學建模教學現狀,存在問題以及優化發展對策的文獻研究成果進行梳理,通過研究綜述發現:以建模思維構建課堂情境已成為國內眾多高職院校數學課程教學的重要方法,對數學教學效果的提升也起到了積極的作用,但在教學方法創新和學生有效引導等方面仍存在一些問題,希望各級高職院校能夠針對凸顯出的問題進行有效整改。

      關鍵詞:高職數學;建模教學;現狀與發展;綜述分析

      一、數學建模教學理論概述

     。ㄒ唬⿺祵W模型

      數學模型是一種使用數學語言對現實問題的抽象化表達形式。它是人們用數學方法解決現實問題的工具,基于數學模型的現實問題表達往往有著量化的表現形式,再通過數學方法的推演和求解,將現實問題中蘊含的數學含義表達出來。在數學、經濟、物理等研究領域,有很多經典的數學模型,例如:,馬爾薩斯人口增長理論模型、馬爾維次投資組合選擇模型等,這些數學模型的構建幫助人們解決了很多現實的問題,提升了相關領域量化分析的精確度。

     。ǘ⿺祵W建模教學的步驟

      數學建模教學是一種基于數學模型的教學方法,在高職院校數學教學中被普遍應用,具體來說數學建模教學的一般步驟為:

      (1)模型理論依據分析。在教學中倘若需要以某一個知識點為基礎建設數學模型時,教師應該以前人的研究成果為依據,找尋模型建設的理論支撐點,切忌假大空似的模型構建思路。

     。2)以教學內容為基礎假設模型。根據教學內容的需要,對待研究問題進行模型化假設,提出因變量、自變量等模型語言。

     。3)建立模型。在假設的基礎上建立模型。

     。4)解析模型。將待求解的數學數據代入模型進行解析計算。

     。5)模型應用效果檢驗。將模型解析的結果與實際情況進行比較,以檢驗模型解析的準確性和實效性。

      二、高職數學建模教學現狀與問題研究綜述

     。ㄒ唬┙虒W現狀綜述

      施寧清等人(20xx)采用試驗法研究了建模教學在高職數學課程教學中的效果,試驗的過程以對照班和實驗班對比教學的形式展開,針對試驗班的教學采用數學建模的方法,而對照班的教學則采用傳統的講授法展開,通過一段時間的教學實踐后設置評估變量對兩個班級學生的數學學習效果進行了總結,結果顯示:試驗班學生的數學考試成績、建模應用能力等均優于對照班,說明建模法對高職數學教學質量的提升效益明顯。危子青等人(20xx)項目教學法與建模思想融合的高職數學教學形式,指出:該種教學的特色在于將高職數學課程的教學內容劃分為若干個子項目,對每一個項目都進行模型化構建,并以模型為素材設計和組織項目化教學,通過教學應用后發現學生不僅掌握了項目教學的學習精髓,也掌握了數學模型的構建解析技能,教學效益獲得了雙豐收。馮寧(20xx)肯定了建模思想對高職數學教學帶來的效益,指出:通過引入建模教學,能夠最大化鍛煉學生的'發散性思維,以及數學邏輯應用能力,對教學效果的促進效益明顯。

      (二)存在問題綜述

      盡管建模法對高職數學教學帶來的效益十分明顯,但在多年的教學實踐中一些問題也不斷凸顯出來有待進一步整改,為此國內一些學者也將研究的視角放在建模法在高職數學教學中存在問題的研究上,例如:孟玲(20xx)從教學方法的教學分析了高職數學建模教學中的問題,指出:很多高職生對數學學習的興趣不足,加之傳統的數學模型又十分抽象,學生理解起來比較困難,一些高職數學教師采用傳統的建模教學思路組織教學并不利于學生學習興趣的激發,而抽象的數學模型與陳舊的教學方法結合反而降低的教學的效果。曹曉軍(20xx)則認為:很多數學教師并不注重引導學生科學地理解數學模型,并在此基礎上有效地接受學習內容,而是一味地采用灌輸法設計教學過程,不利于數學模型在課程教學中的應用效益提升。

      三、高職數學建模教學發展對策綜述

      針對建模法在高職數學教學中凸顯出的問題,一些學者也提出了對策。例如,齊松茹(20xx)認為應創新建模教學的形式和方法,如引入游戲教學法,將深奧的數學模型趣味化,通過組織多元化的教學游戲激發起學生參與建模學習的興趣。谷志元(20xx)則認為教師應該加大對學生的引導,通過課前、中、后期的有效引導,幫助學生有效地建立起對數學模型的認知,逐步教會學生利用模型解決實際問題,達到學以致用的教學效果,以提升數學模型在課程教學中的價值。周瑋(20xx)則提出了結合網絡課堂建立研討式課堂的建模教學新思路,不失為一種高職數學建模教學的創新教法。

      四、結語

      通過對已有文獻的查閱和梳理發現,高職數學課程教學中引入建模方法對于課程教學實效性提升的效果已經得到了國內眾多學者的肯定,但在應用中也存在一些問題,比如:教學方法的創新度不夠,學生引導的活動不多等,為此國內一些學者也提出了針對性的教學優化思路。本文的研究認為:建模法對于高職數學教學效益的提升有著積極的價值,在今后的教學實踐中各級高職院校教師應該結合教學的實際情況開展科學的建模教學活動,以不斷提升高職數學建模教學的實效性。

      參考文獻:

      [1]施寧清,李榮秋,顏筱紅.將數學建模的思想和方法融入高職數學的試驗與研究[J].教育與職業,20xx,(09):116-118.

      [2]危子青,王清玲.項目教學法與高職數學建模教學的改革[J].職教論壇,20xx,(35):76-78.

      [3]孟玲.高職數學建模教學的策略與方法芻議[J].教育與職業,20xx,(17):106-107.

