【優】數學建模論文模板
在日常學習、工作生活中,大家總少不了接觸論文吧,論文是描述學術研究成果進行學術交流的一種工具。還是對論文一籌莫展嗎?下面是小編整理的數學建模論文模板,僅供參考,大家一起來看看吧。
數學建模論文模板 篇1
論文標題:xxxxxxx
摘要
摘要是論文內容不加注釋和評論的簡短陳述,其作用是使讀者不閱讀論文全文即能獲得必要的信息。
一般說來,摘要應包含以下五個方面的內容:
①研究的主要問題;
②建立的什么模型;
③用的什么求解方法;
④主要結果(簡單、主要的);
⑤自我評價和推廣。
摘要中不要有關鍵字和數學表達式。
數學建模競賽章程規定,對競賽論文的評價應以:
①假設的合理性
②建模的創造性
③結果的正確性
④文字表述的清晰性 為主要標準。
所以論文中應努力反映出這些特點。
注意:整個版式要完全按照《全國大學生數學建模競賽論文格式規范》的要求書寫,否則無法送全國評獎。
一、 問題的重述
數學建模競賽要求解決給定的問題,所以一般應以“問題的重述”開始。
此部分的目的是要吸引讀者讀下去,所以文字不可冗長,內容選擇不要過于分散、瑣碎,措辭要精練。
這部分的內容是將原問題進行整理,將已知和問題明確化即可。
注意:在寫這部分的內容時,絕對不可照抄原題!
應為:在仔細理解了問題的基礎上,用自己的語言重新將問題描述一篇。應盡量簡短,沒有必要像原題一樣面面俱到。
二、 模型假設
作假設時需要注意的問題:
①為問題有幫助的所有假設都應該在此出現,包括題目中給出的假設!
②重述不能代替假設! 也就是說,雖然你可能在你的問題重述中已經敘述了某個假設,但在這里仍然要再次敘述!
③與題目無關的假設,就不必在此寫出了。
三、 變量說明
為了使讀者能更充分的理解你所做的工作,
對你的模型中所用到的變量,應一一加以說明,變量的輸入必須使用公式編輯器。 注意:
①變量說明要全 即是說,在后面模型建立模型求解過程中使用到的所有變量,都應該在此加以說明。
②要與數學中的習慣相符,不要使用程序中變量的寫法
比如:一般表示圓周率;cba,, 一般表示常量、已知量;zyx,, 一般表示變量、未知量
再比如:變量21,aa等,就不要寫成:a[0],a[1]或a(1),a(2)
四、模型的建立與求解
這一部分是文章的重點,要特別突出你的創造性的工作。在這部分寫作需要注意的.事項有:
①一定要有分析,而且分析應在所建立模型的前面;
②一定要有明確的模型,不要讓別人在你的文章 中去找你的模型;
③關系式一定要明確;思路要清晰,易讀易懂。
④建模與求解一定要截然分開;
⑤結果不能代替求解過程:必須要有必要的求解過程和步驟!最好能像寫算法一樣,一步一步的寫出其步驟;
⑥結果必須放在這一部分的結果中,不能放在附錄里。
⑦結果一定要全,題目中涉及到的所有問題必須都有詳細的結果和必須的中間結果!
⑧程序不能代替求解過程和結果!
⑨非常明顯、顯而易見的結果也必須明確、清晰的寫在你的結果中!
⑩每個問題和問題之間以及5個小點之間都必須空一行。
問題一:
1.建模思路:
①對問題的詳盡分析;
②對模型中參數的現實解釋;這有助于我們抓住問題的本質特征,同時也會使數學公式充滿生氣,不再枯燥無味
③完成內容闡述所必需的公式推導、圖表等
2.模型建立:
建立模型并對模型作出必要的解釋
對于你所建立的模型,最好能對其中的每個式子都給出文字解釋。
3.求解方法:
給出你的求解思路,最好能想寫算法一樣,寫出你的算法。
4.求解結果
數學建模論文模板 篇2
摘要:將數學建模思想融入高等數學的教學中來,是目前大學數學教育的重要教學方式。建模思想的有效應用,不僅顯著提高了學生應用數學模式解決實際問題的能力,還在培養大學生發散思維能力和綜合素質方面起到重要作用。本文試從當前高等數學教學現狀著手,分析在高等數學中融入建模思想的重要性,并從教學實踐中給出相應的教學方法,以期能給同行教師們一些幫助。
關鍵詞:數學建模;高等數學;教學研究
一、引言
建模思想使高等數學教育的基礎與本質。從目前情況來看,將數學建模思想融入高等教學中的趨勢越來越明顯。但是在實際的教學過程中,大部分高校的數學教育仍處在傳統的理論知識簡單傳授階段。其教學成果與社會實踐還是有脫節的現象存在,難以讓學生學以致用,感受到應用數學在現實生活中的魅力,這種教學方式需要亟待改善。
二、高等數學教學現狀
高等數學是現在大學數學教育中的基礎課程,也是一門必修的課程。他能為其他理工科專業的學生提供很多種解題方式與解題思路,是很多專業,如自動化工程、機械工程、計算機、電氣化等必不可少的基礎課程。同時,現實生活中也有很多方面都涉及高數的運算,如,銀行理財基金的使用問題、彩票的概率計算問題等,從這些方面都可以看出人們不能僅僅把高數看成是一門學科而已,它還與日常生活各個方面有重要的聯系。但現在很多學校仍以應試教育為主,采取填鴨式教學方式,加上高數的教材并沒有與時俱進,將其與生活的關系融入教材內,使學生無法意識到高數的重要性以及高數在日常生活中的魅力,因此產生排斥甚至對抗的心理,只是在臨考前突擊而已。因此,對高數進行教學改革是十分有必要的,而且怎么改,怎么讓學生發現高數的魅力,并積極主動學習高數也是作為教師所面臨的一個重大問題。
三、將數學建模思想融入高等數學的重要性
第一,能夠激發學生學習高數的興趣。建模思想實際上是使用數學語言來對生活中的.實際現象進行描述的過程。把建模思想應用到高等數學的學習中,能夠讓學生們在日常生活中理解數學的實際應用狀況與解決日常生活問題的方便性,讓學生們了解到高數并不只是一門課程,而是整個日常生活的基礎。例如,在講解微分方程時,可以引入一些歷史上的一些著名問題,如以Vanmeegren偽造名畫案為代表的贗品鑒定問題、預報人口增長的Malthus模型與Logistic模型等。 這樣,才能激發出學生對高等數學的興趣,并積極投入高等數學的學習中來。
第二,能夠提高學生的數學素質。社會的高速發展不斷要求學生向更全面、更高素質的方向發展。這就要求學生不僅要懂得專業知識,還要能夠將專業知識運用到實際生活中,擁有解決問題的頭腦和實際操作的技能。這些其實都可以通過建模思想在高等數學課堂中實現。高等數學的包容性、邏輯性都很強。將建模思想融入高等數學的教學中,既能提高學生的數學素質,還能鍛煉學生綜合分析問題,解決問題的能力。通過理論與生活實踐相結合,達到社會發展的要求,提高自身的社會競爭力。
第三,能夠培養學生的綜合創新能力。“萬眾創新”不僅僅是一個口號,而應該是現代大學生應該具備的一種能力。將數學建模思想融入高等數學教學中,能讓大學生從實際生活出發,多方位、多角度考慮問題,提高學生的創新能力。學生的潛力是可以在多次的建模活動中挖掘出來的。因此教師應多組織建模活動,讓學生從實際生活中組建材料,不斷創新思維,找到解決問題的方式與方法。
四、將建模思想融入高等數學的實踐方法
第一,轉變教學理念。改變傳統教學思想與教育方式,提高學生建模的積極性,增強學生對建模方式的認同。教師不能只是單一的講解理論知識,還需要引導學生親自體驗,從互動的教學過程中,理解建模思想的重要性。
第二,在生活問題中應用建模思想。其實,很多日常生活中的很多例子,都是可以解決課堂上的問題的。數學是來源于生活的。作為教師,應該主動引領學生參與實踐活動,將課本的知識盡量與日常問題聯系到一起,發動學生主動用建模思想解決問題,提高創新能力,從不同的角度,以不同的方式提高解決問題的能力。例如,學校要組織元旦晚會,需要學生去采購必需品。超市有多種打折的方式,這時候教師就可以引導學生使用建模思想,要求去學生以模型來分析各種打折方式的優缺點,并選擇最優惠的方式買到最優質的晚會用品。這樣學生才會發現建模的樂趣,并了解如何在生活案例中應用建模思想。
第三,不斷鞏固和提高建模應用。數學建模思想融入生活實踐不是一蹴而就的,而是一個不斷實踐、循序漸進的過程。人們也不能為了應用建模思想而將日常生活生拉硬套。教師也應該盡可能多地搜集生活中的案例,將建模思想與生活實踐更靈活地聯系在一起。不斷地由淺入深,將建模思想牢牢地印在學生的腦海中。并根據每個學生的獨特性,不斷開發學生的創新潛力和發散思維能力,提高邏輯思維能力和空間想象力,在實踐中鞏固深化建模思想。五、結束語綜上所述,將建模思想融入高等數學教學中,能顯著提高課堂教學質量和學生解決問題的能力,因此教師應從整體上把握高數的教學體系,讓學生逐步建立建模思維,不斷深化和鞏固用建模思想解決問題的能力。只有這樣,融入數學建模思想的高等數學的教學效果才會起到應有的作用。
數學建模論文模板 篇3
1引言
數學模型的難點在于建模的方法和思路,目前學術界已經有各種各樣的建模方法,例如概率論方法、圖論方法、微積分方法等,本文主要研究的是如何利用方程思想建立數學模型從而解決實際問題。實際生活中的很多問題都不是連續型的,例如人口數、商品價格等都是呈現離散型變化的趨勢,碰到這種問題可以考慮采用差分方程或差分方程組的方式進行表示。有時候人們除了想要了解問題的起因和結果外還希望對中間的速度以及隨時間變化的趨勢進行探索,這個時候就要用到微分方程或微分方程組來進行表示。以上只是簡單的舉兩個例子,其實方程的應用極為廣泛,只要有關變化的問題都可以考慮利用方程的思想建立數學模型,例如常見的投資、軍事等領域。利用方程思想建立的數學模型可以更為方便地觀察到整個問題的動態變化過程,并且根據這一變化過程對未來的狀況進行分析和預測,為決策的制定和方案的選擇提供參考依據。利用方程建立數學模型時就想前文所說的那樣,如果是離散型變化問題可以考慮采用差分思想建模,如果是連續型變化問題可以考慮采用常微分方程建立模型。對于它們建模的方式方法可以根據幾個具體的實例說明。
2方程在數學建模中的應用舉例
2.1常微分方程建模的應用舉例
正如前文所述,常微分方程的思想重點是對那些過程描述的變量問題進行數學建模,從而解決實際的變化問題,這里舉一個例子來說明。例1人口數量變化的邏輯斯蒂數學方程模型在18世紀的時候,很多學者都對人口的增長進行了研究,英國的學者馬爾薩斯經過多年的研究統計發現,人口的凈相對增長率是不變的,也就是說人口的凈增長率和總人口數的比值是個常數,根據這一前提條件建立人口數量的變化模型,并且對這一模型進行分析研究,找出其存在的問題,并提出改進措施。解:假設開始的時間為t,時間的間隔為Δt,這樣可以得出在Δt的時間內人口增長量為N(t+Δt)-N(t)=rN(t)Δt,由此可以得出以下式子。dN(t)dt=rN(t)N(t0)=N{0(1)對于這種一階常微分方程可以采用分離變量法進行求解,最終解得N(t)=N0er(t-t0)而后將過去數據中的r、N0帶入上述式子中就可以得出最后的結果。這個式子表明人口數量在自然增長的情況下是呈指數規律增長的,而且把這個公式對過去和未來的人口數量進行對比分析發現還是相當準確的,但是把這個模型用到幾百年以后,就可以發現一些問題了,例如到2670年的時候,如果仍然根據這一模型,那么那個時候世界人口就會有3.6萬億,這已經大大的超過了地球可以承受的最大限度,所以這個模型是需要有前提的,前提就是地球上的資源對人口數量的限制。荷蘭的生物學家韋爾侯斯特根據邏輯斯蒂數學方法和實際的調查統計引入了一個新的常數Nm,這個常數就是用來控制地球上所能承受的最大人口數,將這一常數融入邏輯斯蒂方程可以得出以下的式子。dN(t)dt=rN(t)(1-N(t)Nm)N(t0)=N{0(2)該方程解為N(t)=Nm1+NmN0e-r(t-t0)一個新的數學模型建立后,首先要做的就是驗證它的正確性,經過研究發現在1930年之前的驗證中還是比較吻合的,但是到了1930年之后,用這個模型求出的人口數量就與實際情況存在很大的誤差,而且這一誤差呈現越來越大的變化趨勢。這就說明當初設定的人口極限發生了變化,這是由于隨著科學技術的不斷進步,人們可以利用的資源越來越多,導致人口極限也呈現變大的趨勢。
2.2差分方程建模的`應用舉例
如前文所言,對于離散型問題可以采用差分方程的方法建立數學模型。例如以25歲為人類的生育年齡,就可以得出以下的數學模型。yk+1-yk=ryk(1-ykN),k=0,1,2,…即為yk+1=(r+1)yk[1-r(r+1)Nyk]其中r為固有增長率,N為最大容量,yk表示第k代的人口數量,若yk=N,則yk+1,yk+2,…=N,y*=N是平衡點。令xk=r(r+1)Nyk,記b=r+1。xk+1=bxk(1-xk)這個方程模型是一個非線性差分方程,在解決的過程中我們只需知道x0,就可以計算出xk。如果單純的考慮平衡點,就會有下面的式子。x=f(x)=bx(1-x),則x*=rr+1=1-1bx因為f'(x*)=b(1-2x*)=2-b,當|f'(x*)|<1時穩定,當|f'(x*)|>1時不穩定。所以,當1<b<2或2<b<3時,xkk→仯仯仭∞x*.當b>3時,xk不穩定。2.3偏微分方程建模的應用舉例在實際生活中如果有多個狀態變量同時隨時間不斷的變化,那么這個時候就可以考慮采用偏微分方程的方法建立數學模型,還是以人口數量增長模型為例,根據前文分析已經知道建立的模型都是存在一定的局限性的,對于人類來說必須要將個體之間的區別考慮進去,尤其是年齡的限制,這時的人口數量增長模型就可以用以下的式子來表示。祊(t,r)祎+祊(t,r)祌=-μ(t,r)p(t,r)+φ(t,r)p(0,r)=p0(r);p(t,r0)=∫r2r1β(r,t)p(t,r)d{r其中,p(t,r)主要表示在t時候處于r歲的人口密度分布情況,μ(t,r)表示的r歲人口死亡率,φ(t,r)表示r歲人口的遷移率,β(r,t)表示r歲的人的生育率。除此之外,式子中的積分下限r1表示能夠生育的最小歲數,r2表示能夠生育的最大歲數。根據人口數量增長的篇微分方程可以看出實際生活中的人口數量與年齡分布、死亡率和出生率都有著密不可分的關系,這與客觀事實正好相吻合,所以這一個人口增長模型能夠更為準確地反應人口的增長趨勢。當然如果把微分方程中的年齡當做一個固定的值,那么就由偏微分方程轉化成了常微分方程。另外如果令μ(t,r)=-r,p(t,r)=N(t),N(0)=N0,φ=rN2(t)/Nm,那么上述偏微分方程就變成了Verhulst模型。偏微分方程在實際生活中的應用也相當廣泛,物理學、生態學等多個領域的問題都可以通過建立偏微分方程來求解。
3結束語
上世紀六七十年代,數學建模進入一些西方大學,緊隨其后,八十年代它進入中國的部分高校課堂。把方程式引入到數學建模中是數學建模更具體和更實際的應用,方程式的空間性和抽象性決定了它需要借助數學建模來更直觀和更立體地展示自己。20多年的本土適應和自身完善使絕大多數本科院校和許多專科學校都開設了各種形式的數學建模課程、講座和競賽。方程在數學建模中的思想和應用對于數學課堂效果本身和培養學生的動手和操作能力均有重要意義:一方面,它利于激勵學生學習方程的積極性,培養學生建立數學模型的創造性和行動性;另一方面,它有效推動數學教學體系、教學內容和方法的改革,為培養學生利用數學方法分析、解決實際問題的能力開辟了一條有效的途徑。
數學建模論文模板 篇4
摘要:運籌學與數學建模2門課程聯系密切,在運籌學教學中,適當融入數學建模思想,能大幅度提高學生應用數學解決實際問題的能力.從運籌學教學中教學大綱的改革、教學環節的設計等方面進行了探索與實踐.教學實踐表明,將數學建模思想融入到運籌學教學中能提高課堂教學的效果,鍛煉學生的動手實踐能力.