      [4]馮寧.基于數學建模實踐活動的高職數學課程教學[J].教育與職業,20xx,(17):127-129.

      [5]曹曉軍,李健.高職數學教學中滲透數學建模思想的必要性[J].吉首大學學報(社會科學版),20xx,37(S1):200-201.

      [6]齊松茹,鄭紅.引入數學建模內容促進高職數學教學改革[J].中國高教研究,20xx,(12):86-87.

      [7]谷志元.數學建模促進高職數學課程改革新探[J].中國職業技術教育,20xx,(29):11-13+20.

      [8]周瑋.基于數學建模的高職數學創新性課堂研究[J].中國成人教育,20xx,(12):135-137.

    數學建模論文模板9

      數學,源于人們對生產與生活實際問題,抽象出的數量關系與空間結構發展而成的.近年來,信息技術飛速發展,推動了應用數學的發展,使數學日益滲透到社會各個領域.中考實際應用題目更貼近日常生活,具有時代性、靈活性,涉及的模型有方程、函數、不等式、統計、幾何等模型.數學課程標準指出,教師在教學中應引導學生從實際背景中理清數學關系、把握變化規律,能從實際問題中建立數學模型.教師要為學生創造用數學的氛圍,引導學生參與自主學習、自主探索、自主提問、自主解決,體驗做數學的過程,從而提高解決實際問題的能力.

      一、影響數學建模教學的成因探析

      一是教師未能實現角色轉換.建模教學離不開學生“做”數學的過程,因而教師在教學中要留有讓學生思考、想象的空間,讓他們自主選擇方法.然而部分教師對學生缺乏信任,由“引導者”變為“灌輸者”,將解題過程直接教給學生,影響了學生建模能力的提高.二是教師的專業素養有待提高.開展建模教學,需要教師具有一定的專業素養,能駕馭課堂教學,激發學生的興趣,啟發學生進行思考,誘發學生進行探索,但是部分教師專業素養有待提高,或認為建模就是解應用題,或重生活味輕數學味,或使討論活動流于形式.三是學生的抽象能力較差.在建模教學中,教師須呈現生活中的實際問題,其題目長、信息量大、數據多,需要學生經歷閱讀提取有用的信息,但是部分學生感悟能力差,不能明析已知與未知之間的關系,影響了學生成功建模.

      二、數學建模教學的`有效原則

      1.自主探索原則.

      學生長期處于師講、生聽的教學模式,淪為被動接受知識的“容器”,難有創造的意識.在教學中,教師要為學生創設輕松愉悅的探究氛圍,讓學生手腦并用,在探索、交流、操作中提高解決問題的能力.

      2.因材施教原則.

      教師要著眼于學生原有的認知結構,要貼近學生的最近發展區,引導他們從舊知的角度思考,找出問題的解決方法。

      3.可接受性原則.

      數學建模內容的設計,要符合學生的年齡特點和認知能力,能讓學生理解所探究的內容.若設計的問題不切實際,往往會扼殺學生的興趣,教師要密切聯系教學內容、生活實際,讓學生有能力解決問題.

    數學建模論文模板10

      【摘要】提出數學建模的基本概念,通過考查獨立院校大學生數學建模競賽發展狀況,針對獨立學院人才培養目標以及學生的特點,從多個方面闡述獨立院校大學生數學建模教育存在的突出問題,在此基礎上,提出了獨立大學數學建模教學改革策略和方法。

      【關鍵詞】獨立院校;數學建模;改革

      一、數學建模的基本概念

      數學是在實際應用的需求中產生的,要描述一個實際現象可以有很多種方式,為了實際問題描述的更具邏輯性、科學性、客觀性和可重復性,人們采用一種普遍認為比較嚴格的語言來描述各種現象,這種語言就是數學。數學建模則是架于數學理論和實際問題之間的橋梁,數學模型是對于現實生活中的特定對象,根據其內在的規律,做出一些必要的假設,為了一個特定目的,運用數學工具,得到的一個數學結構,用來解釋現實現象,預測未來狀況。因此,數學建模就是用數學語言描述實際現象的過程。

      二、獨立院校數學建模課程現狀

      大部分的獨立院校的數學建模工作純在一定的問題,主要體現在以下幾個方面:(一)學生方面的問題。獨立院校的大部分學生的數學功底差,對數學的學習興趣不大,普遍認為數學的學習對自身的專業的幫助不大。從而更不愿意接觸與數學有關的數學建模,對數學建模競賽的興趣不大。在獨立院校中,參加數學建模競賽的大都是低年級的學生,而這些學生的數學知識結構還不完整,他們往往參加了一屆數學競賽并未獲得獎項后就不愿意再次參加。而高年級的同學忙于其他的就業、考研等壓力,無暇參加數學建模競賽的培訓。(二)教資方面的問題。首先。傳統的教學是知識為中心、以教師的講解為中心。數學建模的教學要求教師以學生為中心,培養學生學會學習的能力,發展學生的創新能力和創造能力。獨立院校外聘的老師常常對獨立院校的學生不夠了解,這直接影響到教學成果。其次,數學建模涉及的知識面廣,不但包括數學的各個分支,還包含了其他背景的專業知識。獨立院校的教師一部分是才從大學畢業不久的研究生,他們對于數學建模教學和競賽的培訓經驗不足,科研能力不是很強,對數學的各個分支的把控能力不強,對其他專業的了解不夠全面。(三)教學實施方面的問題。大學生數學建模競賽的目的`決不僅僅是獲獎,更重要的是通過參加大學生數學建模競賽活動,促進高校數學教學改革,起到培養全體學生能力、提高全體學生素質的作用。獨立院校數學建模教學存在很多的問題。首先,大學數學建模教育在獨立院校中的普及性不夠。數學建模的宣傳力度不大,課程大多開在大一和大二的跨選課,這個時候學生的數學知識結構還不完整。其次就是教材的選取,數學建模的相關教材大都是為了數學建模競賽而編寫的,對于獨立院校的學生來說,這些教材的難度系數大,涉及的知識面廣,遠遠超過了學生的接受能力。