關鍵詞:數學建模;運籌學;教學實踐
運籌學是信息與計算科學專業的一門重要的專業課,它是一門應用科學,廣泛地應用現有的科學技術知識和數學方法,解決實際中提出的專門問題,為決策者選擇最優決策提供定量依據.在解決問題的過程中,為制定決策提供科學依據是運籌學應用的核心,而針對實際問題建立正確的數學模型則是運籌學方法的精髓.數學建模是利用數學工具解決實際問題的重要手段,從一定意義上來講,數學建模屬于運籌學的一部分,模型的正確建立是運籌學研究中關鍵的一步.所以說,二者有著密切聯系,在運籌學教學中應適當地融入數學建模思想[1],能夠培養學生理論應用于實踐的能力,提高教學效果.
1運籌學教學中融入數學建模思想的必要性
數學建模和運籌學2個課程聯系密切,也各有特點,但在實際教學中卻不能很好地結合起來[2].運籌學教學中只注重講授理論和解題方法,而忽略了與實際問題相聯系,導致了學生在遇到實際問題時,不知從何處入手;在數學建模課程中則強調建模思想和方法的運用,注重的是建立起什么樣的模型,而對模型的求解講授得過少,導致很多時候學生在處理實際問題時雖然能夠建立模型,但卻不知如何求解.所以,在運籌學教學中要注意突出數學建模的思想,增強學生的數學應用意識[3].在運籌學教學過程中貫穿數學建模思想,使得教學過程不再是著力于單純的知識灌輸,而是注重培養學生應用所學知識解決實際問題的能力,結合教學特點,充分發揮學生的動手能力,積極調動學生的學習興趣[4],使傳統經典教學理論與最優化教學理論統一服務于教學實踐,這是教學改革的方向.尤其是現代教育技術發達,使得課堂的容量增大,課堂上借助多媒體可以減少理論方法講解的時間,適當運用規劃軟件可以大幅度降低運算所耗費的時間,這樣節省下來的時間就可以更多地用來培養學生應用理論知識解決實際問題的的能力.因此,要在運籌學課程的教學中對運籌學教學內容進行精心處理,不能只偏重理論和解題方法的講解,要積極地滲透數學建模的思想,從而在課堂上著重引導學生應用理論方法去解決實際問題,培養學生的建模意識.運籌學中數學規劃、網絡、圖論和排隊論等內容是數學建模一部分思想方法的匯集,在運籌學教學中滲透數學建模的思想,既能讓學生對運籌學中枯燥的理論和方法有了深刻的理解,又能對后續數學建模課程的學習起到促進作用.
2數學建模思想融入運籌學的教學改革
國內外大量教師學者都通過實踐對運籌學教學中數學建模思想的滲透進行了深入研究.如王定江[5]根據教學實踐,闡述了運籌學教學中如何突出數學建模教育的思想;楊冬英[6]根據運籌學課程的特點,結合教學實踐經驗,提出了實行運籌學教學改革的一些建議和措施,指出數學建模活動是培養學生應用數學能力的重要手段,在運籌學教學中融入數學建模思想可以培養學生的創新能力和綜合應用能力.山東大學數學系在打造運籌學國家精品課時將二者有機地結合起來,收到了很好的教學效果[7].2.1教學大綱的改革.在運籌學大綱的修訂中,著重從2個方面來突出建模思想的融入.2.1.1設置課后上機實驗.運籌學的學習,一方面讓學生運用運籌學的理論和方法對實際問題進行抽象概括,找出其內在規律,構造出相應的數學模型;另一方面能通過邏輯推理或分析和計算,求解所建立起來的數學模型.而運籌學研究的優化算法能用來通過手工計算解決問題的規模是很小的,絕大多數根據實際問題建立起來的數學模型,約束和變量都很多,在求解過程中,如果不借助計算機,很難求得問題的解[8].計算機能為數學模型的求解提供可靠的平臺,因此,設置課后上機訓練.在上機內容的安排上,特別注意將純粹的數學問題盡可能地轉換成學生感興趣的實際問題,通過搜集大量優化模型的實例,選取與大綱內容相關的實際問題,供學生在課后上機實驗中進行訓練.學生在動手實踐中既加強了對優化算法的理解,也鍛煉了應用建模思想解決問題的能力.2.1.2改革考核方法.在成績的考核上,傳統的大綱中,從平時、期中和期末3個方面來考核,比重分別是20%,20%和60%.而期中和期末都是以試題的形式對學生進行考查,考查的內容以學生對基礎知識、基本理論和方法的掌握程度為主,而對學生的知識應用方面考核的強度不大.因此,在考核方式上進行了調整,成績考核分為2個部分——平時和期末,各占50%.在平時考核中,除了考查學生出勤、作業、課下上機實踐的完成情況外,還特別選取一些往屆數學建模競賽中典型的優化模型試題給學生作訓練,分組實踐,完成課程論文,而且加大對學生創新和動手實踐方面的考核力度,激發學生應用數學知識解決實際問題的熱情.2.2教學環節的'改革.2.2.1將數學建模的優化思想滲透到運籌學相關環節的教學中.把數學建模的優化思想滲透到運籌學相關環節的教學中,在實際教學中,盡量多地采用案例教學,從實際問題出發,精選具有充分的代表性且源于實際問題的建模案例.在講解線性規劃問題解法時,以奶制品的生產與銷售[9]為例,通過分析問題,選取適當的方法建立最優的數學模型,然后分析線性規劃的特點,引入求解線性規劃問題行之有效的方法——單純形法.進而再以此為例,加入整數約束,引出整數規劃問題,討論其與線性規劃求解的區別,加深學生對知識的理解.通過逐步地掌握用運籌學算法去求解模型,讓學生看到完整的過程,而不是僅僅了解枯燥的算法流程和優化理論,以此激發學生的學習興趣.2.2.2將動式教學法引入課堂教學.要摒棄一堂灌的講授式教學,將動式教學法引入課堂教學,適當安排教學計劃,預留出一些學時,將課堂時間進行劃分.針對運籌學模型的特點,選取學生易于接受的模型,課前給學生分配任務,課上給學生討論分析的時間,發揮課堂上學生的主體作用,讓學生積極主動地參與教學中來.在學習運輸問題[10]時,課前先布置任務,給幾個實例,讓學生查閱資料,嘗試建立相應的數學模型并進行求解.課上討論和分析這些實例的特點,引入運輸問題,進而讓學生討論問題求解所采用的方法,分析優缺點,結合運輸表的特點引出表上作業法,并將其與單純形法對比,發現方法的實質.這樣通過不斷的啟發,充分調動學生的學習積極性,使學生不再被動地接收知識,達到培養學生分析問題和解決實際問題能力的目的.
3運籌學教學中融入數學建模思想的教學改革成效
信息與計算科學專業有2個方向,一個是軟件與科學計算,一個是統計與優化,這2個方向都開設運籌學,在課程內容上都會著重學習優化算法,針對實際問題建立相應模型,設計相應算法.畢業生在就業面試和考核中,用人單位往往會提出一些實際問題,讓學生分析,給出優化方案,以此考核學生解決實際問題的能力.以往很多學生對此手足無措,如今遇到類似問題,學生能參考平時訓練的思路,能夠動手實踐,不再無從下手.因此,通過將數學建模與運籌學2門課程融合訓練,學生的綜合素質有了顯著提高.從參加每年全國大學生數學建模競賽和東三省數學建模競賽的獲獎情況來看,成果顯著.20xx—20xx年,在“高教社杯”全國大學生數學建模競賽中共獲黑龍江賽區的一等獎6組,二等獎12組,三等獎14組;東北三省數學建模聯賽中共獲得黑龍江賽區的一等獎2組,二等獎5組,三等獎4組.通過教學實踐,讓學生在解決實際問題中不僅提高了動手實踐的能力,而且培養了其綜合素質.