      三、改革的具體措施

     。ㄒ唬┳寣W生了解數學建模,培養學習數學建模的興趣。數學建模課程的開設有利于培養學生運用數學具體解決實際問題的能力,讓學生發現學習數學的用處,改變學生學習數學的態度,提高學習數學的能力,認識到數學的意義和價值。獨立院校學生的數學基礎雖然比較差,但是學生的動手能力強。學?梢栽诙嚅_展數學建模的講座和課程,讓學生了解數學建模。同時多向學生宣傳數學建模的成果。(二)在教學內容中滲透數學建模思想和方法。1.在日常數學教學中滲透數學建模的思想方法。傳統的數學教學重視的是知識的培養和傳輸,而忽視的是實際應用能力。教師的教學目標是使學生掌握數學理論知識。一般的教學方法是:教師引入相關的的基本概念,證明定理,推導公式,列舉例題,學生記住公式,套用公式,掌握解題方法與技巧。學生往往學習了不少的純粹的數學理論知識,卻不知道如何應用到實際問題中。數學建模課程與傳統數學課程相比差別較大,學校開設的數學建模跨選課及數學建模培訓班,對培養學生觀察能力、分析能力、想象力、邏輯能力、解決實際問題的能力起到了很好的作用。由于學校開設的數學建模課程大多是選修課程,課時較少,參選的學生也有限,數學建模的作用不能很好的向學生傳輸。高等數學中的很多內容都與數學建模的思想有關,因此,在大學數學課程的教學過程中,教師應有意識地結合傳統的數學課程的特點,將數學建模的思想和內容融入到數學課堂教學中。這樣既可以激發學生的學習興趣,又能很好的將突出數學建模的思想。2.數學建模與專業緊密聯系,發揮數學對專業知識的服務作用。數學建模與專業知識的結合,不僅可以讓學生認識到數學的重要作用,在專業知識學習中的地位,還可以培養學習數學知識的興趣,增強數學學習的凝聚力,同時加深對專業知識的理解。通過專業知識作為背景,學生更愿意嘗試問題的研究。在學習中遇到的專業問題也可以嘗試用數學建模的思想進行解決。這有利于提高學生的綜合能力的培養。3.分層次進行數學建模教育。大體說來獨立院校的數學建模課程的開設應該分成兩個階段:(1)第一階段:大學一年級,在這個階段,大部分學生對數學建模沒有了解,這時候適合開設一些數學建模的講座和活動,讓學生了解數學建模。同時,在日常的數學教學中選擇簡單的應用問題和改變后的數學建模題目,結合自身的專業知識進行講解,讓學生了解數學建模的一般含義;痉椒ê筒襟E,讓學生具備初步的建模能力。(2)中級層次:大學二、三年級。在這個階段,學生基本具備了完整的數學結構,具有了基本的建模能力。這個時候應該開設數學建模專業課程,讓學生處理比較復雜的數學建模問題,讓學生自己去采集有用的信息,學會提出模型的假設,對數據和信息需進行整理、分析和判斷,并模型進行分析和評價,最終完成科技論文。

      四、加強教學組織與學校管理

     。ㄒ唬┨岣邤祵W教師自身水平。在數學建模教學過程中,教師扮演著重要的角色。教師水平的高低決定著數學建模教學能否達到預期的目的。數學建模的教學,不僅要求教師具備較高的專業水平,還要求教師具備解決實際問題的能力和豐富的數學建模實踐經驗。而獨立院校的教師部分教師是才畢業不久的研究生,缺乏實踐經驗。這就對獨立院校的的數學建模教學工作產生了很大的障礙。為了提高教師的水平,可以多派青年教師進行專業培訓學習和學術交流,參加各種學術會議、到名校去做訪問學者等等。同時可以多請著名的數學專家教授來到校園做建模學術報告,使師生拓寬視野,增長知識,了解建模的新趨勢、新動態。青年教師還需要依據特定的教學內容、教學對象和教學環境對自己的教學工作作出計劃、實施和調整以及反思和總結。青年數學教師還必須更新教育理念,改變傳統的教學理念。只有不斷創新,努力提高自身素質,才能適應新的形勢,符合建模發展的要求。(二)選取合適的教材。數學建模教材使用也存在諸多不足之處。絕大部分高校教學建模課程采用的是理工類專業數學建模教材。這些教材主要涵蓋的數學模型的難度系數大。而獨立院校的學生的基礎薄弱,無法接收這些模型。在教學過程中,教師可以將具體的案例或是歷年的數學建模題目做為教學內容。通過具體的建模實例,講解建模的思想和方法。一邊講解,一邊讓學生分組討論,提出對問題的新的理解和對魔性的認識,嘗試提出新的模型。(三)豐富建模活動。全面開展數學建;顒邮菙祵W建模思想的最重要的形式,它既使課內和課外知識相互結合,又可以普及建模知識與提高建模能力結合,可以培養學生利用數學知識分析和解決實際問題的能力,可以有效地提升了學生的數學綜合素質。學?梢远ㄆ诘拈_展數學建模宣傳活動,擴大數學建模的知名度。學校還可以邀請有經驗的專家和獲獎學生開展建模講座,提高對數學建模的重視,積極的組織建;顒。實踐證明,只有根據獨立院校的自身特點和培養目標,對數學建模課程的教學不斷進行改革,才能解決獨立院校數學建模課程教學的問題,才能真正的讓學生喜歡上數學,喜歡上數學建模。

      【參考文獻】

     。1]李大潛.將數學建模思想融入數學主干課程[J].中國大學教育.20xx.

      [2]賈曉峰等.大學生數學建模競賽與高等學校數學改革[J].工科數學.20xx:162.

     。3]融入數學建模思想的高等數學教學研究[J].科技創新導報.20xx:162.

      作者:李雙 單位:湖北文理學院理工學院

    數學建模論文模板11

      摘要:在新課改以后,要求教師要在教學中重視學生的主體地位,提升學生學習興趣,培養他們的自主學習能力。本文從小學數學教學過程中數學建模入手,對如何將數學建模運用到學生解題過程中進行了分析。

      關鍵詞:小學數學;建模;運用

      數學建模是指利用數學模型的形式去解決實際中遇到的問題,換句話說,就是利用數學思維、數學方法解決各種數學問題。數學建模是在新課程改革后出現的新概念,經過一段時間的觀察我們可以發現,數學建模的方法能夠有效的提高學生的學習興趣,培養學生的數學能力。這種方式能夠將復雜的數學問題利用簡單的方式找到解決方案,是提高小學數學課堂效率及課堂質量的有效手段。小學數學是小學學習中的重要課程之一,也是培養學生數學思維的重要階段。可以說,小學數學的學習是學生學習數學的關鍵,對今后的學習起到極大的影響。因此,對于小學數學教師來說,不斷的完善教學手段,提高數學課堂質量是教學工作中的重中之重。而數學建模就是為了解決數學在生活中的實際問題,能夠讓學生感受到數學本身的魅力,培養他們的數學思維,提高數學學習能力,從而讓小學數學教學質量也得到大幅度的提升。小學數學與數學建模之間有著密不可分的作用,兩者相互聯系、相互促進,如何有效的將數學建模運用在小學數學教學過程中,是每個小學數學教師都值得思考的問題。

      一、培養學生數學建模意識

      數學建模是為了解決數學中遇到的問題,數學本身特別是小學數學也是一門較貼近學生生活的學科。因此在數學學習中,教師要首先培養學生的數學學習意識,讓他們感受到數學與生活的緊密聯系,然后再引導學生用數學建模去解決遇到的問題。在這一過程中,數學教師要注意以下兩個問題:(一)在教學中一定要貼近學生的生活,課堂中所提出的問題也必須要符合生活實際,讓學生對所學內容感到親切。積極引導學生利用多種方式解決同一問題,尤其是利用數學建模的`方式,以達到培養他們的數學思維以及想象能力的目的。(二)在學生進行數學建模的過程中要利用多鼓勵的方式調動他們對數學學習的積極性,讓他們在數學建模中獲得成就感,增加自信心,以此來提高學生在今后學習中使用數學建模方法的熱情。

      二、提高學生想象力,用數學建模簡化問題

      對于小學生來說,他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數學學習中,如果能將想象力與數學學習結合在一起,一定會得到意想不到的效果。教師可以根據小學生這一特點,提高他們的想象力,然后再引導他們利用數學建模解決問題,讓題目簡單化。具體來說,就是在面對復雜的數學問題時,教師可以先為學生創建教學情境,以這樣的方式提高學生的學習興趣,讓他們愿意主動去深入的研究遇到的題目。之后教師再去對他們進行引導,讓他們能夠理解題目中所提問題的含義,并能夠運用他們的想象能力思考解決問題的方式。最后再引導他們進行數學建模,解決問題。這樣的方式充分的利用了學生的想象能力,將所需解決的問題簡單化。

      三、選擇合適的題目作為建模案例

      在數學建模過程中,教師也要時刻牢記題目應該貼近學生的生活,符合實際,并且具有一定的趣味性,讓他們有興趣投入到數學建模的過程中去,然后再反復練習之后達到提高他們建模能力的目的。在選擇數學建模案例時教師主要應該注意以下兩點:首先,教師在選擇建模案例時要盡量選擇比較典型的問題,能夠讓學生在學習了該題目以后掌握這一類的解題方法,達到小學數學教學的目的。所以,這就需要教師對題目進行深入的分析,看是否在擁有趣味性、真實性的同時符合教學要求。其次,題目最好能夠擁有可變性,教師能夠通過對題目中已知條件的改變讓學生進行不同方面的建模練習,以此提高他們數學建模的能力。

      四、引導學生主動進行數學建模

      在教師經過反復的教學后,學生都已經擁有了基本的數學建模知識,了解了數學建模過程,并且能夠在解題過程中簡單的使用數學建模。此時,教師在教學中就可以引導學生利用數學建模解決數學題目了。引導學生用數學建模方法解決數學問題,就要在解題過程中多對學生進行這一方面的鼓勵,讓他們提高建模信心。在這一過程中,教師還可以嘗試讓學生之間利用合作的方式讓他們進行數學建模方法的探討,并在探討的過程中吸取他人的經驗,提高自己數學建模水平,同時這樣的方式能夠讓數學建模深入到每一個學生的心中,逐漸影響每一個學生的解題思路,讓他們能夠在解題過程中熟練運用建模的方式,提高解題能力。數學建模的方法能夠有效的改變過去的傳統教學思路,增加學生對數學的學習興趣,提高數學解題能力。這種教學方法對于小學數學教師來說,值得不斷的探討研究,并應用在教學中,以此提高數學課堂的教學效率和教學質量。

    數學建模論文模板12

      一、數學建模思想與大學數學類課程教學的融合切入點

      1、從應用數學出發數學建模主要是通過運用數學知識解決生活中遇到實際問題的全過程。要讓數學建模思想與大學數學教學課程進行有效的融合,最佳切入點就是課堂上把用數學解決生活中的實際問題與教學內容相融合,以應用數學為導向,訓練學生綜合運用數學知識去刻畫實際問題、提煉數學模型、處理實際數據、分析解決實際問題的能力,培養學生運用數學原理解決生活問題的興趣和愛好。授課過程中,要改變以往單純地進行課堂灌輸的行為,多引入應用數學的內容,通過師生互動、課堂討論、小課題研究實踐等多種形式靈活多樣的教學方法,培養引導學生樹立應用數學建模解決實際問題的思想。