4結束語
運籌學教學改革實踐說明,運籌學教學以數學建模的實際案例為背景,建模與優化算法二者并重,既可以培養學生運用所學知識解決實際問題的能力,又保證了學生具備扎實的理論基礎,符合新時期人才培養的要求.運籌學教學與數學建模相結合的教學改革不但豐富了運籌學課程的教學內容,改變了課程的教學形式,也提高了學生的學習興趣,取得了顯著的教學效果.
數學建模論文模板 篇5
培養應用型人才是我國高等教育從精英教育向大眾教育發展的必然產物,也是知識經濟飛速發展和市場對人才多元化需求的必然要求。隨著科學技術的不斷發展,各學科各領域對實際問題的研究日益精確化與定量化,數學在科學研究與工程技術中的作用不斷增強,其應用的范圍幾乎覆蓋了所有學科分支,滲透到社會生活中的各個領域。前蘇聯數學家亞歷山大洛夫曾說過,“數學在其它科學中,在技術中,在全部生活實踐中都有廣泛的應用”。1993年,王梓坤院士發表的著名報告《今日數學及其應用》中也深刻指出:“現代世界國家間的競爭本質上是高技術的競爭,而高技術本質上是一種數學技術。”數學是一門技術已經成為人們的共識。數學技術離不開數學建模,數學建模是把數學作為工具,并應用它解決實際問題的一種活動,它是一個跨學科、跨專業、綜合性和應用性都非常強的過程,是數學應用的必由之路,是聯系數學與實際問題的橋梁,是數學在各個領域廣泛應用的媒介。因此,數學建模的過程是一個全而培養學生綜合素質、提高學生各種能力的過程,數學建模是培養生產一線應用型人才的一條重要途徑。
一、對應用型人才的認識
應用型人才是將專業知識和專業技能應用于社會實踐的專門人才是熟練掌握社會生產或社會活動一線的基礎知識和基本技能,主要從事一線生產的技術或專門人才社會對應用型人才的基本要求是具有基礎扎實,知識而寬,應用能力強,素質高,有較強的創新精神和團隊合作精神。他們的突出特點是既具有寬廣的知識而和深厚的基礎理論,又能將所學知識應用于本行業相關技術領域,適應產業發展對應用型人才市場需求的不斷變化,還有接受繼續教育的基礎條件和進一步獲取新知識的基本能力和擴展與職業相關的學科知識能力。
隨著高等教育的不斷擴招,高等教育的大眾化趨勢已越來越明顯,在這種背景下,傳統的“研究型”、“學術型”人才培養模式受到了嚴峻的挑戰,因此,一些發達國家率先提出了“發展應用型大學”,“培養應用型人才”的口號。德國早在20世紀70年代就成立了應用科技大學,其應用型人才的培養特色鮮明,深受歡迎。美國的工程教育,英國的技術學院,日本的短期大學都以培養應用型人才而著稱。近年來,我國高等院校對應用型人才的培養取得了一定的進展,但仍然存在認識上的不足,培養方案和措施仍有許多不盡如人意的地方,應用型人才的培養模式還有待于進一步探索。通過多年的實踐和探索,根據應用型人才的特點和社會日益數字化,對應用型人才的要求以及數學在各行各業中的廣泛應用、數學建模在應用型人才培養中具有不可替代的重要作用。
二、數學建模在應用型人才培養中的作用
數學建模就是用數學語言、方法近似地刻畫要解決的實際問題,對于已建立的模型采用推理、證明、數值計算等技術手段及相應的數學軟件求解,并利用所得的結果擬合實際問題。數學建模在應用型人才培養中的作用主要體現在以下幾個方面:
1.數學建模有利于培養學生的團隊合作精神
由于實際問題的復雜性,在數學建模過程中要涉及到大量的數據收集和對數據的分析與處理,一個完整的建模過程一般要經歷模型的假設、模型的建立與求解、算法的設計和計算機實現、對結果的分析與檢驗并將所得的結果模擬實際問題等幾個階段。這些過程只靠個人的力量在有限時間內是很難完成的,這就注定了數學建模是一個團隊的集體行為,需要有師生之間、學生之間以及學生與社會之間的交流與合作。因此數學建模有利于提高學生的團隊合作精神,而團隊合作精神又是社會對應用型人才的基本要求。
2.數學建模有利于培養學生的創新能力
數學建模所面臨的數據是雜亂無章的,這就要求學生對這些數據進行去粗取精,去偽存真,歸納、提煉、整理、加工和總結,還需要對一些已知條件進行符號化和量化,然后從中抽象出恰當的數學關系,從而組建一定的數學模型,再用所學的數學理論和方法去求解數學模型。在對實際問題中的數據進行加工和整理過程中,為使問題簡化,有些因素是可以忽略的,但有些因素不能忽略,究竟哪些因素可以忽略、哪些因素不能忽略并沒有一定的范式,這要根據建模者對實際問題的理解、研究問題的目的以及數學背景來完成這個過程,應該說這是一個創造性的過程。另外,數學模型是對實際問題的近似刻畫,為了使建立的數學模型盡可能完美地表達實際問題,又使模型易于求解,需要對模型進行不斷的改進和不斷的完善,這就要求學生不斷對問題進行深入的了解,深入到知識的更深層面,這樣又會產生新的疑問,這個過程多次循環們復,學生的創新能力將不斷得到加強。創新能力也是社會對應用型人才的基本要求。
3.數學建模有利于全方位提供學生的綜合素質和能力
一個完整的數學建模過程是綜合運用知識和能力,解決實際問題的過程。這不僅需要學生有較好的數學基礎和嚴密的邏輯推理能力,還要求學生對問題的實際背景有一定的了解,要求學生有廣博的知識和深厚的專業基礎,并能對這些知識進行融會貫通。數學建模面臨的數據}I-.}I是龐大而復雜的,對數據的處理過程是一個分析與綜合,抽象與概括,比較與類比,系統化與具體化的過程。在這個過程中,學生的應變能力和多角度分析,多方位思考能力不斷得到提高,綜合素質不斷得到加強。綜合素質和能力是應用型人才的`基本特征和社會對應用型人才的起碼要求。
4.數學建模有利于培養學生的動手操作能力和實踐能力
從實際問題中抽象出來的數學模型一般很復雜,因此模型的求解一般很困難,甚至無法求出模型的解析解,即使能求出模型的解析解,由于其復雜性而無多大的應用價值。所以數學模型的求解通常需要編寫算法,運用某些數學軟件利用計算機求其數值解,這就要求學生有較強的數學軟件應用能力和對計算機的實際操作能力。在操作的過程中,學生的動手能力和實踐能力自然而然得到提高。另外在數學建模中,需要進行調查研究,需要對有關的數據進行廣泛的采集和補充,這就是應用型人才培養中所強調的實踐性。
5.數學建模體現了知識的應用性
數學建模本身就是綜合運用知識,解決實際問題的過程。數學建模中的很多典型案例,如“最優捕魚策略”,“投資的收入和風險”,“車燈線光源的優化設計”等就較好地突現了知識的應用性。數學建模是數學應用的必由之路,是聯系數學與實際問題的橋梁。一方面數學建模需要用數學語言、方法近似地刻畫要解決的實際問題,另一方面數學建模需要利用所得的結果擬合實際問題,所有這些都與應用型人才的突出特點和社會對應用型人才的要求是一致的。
6.數學建模有利于培養學生的自學能力和語言表達能力
數學建模需要學生親自參與問題的研究與探索,數據的收集和補充需要學生的積極參與,數據的處理和模型的建立需要學生的主動參與,模型的求解需要學生獨立完成。數學建模一般需要綜合運用多方面的知識,需要了解相關問題的背景材料,需要對相關的數據進行合理的取舍和有效的篩選,有些知識和相關的資料需要學生自己去查詢,所有這些都為學生的自主學習提供了一個良好的“下臺。另外,數學建模需要用自己的語言描述問題的解決過程,需要廣泛的交流與合作,還需要進行論文的寫作等等,這些都對學生語言表達能力的提高具有重要的作用。應用型人才的一個突出特點就是具有接受繼續教育的基礎條件和進一步獲取新知識的基本能力和擴展與職業相關的學科知識能力,而自學能力和語言表達能力為進一步獲取新知識等能力提供了良好的基礎。
應該說,數學建模的作用是多方面的,通過數學建模的訓練,學生獲得了參與研究探索的體驗,培養了收集、分析和利用信息的能力,學會了分享與合作,鍛煉了學生的意志力、洞察力、想象力、自學能力、語言的翻譯和表達能力以及綜合應用專業知識解決實際問題的能力與分析問題、解決問題的能力,所有這一切都是應用型人才培養所要達到的目標,也是與應用型人才培養模式的四個基本點是一致的。因此數學建模能將應用型人才的突出特征和社會對應用型人才的要求體現得淋漓盡致,它在應用型人才的培養中具有不可替代的重要作用。
三、關于數學建模的幾點建議與思考
1.馬克思有一句名言,“一門科學只有成功地應用了數學時,才算真正達到了完善的地步”。不論是自然科學還是社會科學都需要數學,都蘊含數學。一門科學要成功地應用數學,必須對這門學科中的問題建立數學模型。因此,建議高等院校的各個專業都要不同程度地開設數學建模課程,并根據專業的不同要求選擇合適的數學建模內容,真正做到“人人學有用的數學,人人做有用的數學,人人用有用的數學”。
2.數學建模課程應增加實訓內容,數學建模的學習應以實訓內容為主。教師應根據學生的具體情況,女排布置具有綜合性、開放性、靈活性和趣味性的實訓題目,讓學生自己進行調查研究,自己收集數據、分析數據和處理數據,模型的建立和求解要以學生為主體,并以論文的形式提交給教師,教師提供實時指導和幫助,對建模的結果進行有的放矢的點評,并將實訓內容作為學生期末考評的主要內容和重要依據。
3.舉辦多種形式的數學建模競賽,豐富數學建模的教學內容和教學方式,引進案例教學和專題講座,通過對典型案例的深入剖析,激發學生的學習興趣和積極性,培養學生的數學建模思想和堅忍不拔的毅力,聘請專家對一些典型問題進行專題講座。
數學建模論文模板 篇6
摘要:所謂數學建模,即借助數學模型,處理所遇到的具體問題的課程,在本文中,分別就教學、模型建立以及相應的信息檢索來進行研究,通過將這三面進行相應的糅合從而證明可以將計算機技術引入到相應的建模實踐中,從而有效促進數學建模的發展,使得教學質量得以有效提升。
關鍵詞:數學建模;計算機應用;融合
1.數學建模與計算機技術概述
目前計算機在生活中應用極為廣泛,借助于計算機能夠使得先前較為復雜繁瑣的問題得以簡化,有效提升計算速率。就數學建模來看,計算機在此方面的作用不言而喻。對于此,人們普遍認為,能夠借助于計算機將任何一個數學問題進行簡化處理。而對于生活中所遇到的任意一個實際問題,均能夠借助于相應的數學模型來進行表示,在建模過程中,也可以根據實際情況來做出一些相應的簡化處理,從而將其歸屬于完全的數學問題,最終建立起能夠用變量所描述的數學模型。之后,借助于相應的計算機、軟件以及編程方面的知識,來對此模型進行相應的求解計算。
2.計算機技術在數學建模中的應用
計算機在數學建模中的應用面非常的廣泛,限于筆者的水平,本文主要就兩個方面展開討論:第一,確定建模思想;第二,對數學模型進行求解計算。
2.1計算機技術輔助確立數學建模思想
對于數學建模,其最為重要的目的便是為了能夠提升學生對于數學知識的使用性,借助于相關的數學思想來對實際問題進行解決,同時,還能夠促進學生數學思想的發展、建模能力發展以及相關數學知識的完善,最終提升其對于數學知識的使用能力。培養數學思維重在將學生所思所想以最快最佳的方式展示出來,計算機技術在數學建模中的應用使得這個設想變得可能。因為數學模型的計算和設計工作量大,傳統的計算辦法不能迅速解決某個問題,但是在建模的輔助下一切問題迎刃而解。
2.2計算機技術促進數學建模結果求解
對于數學建模,其屬于一項系統性工程,整個過程工作量較多。在前期,對于模型的構想與建立需要不斷完善,此后,對于模型的求解也是極為困難的,這主要因為其涉及到非常多的數據處理與計算。在計算數學模型時,不僅速度快,準確度也很高,如表1給出了手動解30維線性方程組和計算機解30維方程組的時間,手動所用時間是計算所用時間的1200倍。
同時,對于一些借助紙和筆而無法實現的計算,通過計算機能夠較快實現,其中主要涉及到相關的編程、繪圖等操作。
3.數學建模與計算機應用融合的優勢
計算機在數學建模領域擁有極為重要的優勢與作用。如計算機的計算速度快、可以輔助作圖,甚至可以輔助做立體圖形。同時,借助于計算機也能夠使得模型得以進一步完善,也就是說兩者彼此之間相輔相成。
3.1計算機使數學建模多樣化
數學建模的出現,主要是為了便于處理同工程或者科研相關的問題的,和試題類有著較大區別。其所處理問題具有一定的特性,即圍繞日常具體問題展開,科研背景突出,需要的知識結構復雜,涉及的范圍龐大,因素多且難,非常規特征明顯,缺乏有效的處理措施,涉及數據多,要選擇的算法亦十分繁瑣,得出的結果存在波動性,要有限定的前提,通常僅可獲取近似解。而計算機的出現,則在一定程度上使這種情況得到緩解。是數學建模多樣化,令設計領域更加寬泛,如數學建模可以模范人類大腦的記憶功能。
3.2計算機使數學模型求解更為簡單
計算機在數學建模中的應用使得數學模型求解更為簡單體現在以下幾個方面:
(1)計算量問題得到解決。以前計算量大是制約數學建模發展的主要因素之一,現在在計算機的幫助下,只要模型完善,計算量大已經不是問題。如德國的神威計算機,計算速度達到了12.5億億次/秒。
(2)可視化功能使抽象問題具體化。現代計算機都有強大的作圖功能,會使數學模型中的一些抽象概念、問題解決過程都變得可視化。圖表的.制作更是非常簡單。
3.3計算機利用數學建模尋求最優解成為可能
在3.1節中已經提到,在計算機沒有應用到數學建模中之前,很多數學模型的解只是近似解,連精確解都談不上,更不用說是最優解。其主要原因是模型本身的計算量太大,筆和紙這兩樣工具更不能在短時間內攻下數學模型計算這塊,此外筆和紙根本不可能完成某些圖表的制作也是原因之一。計算機有效的解決了這兩個問題,這就會使得數學模型得到精確解。在求得精確解的基礎之上還可以進一步尋求最優解,因為數學模型的解往往是多解的,不是唯一解。
4.總結
數學模型,其主要是通過使用相應的數學語言來對實際問題進行相應的表示,也就是說,模型的實質主要是為了有效解決生活中的實際問題。通過借助于計算機能夠使得復雜問題得以有效簡化,對于促進社會發展起到了重要作用。因而,在未來發展中數學建模也將會像計算機一樣得到廣泛重視。目前,對于教育界而言,其主要問題在于理論與實踐相脫節。我們的教學越來越形式、抽象。在教材中,充斥著大量的定理、理論證明等等,但是并沒有將其與實際生活相結合,而對于借助相應的數學教學來實現腦力發展的系統化更是微乎其微。將計算機與數學建模相結合,這是未來數學領域發展所必須經歷的一個過程。
參考文獻:
[1]李大潛.數學建模與素質教育[J].中國大學教育,20xx (10):41-43.
[2]姜啟源.數學實驗與數學建模[J].數學的實踐與認識,20xx,31(5):613-617.