      2、從數學實驗做起要加強獨立學院學生進行數學實驗的行為,筆者認為數學建模與數學實驗有著密切的聯系,兩者都是從解決實際問題出發,當前的大學生數學實驗基本上是應用數學軟件、數值計算、建立模型、過程演算和圖形顯示等一系列過程,因此進行數學實驗的全過程就是數學建模思想的啟發過程。但是我國的教育資源和教學方針限制了獨立學院學生的學習環境和學習資源,能夠進行數學實驗的條件還是有限的。即使個別有實驗能力的學校,也未能進行充分利用,數學實驗課的內容隨意性較大,有些院校將其降格為軟件學習課程或初級算法課。根據調研,目前大部分獨立學院未開設此類課程,這是數學建模思想與大學數學教學課程融合的一大損失,不利于學生創新思維能力的提高。各校應當積極創造條件,把數學實驗課設為大學數學的必修課,爭取設立數學建模選修課,并積極探索、逐步實現把數學建模的思想和方法融入大學數學的主干課程。

      3、從計算機應用切入數學是為理、工、經、管、農、醫、文等眾多學科服務的基礎工具,它在不同的領域因為應用程度不同而導致被重視的程度不同。但在當今的信息化時代,計算機的廣泛應用和計算技術的飛速發展,使科學計算和數值模擬已成為絕大多數學科的必要工具和常用手段。數學在不同學科領域有了共同的主題,即應用數學建模,通過計算機對各自領域的科學研究、生活問題等進行模擬分析,這成為數學建模思想在跨學科領域交流和傳播的一個重要途徑。每個領域的教學可以計算機應用為切入點,讓數學建模思想與數學授課無縫結合,在提高學生掌握知識能力、挖掘培養創新思維的同時,增加了大學數學課程內容的豐富性、實用性,促進教學手段變革和創新。因此,大學應以適應現代信息技術發展的形勢和學生將來的需求為契機,加快改進大學數學課程教學方式,把數學建模的思想和方法以及現代計算技術和計算工具盡快融入大學數學的主干課程當中。

      二、探索適合獨立學院學生的數學建模教學內容

      大學數學課程是大學工科各專業培養計劃中重要的公共基礎理論課,其目的在于培養工程技術人才所必備的數學素質,為培養我國現代化建設需要的高素質人才服務。數學建模課程的必修化,要從能夠擴充學生的知識結構,培養學生的創造性思維能力、抽象概括能力、邏輯推理能力、自學能力、分析問題和解決問題能力的角度出發,建立適合獨立學院學生的數學建模教學內容。日前獨立學院開展數學建模活動涉及內容較淺,缺少相應的數學建模和數學實驗方而的教材。筆者近幾年通過承擔此類課題的研究,認為應該加強以下內容的建設:

      1、加強對計算機語言和軟件的學習,對數學原理進行剖解分析,多分析運行數學解決的社會生活問題,多設定課程設計工作。學生通過對科學問題、生活問題的深入研究,結合自己的課程設計,建立數學建模,讓數學建模思想滲透到整個學習過程中。對非數學領域的問題,引導學生通過計算機軟件的學習,建模解決專業中遇到的實際問題。比如通用的CAD等基于數學理論,解決不同領域的數學建模問題,以便將來適應社會的需要

      。2、開設選修課拓展知識領域,讓學生可以通過選修數學建模、運籌學、開設數學實驗(介紹Matlab、Maple等計算軟件課程),增加建立和解答數學模型的方法和技巧。比如以前用的“文曲星”電子詞典里的貸款計算,就是一個典型的運用數學模型方便百姓自己計算的應用。這個模型單靠數學和經濟學單方面的知識是不夠的,必須把數學與經濟學聯系在一起,才能有效解決生活中的問題。

      3、積極組織學生開展或是參加數學建模大賽比賽是各個選手充分發揮水平、展示自己智慧的途徑,也是數學建模思想傳播的最好手段。比賽可以讓各個選手發現自己的不足,尋找自身數學建模出發點的缺陷,通過交流,還可以拓展學生思維。因此,有必要積極組織學生參入初等數學知識可以解決的數學模型、線性規劃模型、指派問題模型、存儲問題模型、圖論應用題等方面的模擬競賽,通過參賽積累大量數學建模知識,促進數學建模在教學中扮演更重要的角色。教師應該對歷年的全國大學生數學建模競賽真題進行認真的解讀分析,通過對有意義的題目,如20xx年的《葡萄酒的評價》、《太陽能小屋的設計》,20xx年的《交巡警服務平臺的.設置與調度車燈線光源的計算》、20xx年的《眼科病床的合理安排》等,與生活相關的例子進行講解分析,提高學生對數學建模的興趣和對模型應用的直觀的認識,實現學校應用型人才的培養。

      4、加快教育方式的轉變高等教育設立數學這門學科就是為了應用服務,內容應重點放在基本概念、定理、公式等在生活中的應用上。而傳統的高等數學,除了推導就是證明,因此,要對傳統內容進行優化組合,根據教學特點和學生情況推陳出新,要注重數學思想的滲透和數學方法的介紹,對高等數學精髓的求導、微分方法、積分方法等的授課要重點放在解決實際生活的應用上。要結合一些社會實踐問題與函數建立的關系,分析確定變量、參數,加強有關函數關系式建立的日常訓練。培養學生對一些問題的邏輯分析、抽象、簡化并用數學語言表達的能力,逐步將學生帶入遇到問題就能自然地去轉化成數學模型進行處理的境界,并能將數學結論又能很好反向轉化成實際應用。