數學建模論文模板 篇7
一、數學建模思想與大學數學類課程教學的融合切入點
1、從應用數學出發數學建模主要是通過運用數學知識解決生活中遇到實際問題的全過程。要讓數學建模思想與大學數學教學課程進行有效的融合,最佳切入點就是課堂上把用數學解決生活中的實際問題與教學內容相融合,以應用數學為導向,訓練學生綜合運用數學知識去刻畫實際問題、提煉數學模型、處理實際數據、分析解決實際問題的能力,培養學生運用數學原理解決生活問題的興趣和愛好。授課過程中,要改變以往單純地進行課堂灌輸的行為,多引入應用數學的內容,通過師生互動、課堂討論、小課題研究實踐等多種形式靈活多樣的教學方法,培養引導學生樹立應用數學建模解決實際問題的思想。
2、從數學實驗做起要加強獨立學院學生進行數學實驗的行為,筆者認為數學建模與數學實驗有著密切的聯系,兩者都是從解決實際問題出發,當前的大學生數學實驗基本上是應用數學軟件、數值計算、建立模型、過程演算和圖形顯示等一系列過程,因此進行數學實驗的全過程就是數學建模思想的啟發過程。但是我國的教育資源和教學方針限制了獨立學院學生的學習環境和學習資源,能夠進行數學實驗的條件還是有限的。即使個別有實驗能力的學校,也未能進行充分利用,數學實驗課的內容隨意性較大,有些院校將其降格為軟件學習課程或初級算法課。根據調研,目前大部分獨立學院未開設此類課程,這是數學建模思想與大學數學教學課程融合的一大損失,不利于學生創新思維能力的提高。各校應當積極創造條件,把數學實驗課設為大學數學的必修課,爭取設立數學建模選修課,并積極探索、逐步實現把數學建模的思想和方法融入大學數學的主干課程。
3、從計算機應用切入數學是為理、工、經、管、農、醫、文等眾多學科服務的基礎工具,它在不同的領域因為應用程度不同而導致被重視的程度不同。但在當今的信息化時代,計算機的廣泛應用和計算技術的飛速發展,使科學計算和數值模擬已成為絕大多數學科的必要工具和常用手段。數學在不同學科領域有了共同的主題,即應用數學建模,通過計算機對各自領域的科學研究、生活問題等進行模擬分析,這成為數學建模思想在跨學科領域交流和傳播的一個重要途徑。每個領域的教學可以計算機應用為切入點,讓數學建模思想與數學授課無縫結合,在提高學生掌握知識能力、挖掘培養創新思維的同時,增加了大學數學課程內容的豐富性、實用性,促進教學手段變革和創新。因此,大學應以適應現代信息技術發展的形勢和學生將來的需求為契機,加快改進大學數學課程教學方式,把數學建模的思想和方法以及現代計算技術和計算工具盡快融入大學數學的主干課程當中。
二、探索適合獨立學院學生的數學建模教學內容
大學數學課程是大學工科各專業培養計劃中重要的公共基礎理論課,其目的在于培養工程技術人才所必備的數學素質,為培養我國現代化建設需要的高素質人才服務。數學建模課程的必修化,要從能夠擴充學生的知識結構,培養學生的創造性思維能力、抽象概括能力、邏輯推理能力、自學能力、分析問題和解決問題能力的角度出發,建立適合獨立學院學生的數學建模教學內容。日前獨立學院開展數學建模活動涉及內容較淺,缺少相應的數學建模和數學實驗方而的教材。筆者近幾年通過承擔此類課題的研究,認為應該加強以下內容的建設:
1、加強對計算機語言和軟件的學習,對數學原理進行剖解分析,多分析運行數學解決的社會生活問題,多設定課程設計工作。學生通過對科學問題、生活問題的深入研究,結合自己的課程設計,建立數學建模,讓數學建模思想滲透到整個學習過程中。對非數學領域的問題,引導學生通過計算機軟件的學習,建模解決專業中遇到的實際問題。比如通用的CAD等基于數學理論,解決不同領域的數學建模問題,以便將來適應社會的需要
。2、開設選修課拓展知識領域,讓學生可以通過選修數學建模、運籌學、開設數學實驗(介紹Matlab、Maple等計算軟件課程),增加建立和解答數學模型的方法和技巧。比如以前用的“文曲星”電子詞典里的貸款計算,就是一個典型的運用數學模型方便百姓自己計算的應用。這個模型單靠數學和經濟學單方面的知識是不夠的,必須把數學與經濟學聯系在一起,才能有效解決生活中的問題。
3、積極組織學生開展或是參加數學建模大賽比賽是各個選手充分發揮水平、展示自己智慧的途徑,也是數學建模思想傳播的最好手段。比賽可以讓各個選手發現自己的不足,尋找自身數學建模出發點的缺陷,通過交流,還可以拓展學生思維。因此,有必要積極組織學生參入初等數學知識可以解決的數學模型、線性規劃模型、指派問題模型、存儲問題模型、圖論應用題等方面的模擬競賽,通過參賽積累大量數學建模知識,促進數學建模在教學中扮演更重要的`角色。教師應該對歷年的全國大學生數學建模競賽真題進行認真的解讀分析,通過對有意義的題目,如20xx年的《葡萄酒的評價》、《太陽能小屋的設計》,20xx年的《交巡警服務平臺的設置與調度車燈線光源的計算》、20xx年的《眼科病床的合理安排》等,與生活相關的例子進行講解分析,提高學生對數學建模的興趣和對模型應用的直觀的認識,實現學校應用型人才的培養。
4、加快教育方式的轉變高等教育設立數學這門學科就是為了應用服務,內容應重點放在基本概念、定理、公式等在生活中的應用上。而傳統的高等數學,除了推導就是證明,因此,要對傳統內容進行優化組合,根據教學特點和學生情況推陳出新,要注重數學思想的滲透和數學方法的介紹,對高等數學精髓的求導、微分方法、積分方法等的授課要重點放在解決實際生活的應用上。要結合一些社會實踐問題與函數建立的關系,分析確定變量、參數,加強有關函數關系式建立的日常訓練。培養學生對一些問題的邏輯分析、抽象、簡化并用數學語言表達的能力,逐步將學生帶入遇到問題就能自然地去轉化成數學模型進行處理的境界,并能將數學結論又能很好反向轉化成實際應用。
三、注意的問題
21世紀我國進入了大眾教育時期,高校招生人數劇增,學生水平差距較大,需要學校瞄準正確的培養方向。通過對美國教學改革的研究,筆者認為我國的數學建模思想與大學數學教學課程融合必須盡快在大學中廣泛推進,但要注意一些問題:第一,數學教學改革一定要基于學生的現實水平,數學建模思想融入要與時俱進。第二,教學目標要正確定位,融合過程一定要與教學研究相結合,要在加強交流的基礎上不斷改進。第三,大學生數學建模競賽的舉辦和參入,要給予正確的理解和引導,形成良性循環。要根據個人興趣愛好,注重個性,不應面面強求。第四,傳統數學思想與現在數學建模思想必須互補,必修與選修課程的作用與角色要分清。數學主干課程的教學水平是大學教學質量的關鍵指標之一,具備數學建模思想是理工類大學生能否成為創新人才的重要條件之一。兩者的融合必將促進我國教學水平和質量的提高,為社會輸送更多的實用型、創新型人才。
數學建模論文模板 篇8
【摘要】:本文主要針對依據市場隨機信息求解報攤每天的最優訂購量問題給出了2個數學模型。模型A主要采用增量分析法,通過對每多訂購一份報紙所需的成本或損失與不多訂購一份報紙所需的成本或損失進行對比來確定最優訂購量。模型B主要采用概率分布方法,列出報攤每天的平均收入即目標函數,將需求量視為連續隨機變量求解出使目標函數取得最大值時的最優解。問題二、三是在問題一的基礎上求解,適當改變問題一中的成本數值便可求出問題三中的最優解。對模型A和模型B的求解方法均比較簡單,主要通過查閱標準正態分布表并加上一些簡單的數學計算求解出最佳訂購量。
關鍵詞:最優 增量分析 概率分布 查表
一、 問題重述
一個很受歡迎的報攤想決定一下它一天應購入多少份當地的報紙,該報紙的需求量D~N(450, 1002),這種報紙的購入價為每份35 美分,而售出價為每份50美分,這個報攤從過剩的的報紙上得不到任何價值,因而接受其100%的損失。試求:
(1):每天應購入多少份報紙?
(2):這個報攤出現斷貨的概率為多少?
(3):該報攤的管理人員考慮到如果斷貨情況將會影響報攤的信譽,顧客通常來到報攤后還會想要買其他物品,而經常性的斷貨會令顧客跑到其他的報攤去,該管理人員認為每次斷貨的信譽成本為50美分,試確定此時訂購量以多少為宜?斷貨出現的概率為多少?