      三、注意的問題

      21世紀我國進入了大眾教育時期,高校招生人數劇增,學生水平差距較大,需要學校瞄準正確的培養方向。通過對美國教學改革的研究,筆者認為我國的數學建模思想與大學數學教學課程融合必須盡快在大學中廣泛推進,但要注意一些問題:第一,數學教學改革一定要基于學生的現實水平,數學建模思想融入要與時俱進。第二,教學目標要正確定位,融合過程一定要與教學研究相結合,要在加強交流的基礎上不斷改進。第三,大學生數學建模競賽的舉辦和參入,要給予正確的理解和引導,形成良性循環。要根據個人興趣愛好,注重個性,不應面面強求。第四,傳統數學思想與現在數學建模思想必須互補,必修與選修課程的作用與角色要分清。數學主干課程的教學水平是大學教學質量的關鍵指標之一,具備數學建模思想是理工類大學生能否成為創新人才的重要條件之一。兩者的融合必將促進我國教學水平和質量的提高,為社會輸送更多的實用型、創新型人才。

    數學建模論文模板13

      一)論文形式:科學論文

      科學論文是對某一課題進行探討、研究,表述新的科學研究成果或創見的文章。

      注意:它不是感想,也不是調查報告。

      (二)論文選題:新穎,有意義,力所能及。

      要求:

      有背景.

      應用問題要來源于學生生活及其周圍世界的真實問題,要有具體的對象和真實的數據。理論問題要了解問題的研究現狀及其理論價值。要做必要的學術調研和研究特色。

      有價值

      有一定的應用價值,或理論價值,或教育價值,學生通過課題的研究可以掌握必須的科學概念,提升科學研究的能力。

      有基礎

      對所研究問題的背景有一定了解,掌握一定量的參考文獻,積累了一些解決問題的方法,所研究問題的數據資料是能夠獲得的。

      有特色

      思路創新,有別于傳統研究的新思路;

      方法創新,針對具體問題的特點,對傳統方法的改進和創新;

      結果創新,要有新的,更深層次的結果。

      問題可行

      適合學生自己探究并能夠完成,要有學生的特色,所用知識應該不超過初中生(高中生)的'能力范圍。

      (三)(數學應用問題)數據資料:來源可靠,引用合理,目標明確

      要求:

      數據真實可靠,不是編的數學題目;

      數據分析合理,采用分析方法得當數學建模論文格式模板以及要求數學建模論文格式模板以及要求。

      (四)(數學應用問題)數學模型:通過抽象和化簡,使用數學語言對實際問題的一個近似描述,以便于人們更深刻地認識所研究的對象。

      要求:

      抽象化簡適中,太強,太弱都不好;

      抽象出的數學問題,參數選擇源于實際,變量意義明確;

      數學推理嚴格,計算準確無誤,得出結論;

      將所得結論回歸到實際中,進行分析和檢驗,最終解決問題,或者提出建設性意見;

      問題和方法的進一步推廣和展望。

      (五)(數學理論問題)問題的研究現狀和研究意義:了解透徹

      要求:

      對問題了解足夠清楚,其中指導教師的作用不容忽視;

      問題解答推理嚴禁,計算無誤;

      突出研究的特色和價值。

      (六)論文格式:符合規范,內容齊全,排版美觀

      1. 標題:是以最恰當、最簡明的詞語反映論文中主要內容的邏輯組合。

      要求:反映內容準確得體,外延內涵恰如其分,用語凝練醒目。

      2. 摘要:全文主要內容的簡短陳述。

      要求:

      1)摘要必須指明研究的主要內容,使用的主要方法,得到的主要結論和成果;

      2)摘要用語必須十分簡練

      3)不要舉例,不要講過程,不用圖表,不做自我評價。

      3. 關鍵詞:文章中心內容所涉及的重要的單詞,以便于信息檢索。

      要求:數量不要多,以3-5各為宜,不要過于生僻。

      (七). 正文

      1)前言:

      問題的背景:問題的來源;

      提出問題:需要研究的內容及其意義;

      文獻綜述:國內外有關研究現狀的回顧和存在的問題;

      概括介紹論文的內容,問題的結論和所使用的方法。

      2)主體:

      (數學應用問題)數學模型的組建、分析、檢驗和應用等。

      (數學理論問題)推理論證,得出結論等。

      3)討論:

      解釋研究的結果,揭示研究的價值, 指出應用前景, 提出研究的不足。

      要求:

      1)背景介紹清楚,問題提出自然;

      2)思路清晰,涉及到得數據真是可靠,推理嚴密,計算無誤;

      3)突出所研究問題的難點和意義。

      5. 參考文獻:

      是在文章最后所列出的文獻目錄。他們是在論文研究過程中所參考引用的主要文獻資料,是為了說明文中所引用的的論點、公式、數據的來源以表示對前人成果的尊重和提供進一步檢索的線索。

      要求:

      1)文獻目錄必須規范標注;

      2)文末所引的文獻都應是論文中使用過的文獻,并且必須在正文中標明數學建模論文格式模板以及要求論文。

      (七)數學建模論文模板

      1. 論文標題

      摘要

      摘要是論文內容不加注釋和評論的簡短陳述,其作用是使讀者不閱讀論文全文即能獲得必要的信息

      一般說來,摘要應包含以下五個方面的內容:

     、傺芯康闹饕獑栴};

     、诮⒌氖裁茨P;

     、塾玫氖裁辞蠼夥椒;

     、苤饕Y果(簡單、主要的);

      ⑤自我評價和推廣。

      摘要中不要有關鍵字和數學表達式。

      數學建模競賽章程規定,對競賽論文的評價應以:

      ①假設的合理性

     、诮5膭撛煨

     、劢Y果的正確性

      ④文字表述的清晰性 為主要標準。

      所以論文中應努力反映出這些特點。

      注意:整個版式要完全按照《全國大學生數學建模競賽論文格式規范》的要求書寫,否則無法送全國評獎。

    數學建模論文模板14

      數學建模是聯系數學理論和實際問題的橋梁和紐帶,是數學學科與社會的交匯,是解決實際問題的一種方法。數學建模是從數學角度出發,對所需研究的問題作一個模擬,舍去無關因素,保留本質因素,把現實原型作抽象、簡化后,使用數學符號、數學式子、數量關系簡化而成某種數學結構。

      當前高職數學課程教學中,由于課時少,教師多采用填鴨式的教學法,過分注重訓練學生的邏輯思維能力、解題技巧,過分強調教學要求、教學進度的統一,缺乏層次性多樣化,不能適應不同專業的要求,考試形式也幾乎是清一色的筆試,而沒有著意討論和訓練如何從實際問題中提煉出數學問題,以及如何用數學來解決實際問題,從而造成不少學生認為“學高等數學沒用”,大大影響了學生學習數學的積極性和數學素養的提高,以及后繼專業課程的學習。而現行教材上又很少接觸實際問題,如果教師照本宣科,學生就根本體會不到數學的廣泛應用。因此,若教師能在實際教學中滲透一些數學建模思想,理論聯系實際,不僅能激發學生學習數學的興趣,幫助學生理解和掌握教材中的定義、定理,而且可以培養學生應用數學的意識,提高其解決實際問題的能力。

      一、重視數學概念背景模型的引入,啟發學生對數學公式、定義的理解與認識

      一切數學概念和知識都是從現實世界的各種模型中抽象出來的,利用建模的思想進行教學是理論與應用相結合的重要手段。讓學生從模型中切實體會到數學概念是因為有用而產生的',從而培養學生學習數學的興趣。例如,在講極限的定義時,如果把定義直接灌輸給學生,學生會感到數學概念猶如空中樓閣,看不見,摸不著。如果我們換一種方式,從求圓周長講起,向學生提出分析和解決這個問題所用到的數學思想方法,從而引出極限的概念。再如講導數的概念,先從求變速直線運動的速度、產品成本的變化率、切線等問題為背景引入,再從這些應用入手,有意識地挖掘它們,進一步提出或構造一些比較淺的數學建模問題。這樣借助于數學知識與實際問題的聯系引入數學概念,加強“數學源于現實”的思想教育,容易牽動學生的數學思維,加深對概念的理解,從而提高學習數學的興趣。

      二、在高職數學教學中滲透數學建模思想,有助于提高教學效果

      針對教材中實際應用問題較少的現狀,教師在數學教學活動中,可以精選一些學生感興趣的簡單的實際應用問題,進行建模示范,幫助學生理論聯系實際。比如有的學生數學基礎可能不太好,但他愛好體育、經濟、化學、計算機等,教師就可以從這些方面引入一些簡單的相關題目,引起他們的興趣。比如讓有體育特長的學生分析“香港賽馬比賽的獎金分配情況”,愛好化學的學生分析、抽象“化學方程式配平”的數學模型,愛好計算機的學生學會“編制解決數學模型的程序”等等。這樣做可以激發其學習的積極性,發揮學生的個性,往往會收到意想不到的結果。在學生對數學建模感興趣的基礎上,能激發學生對數學學習的積極性,使得學生被動地“學”、老師被動地“教”,改變為學生主動地“學”、老師“靈活”主動地“教”。學生的學習主動性調動起來了,老師的工作熱情就會高漲,就能達到提高高職數學教學效果的目的。

      三、培養學生應用數學的意識,提高其解決實際問題的能力

      在教學實踐中,專業課教師認為學生的數學基礎不扎實,不能靈活運用在具體問題上,而對于學生自己,則表現為不能通過自學來獲取新知識,對教師過于依賴等。在學生畢業以后,不會或者意識不到可以應用數學工具去解決他們各自領域的問題。在數學教學中滲透數學建模思想,可以適當選編一些實際應用問題,引導學生進行分析,通過抽象、簡化、假設、確定變量、參數、確立數學模型,解答數學問題,從而解決實際問題。這樣既讓學生掌握一些數學建模的方法,又有利于學生遇到實際問題時,在所學過的課程中找到適當的模型,依據模型的有關性質或解題思路去考查現有問題,使學生深刻體會到數學是解決實際問題的銳利武器,也有利于在教學中貫徹理論與實際相結合的原則,逐步提高學生分析、解決問題的能力。例如,向學生介紹函數模型、微分方程模型、優化模型、Malthus人口模型、Logist ic人口模型、跟蹤問題模型等。微分方程來源于實際,微分方程模型是常用的數學模型,許多數學問題可通過建立微分方程,解微分方程來解決。比如傳染病模型,人類雖已跨入21 世紀,但一些險惡的傳染病,如淋病、艾滋病等在許多國家蔓延,通過分析受感染人數的變化規律可以預報傳染病高潮的到達時間。在講解導數、微分、積分及其應用時,可編制“商品存儲費用優化問題、批量進貨的周轉周期、最大收益原理、磁盤最大存儲量、交通管理中的黃燈、紅燈、綠燈亮的時間”等問題,都可用導數或微積分的數學方法進行求解。在概率與統計的應用教學中,“醫學檢驗的準確率問題”、“居民健康水平的調查與估測”、“臨床診斷的準確性”、“不同的藥物有效率的對比分析”等實際應用問題都可以用概率與統計的數學模型來解決。

      在線性代數的應用問題中,可以建立研究一個種群的基因變異,基因遺傳等醫學問題的模型,使數學知識直接應用于學生今后的專業中,有效地促進了學生學習高等數學的積極性,提高了數學的應用意識?傊,高等數學教學的目的是提高學生的數學素質,為進一步學習其專業課打下良好的數學基礎。