二、模型的假設
假設該報攤報紙的需求量完全服從D~N(450, 1002),已經包含所有主客觀因素,對問題(1)不考慮由于缺貨導致的信譽損失。問題(3)中考慮信譽損失時只考慮由于斷貨造成的信譽損失而不考慮由于老板有事外出歇業等客觀因素造成的信譽損失。
三、 符號說明
四、模型的建立與求解
問題一的求解:
模型A:市場需求為隨機的庫存模型,采用增量法來確定最優訂購量。定義如下兩種成本:
(1):高估市場需求量導致的成本C0,它表示每多訂一份報紙并發現它不能賣出時的損失;
(2):低估市場需求導致的成本Cu,它表示每少訂一份報紙并發現它能賣出去時造成的機會損失,即把本來可以賺到的錢而沒有賺到看成是一種損失。
本題中易確定C0=a=35美分;Cu=b-a=15美分
由于D~N(450, 1002),E(D)=450.因而在一般情況下,零售商希望優先考慮平均的或期望值下的市場需求量做為訂購量,即Q=450份。
根據上訴增量分析原理中的成本比較,將Q=450(不多買一份)與Q=451(多訂購一份)相應的成本比較列表如下:
于是易得Q=451與Q=450時的期望損失EL分別為:
EL{Q=451}=C0P{D≤450}=350.5=17.5(美分) EL{Q=450}=CuP{D>450}=150.5=7.5(美分)
這表明,隨著Q的增加,相應的EL會增大,可以采用不斷減1的分析,比如Q=449,Q=448,…,直到找到一個Q*值,使得每多頂一份報紙的期望損失與不增加時的期望損失相等,即EL(Q*+1)=EL(Q*).
而
EL(Q+1)=C0P{D≤Q
*
*
},
EL(Q
*
)=C
*
u
P{D>Q
*
}
由于
P{D≤Q
}+P{D>Q}=1
*
所以C0P{D≤Q}=Cu1-P{D≤Q}
解得P{D≤Q*}=
CuCu+C0
將C0=35美分;Cu=15美分代入上式可得
P{D≤Q
*
}=0.3
2
Q*-450450-Q*再由D~N(450, 100),,可得Φ =0.3即Φ
100100450-Q100
*
=0.7查表得
=0.5,解得Q=400。
*
即該報攤依據其市場需求信息每天訂購400份當地的報紙為宜。
模型B:
采用概率分布方法建模。報紙每天的需求量D~N(450, 1002),即
-(
x-450)
2
P{D=x}=f(x)=
100
2
不考慮信譽損失的情況下,報攤每天收入
bX-aQ,
Y=g(X)=
(b-a)Q,
X≤Q,X>Q.
每天的平均收入(目標函數)
Q
∞
G(Q)=
∑[(bX
x=0
-aQ)f(X)+
∑(b-a)Qf(X)。
X=Q+1
通常X的'取值及Q都相當大,將X視作連續隨機變量便于計算。此時可設X的密度函數為P(X)。則
G(Q)=E(g(X))=
Q0
[(bX-aQ)]P(X)dX+
(b-a)QP(X)dX
Q
∞
從而
dG(Q)dQ
=(b-a)QP(Q)-
Q0
Q0
aP(X)dX-(b-a)QP(Q)+
∞
∞
Q
(b-a)P(X)dX
=-a令
dG(Q)dQ
**
P(X)dX+(b-)a
Q
(PX) dX
=0,得
*
Q0
*
Q
即
b-ab
∞Q
*
P(X)dX
=
P(X)dX
b-aa
P(X)dX=
b-ab
,又由D~N(450,
100
2
)得
Q-450=Φ
1000-450-Φ 100
將b=50美分,a=35美分帶入上式,求得Q*=400份 上述方程的解Q*就是Q的最優值。
問題二的求解:
當該報攤的訂購量Q=Q*=400時,其缺貨的概率
P(A)=P{D>Q
*
}=1-P{D≤Q}=70%
*
問題三的求解:
模型A根據題意,斷貨產生的信譽成本C=50美分。則由于斷貨產生的總成本C'=Cu+C=15美分+50美分=65美分。
則根據問題一的求解模型可得P(D≤Q* ')=
CuCu+C
'
=0.65
第4 / 5頁
即Q,查表得到
* '
Q-450100
* '
=0.4,解得Q* '=490份
此時P(A)=P{D>Q* '}=1-P{D≤Q* '}=0.35
即此時報攤的訂購量以490份為宜,斷貨出現的概率為35%。
模型B此時每少訂購一份報紙而發現它可以賣出去的損失為65美分,相當于售出價b'=100美分,而其他條件不變,則根據問題一得求解
b-ab
''
Q0
*'
P(X)dX=
b-ab
'
'
又由D~N(450,
100
2
)得
Q*'-4500-450*'
=Φ -Φ ,求解得Q=490份。
100100
此時P(A)=P{D>Q* '}=1-P{D≤Q* '}=0.35
即此時報攤的訂購量以490份為宜,斷貨出現的概率為35%。
五、模型的分析比較
這兩個模型都很好的解決了如何依據市場隨機需求信息求解單時段,訂單的最優訂購量問題,這種隨機市場需求的單時段庫存模型在現實生活中比比皆是。模型思路清晰且求解簡單,非常實用。
六、模型的改進與推廣
本題中由于當天賣不出去的報紙對管理員沒有絲毫用處所以沒有考慮庫存費用,若是其他的商品,如衣物、游泳衣等可以存放的物品,則還需要考慮其庫存費用。
參考文獻
【1】 熊德之 張志軍,《概率論與數理統計及其應用》第五章 北京:科學出版社,20xx
數學建模論文模板 篇9
摘要:在新課改以后,要求教師要在教學中重視學生的主體地位,提升學生學習興趣,培養他們的自主學習能力。本文從初中數學教學過程中數學建模入手,對如何將數學建模運用到學生解題過程中進行了分析。
關鍵詞:數學;建模;運用
數學建模是指利用數學模型的形式去解決實際中遇到的問題,換句話說,就是利用數學思維、數學方法解決各種數學問題。數學建模是在新課程改革后出現的新概念,經過一段時間的觀察我們可以發現,數學建模的方法能夠有效的提高學生的學習興趣,培養學生的數學能力。這種方式能夠將復雜的數學問題利用簡單的方式找到解決方案,是提高初中數學課堂效率及課堂質量的有效手段。初中數學是初中學習中的重要課程之一,也是培養學生數學思維的重要階段。可以說,初中數學的學習是學生學習數學的關鍵,對今后的學習起到極大的影響。因此,對于初中數學教師來說,不斷的完善教學手段,提高數學課堂質量是教學工作中的重中之重。而數學建模就是為了解決數學在生活中的實際問題,能夠讓學生感受到數學本身的魅力,培養他們的數學思維,提高數學學習能力,從而讓初中數學教學質量也得到大幅度的提升。初中數學與數學建模之間有著密不可分的作用,兩者相互聯系、相互促進,如何有效的.將數學建模運用在初中數學教學過程中,是每個初中數學教師都值得思考的問題。
一、培養學生數學建模意識
數學建模是為了解決數學中遇到的問題,數學本身特別是初中數學也是一門較貼近學生生活的學科。因此在數學學習中,教師要首先培養學生的數學學習意識,讓他們感受到數學與生活的緊密聯系,然后再引導學生用數學建模去解決遇到的問題。在這一過程中,數學教師要注意以下兩個問題:(一)在教學中一定要貼近學生的生活,課堂中所提出的問題也必須要符合生活實際,讓學生對所學內容感到親切。積極引導學生利用多種方式解決同一問題,尤其是利用數學建模的方式,以達到培養他們的數學思維以及想象能力的目的。(二)在學生進行數學建模的過程中要利用多鼓勵的方式調動他們對數學學習的積極性,讓他們在數學建模中獲得成就感,增加自信心,以此來提高學生在今后學習中使用數學建模方法的熱情。
二、提高學生想象力,用數學建模簡化問題