      教學中滲透數學建模思想,不但促進高職數學學科建設,推動教學改革,更重要的是能激發學生學習數學的興趣,幫助學生培養和提高想象力、洞察力和創造力。

    數學建模論文模板15

      一、小學數學建模

      "數學建模"已經越來越被廣大教師所接受和采用,所謂的"數學建模"思想就是通過創建數學模型的方式來解決問題,我們把該過程簡稱為"數學建模",其實質是對數學思維的運用,方法和知識解決在實際過程中遇到的數學問題,這一模式已經成為數學教育的重要模式和基本內容。葉其孝曾發表《數學建模教學活動與大學數學教育改革》,該書指出,數學建模的本質就是將數學中抽象的內容進行簡化而成為實際問題,然后通過參數和變量之間的規律來解決數學問題,并將解得的結果進行證明和解釋,因此使問題得到深化,循環解決問題的過程。

      二、小學數學建模的定位

      1.定位于兒童的生活經驗

      兒童是小學數學的主要教學對象,因此數學問題中研究的內容復雜程度要適中,要與兒童的生活和發展情況相結合。"數學建模"要以兒童為出發點,在數學課堂上要多引用發生在日常生活中的案例,使兒童在數學教材上遇到的問題與現實生活中的問題相結合,從而激發學生學習的積極性,使學生通過自身的經驗,積極地感受數學模型的作用。同時,小學數學建模要遵循循序漸進的原則,既要適合學生的年齡特征,賦予適當的挑戰性;又要照顧兒童發展的差異性,尊重兒童的個性,促進每一個學生在原有的基礎上得到發展。

      2.定位于兒童的思維方式

      小學生的特點是年齡小,思維簡單。因此小學的數學建模必須與小學生的實際情況相結合,循序漸進的進行,使其與小學生的認知能力相適應。

      實際情況表明,教師要想使學生能夠積極主動的思考問題,提高他們將數學思維運用到實際生活中的能力,就必須把握好兒童在數學建模過程中的情感、認知和思維起點。我們以《常見的數量關系》中關于速度、時間和路程的教學為例,有的老師啟發學生與二年級所學的乘除法相結合,使乘除法這一知識點與時間、速度和路程建立了關聯,從而使"數量關系"與數學原型"一乘兩除"結合起來,并且使學生利用抽象與類比的思維方法完成了"數量關系"的"意義建模",從而創建了完善的認知體系。

      三、小學"數學建模"的教學策略

      1.培育建模意識

      當前的小學數學教材中,大部分內容編排的思路都是以建模為基礎,其內容的開展模式主要是"生活情景到抽象模型,然后到模型驗證,最后到模型的運用和解釋".培養建模思維的關鍵是對教材的解讀是否從建模出發,使教材中的建模思想得到充分的開發。然后對教材中比較現實的問題進行充分的挖掘,將數學化后的實際問題創建模型,最后解決問題。教師要提高學生對建模的意識與興趣就要充分挖掘教材,指導學生去親身體會、思考溝通、動手操作、解決問題。其次,通過引入貼近現實生活、生產的探索性例題,使學生了解數學是怎樣應用于解決這些實際問題的。同時,讓學生在利用數學建模解決實際問題的過程中理解數學的應用價值和社會功能,不斷增強數學建模的意識。

      2.體驗建模過程

      在數學的建模過程中,要將生活中含有數學知識與規律的實際問題抽象化,從而建成數學模型。然后利用數學規律對問題進行推理,解答出數學的結果后再進行證明和解釋,從而使實際問題得到合理的解決。我們以解決問題的方法為例,使學生能夠解決題目不是教學的唯一目的,使學生通過對數學問題的研究和體驗來提升自己"創建"新模型的能力。使學生在不斷的提出與解決問題的過程中培養成自主尋找數學模型和數學觀念的.習慣。如此一來,當學生遇到陌生的問題情境,甚至是與數學無關的實際問題時,都能夠具備"模型"思想,處理問題的過程能具備數學家的"模型化"特點,從而使"模型思想"影響其生活的各個方面。

      3.在數學建模中促進自主性建構

      要使"知識"與"應用"得到良好的結合就必須提高學生積極構建數學模型的能力。我們要將數學教學的重點放在對學生觀察、整合、提煉"現實問題"的能力培養上來。教學過程中,通過對日常問題的適當修改,使學生的實際生活與數學相結合,從而提升學生發現和提出問題,并通過創建模型解決問題的能力,為學生提供能夠自主創建模型的條件。

      我們以《比較》這課程內容為例,我們通過"建模"這一教學方法,培養學生對">""<"和"="的掌握與使用,進而使學生明確了解"比較"的真正含義。首先,利用公園或者學校等地方的蹺蹺板為素材,讓學生了解自己的哪個伙伴被壓上去,哪個伙伴被壓下來;然后讓班級的高矮不同的同學進行身高比較。最后將上面這些情景在課堂上通過多媒體手段展現出來,由于這些情景都是學生曾親身體驗過的,此時再叫他們去做"重量"或者"高度"的比較,他們就可以輕松的掌握">""<"和"="等符號。這種將學生的實際生活與課堂教學相結合的方法,使學生能夠輕松的創建其數學模型,提升他們自主建模的信心。

      四、總結

      數學建模是將實際生活與數學相結合的有效途徑和方法。學生在創建數學模型的過程中,其思維方式也得到了鍛煉。小學階段的教學,其數學模型的構建應當以兒童文化觀為基礎,其目的主要是培養兒童的建模思想,這也是提升小學生學習數學積極性,提升課堂文化氣息的有效方法和途徑。

    【數學建模論文】相關文章:

    數學建模論文模板07-20

    數學建模論文模板07-21

    數學建模A優秀論文08-01

    【優】數學建模論文模板07-20

    數學建模工作總結05-28

    參加數學建模競賽心得08-19

    數學建模心得體會05-02

    數學建模學習心得(精選14篇)05-27

    數學的論文09-30

    數學小論文12-07

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      香蕉久久AⅤ一区二区三区 中文字幕亚洲第16页 | 强奷乱码中文字幕熟无 | 亚洲欧美在线观看播放 | 中文字幕精品亚洲无线码二区 | 视频二区一区国产精品天天 | 亚洲欧美乱综合图片区小说区 |