對于初中生來說,他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數學學習中,如果能將想象力與數學學習結合在一起,一定會得到意想不到的效果。教師可以根據初中生這一特點,提高他們的想象力,然后再引導他們利用數學建模解決問題,讓題目簡單化。具體來說,就是在面對復雜的數學問題時,教師可以先為學生創建教學情境,以這樣的方式提高學生的學習興趣,讓他們愿意主動去深入的研究遇到的題目。之后教師再去對他們進行引導,讓他們能夠理解題目中所提問題的含義,并能夠運用他們的想象能力思考解決問題的方式。最后再引導他們進行數學建模,解決問題。這樣的方式充分的利用了學生的想象能力,將所需解決的問題簡單化。
三、選擇合適的題目作為建模案例
在數學建模過程中,教師也要時刻牢記題目應該貼近學生的生活,符合實際,并且具有一定的趣味性,讓他們有興趣投入到數學建模的過程中去,然后再反復練習之后達到提高他們建模能力的目的。在選擇數學建模案例時教師主要應該注意以下兩點:首先,教師在選擇建模案例時要盡量選擇比較典型的問題,能夠讓學生在學習了該題目以后掌握這一類的解題方法,達到初中數學教學的目的。所以,這就需要教師對題目進行深入的分析,看是否在擁有趣味性、真實性的同時符合教學要求。其次,題目最好能夠擁有可變性,教師能夠通過對題目中已知條件的改變讓學生進行不同方面的建模練習,以此提高他們數學建模的能力。
四、引導學生主動進行數學建模
在教師經過反復的教學后,學生都已經擁有了基本的數學建模知識,了解了數學建模過程,并且能夠在解題過程中簡單的使用數學建模。此時,教師在教學中就可以引導學生利用數學建模解決數學題目了。引導學生用數學建模方法解決數學問題,就要在解題過程中多對學生進行這一方面的鼓勵,讓他們提高建模信心。在這一過程中,教師還可以嘗試讓學生之間利用合作的方式讓他們進行數學建模方法的探討,并在探討的過程中吸取他人的經驗,提高自己數學建模水平,同時這樣的方式能夠讓數學建模深入到每一個學生的心中,逐漸影響每一個學生的解題思路,讓他們能夠在解題過程中熟練運用建模的方式,提高解題能力。數學建模的方法能夠有效的改變過去的傳統教學思路,增加學生對數學的學習興趣,提高數學解題能力。這種教學方法對于初中數學教師來說,值得不斷的探討研究,并應用在教學中,以此提高數學課堂的教學效率和教學質量。
數學建模論文模板 篇10
【內容摘要】數學學科是初中教育體系中的關鍵課程,具有較強的邏輯思維特點,在新課改背景下對學生提出更高的學習要求,應轉變數學知識的認知程度,增強自身的邏輯思維能力。不少初中數學教師為實現這一教學目標,都在積極嘗試應用建模教學法,并取得不錯的效果。筆者通過對新課改下初中數學建模教學的重點探究和分析,制定一系列有效的教學策略。
【關鍵詞】新課改;初中數學;建模教學
近年來,我國教育新課改不斷發展與進步,對初中數學的教學要求也不斷提高,研究有效提高初中數學課堂教學的策略至關重要。初中數學教學知識具有抽象化的特點,內容較為枯燥,傳統的教師講解教學內容、學生接受知識灌輸的教學模式已不能滿足現下初中生學習初中數學的發展需要,必須改進與完善有效的教學策略。數學建模作為數學知識在生活實踐的具體應用,在新課改下初中數學課程教學應用建模教學已是大勢所趨,是改善教學質量的有效途徑。為此,在初中數學建模教學中,教師將人類生產生活中的實際案例轉變為數學問題,引領學生通過建立數學模型解決問題,激發他們的學習興趣,而且在建模過程中可培養學生的實踐能力和創新精神,教學效果顯著提升。
一、借助數學建模降低知識難度
在初中數學建模教學中,教師需以教學對象的心理特點、認知基礎和年齡特點為突破口,先從低起點的數學模型著手,并結合新課改的教學標準適當降低知識難度,讓學生易于掌握,促使他們整體參與學習。所以,初中數學教師在具體的建模教學中,選擇和使用的素材需貼近學生的實際生活,符合他們的認知能力和學習經驗。利用這些生活現象引領學生建立數學模型,對于他們來說較為熟悉更加易于接受與掌握,從而提升教學效率。在這里以“用一次函數解決問題”教學為例,由于學生已經學習過一次函數的概念、性質、圖像和特征等知識,知道一次函數的應用十分廣泛。教師可結合實際生活中的案例設計題目:某市出租車收費標準:不超過2千米計費為8元,2千米后按2.5元/千米計費,求:車費y(元)與路程x(千米)之間的函數表達式?這對于初中生來說在現實生活中較為熟悉,利用所學知識結合生活案例建立數學模型,并列出函數式:y=8+2.5(x-2)(x≥2)。不過需要注意的是,在現實生活中,兩個變量之間的數量關系并不完全遵循同一個標準,應根據自變量不同的取值范圍,分別列出不同的函數表達式。
二、初中數學建模突出趣味教學
初中的心理特征與年齡特點決定喜歡接受趣味教學,能夠親手參與實踐具有活動性質,且感性思維多于理性思維的教學模式。在初中數學建模教學中,教師需以學生喜聞樂見的方式講授知識,從他們的興趣愛好著手,提升課堂教學的趣味性,使其積極參與學習,促進學生建模能力的提高。而且初中數學教材中有不少有趣的現實情境素材,教師可以此為依托展開建模教學,提高學生的學習熱情和興趣,并增強他們解決問題的能力。比如,在學習“解一元一次方程”時,教師為突出建模教學的趣味性,可利用現實生活的行程問題展開教學,借助實例幫助學生學習知識,并練習和掌握一元一次方程的解法。教師可舉例:甲、乙兩地相距480千米,一輛公共汽車與一輛轎車分別從甲、乙兩地同時出發沿公路相向而行,其中公共汽車的平均時速為40千米,轎車的平均時速為80千米,那么它們出發后多少小時在途中相遇?學生閱讀完題目之后,利用學習用具進行建模,并模擬動畫演示,設兩車出發x小時之后相遇,根據題意列出算式:40x+80x=480,從而得出x=4。如此,不僅可讓課堂教學突出趣味性,還能夠培養學生的.建模能力。
三、初中數學建模注重思想方法
數學建模屬于一種思想方法,在新課改下初中數學課程教學中,教師不僅要幫助學生掌握數學理論知識,還應傳授他們學習方法,使其掌握學習數學知識的技巧。所以,建模教學應注重思想方法的傳授,讓學生真正掌握建模技巧、形成建模能力。因此,初中數學教師在兼顧知識教學的同時,應注重對學生能力的培養,增強他們的建模意識和能力,在學習過程中善于使用建模思想,并運用建模解決實際問題,真正實現學以致用。例如,教師可將二次函數與矩形相關知識結合在一起,設計題目:用長度為56米的鐵絲網圍成一個矩形養兔場,設矩形的一個邊長為x米,面積為y平方米,那么當x為何值時,y的值最大?圍成養兔場的最大面積是多少?然后,教師可指導學生利用建模思想解題,根據題意矩形的一邊為x米,則其鄰邊為(56÷2-x)米,即為(28-x)米,得出函數式y=x(28-x)=-(x-14)2+196,因-1<0,當y=196時,x=14時,所圍的矩形面積最大。這道題目主要考察學生利用二次函數解決矩形面積最值的問題,教師應引領他們主動使用建模思想來分析和解決問題,培養其動手能力掌握建模技巧。
四、總結
在初中數學教學活動中引入建模教學,是培養學生學習興趣和創造性思維能力的有效舉措,教師需充分發揮建模教學的優勢和作用,讓學生知道建模思想的重要性,進而發展他們的思維能力、學習能力和應用能力。
數學建模論文模板 篇11
大學數學具有高度抽象性和概括性等特點,知識本身難度大再加上學時少、內容多等教學現狀常常造成學生的學習積極性不高、知識掌握不夠透徹、遇到實際問題時束手無策,而數學建模思想能激發學生的學習興趣,培養學生應用數學的意識,提高其解決實際問題的能力。數學建模活動為學生構建了一個由數學知識通向實際問題的橋梁,是學生的數學知識和應用能力共同提高的最佳結合方式。因此在大學數學教育中應加強數學建模教育和活動,讓學生積極主動學習建模思想,認真體驗和感知建模過程,以此啟迪創新意識和創新思維,提高其素質和創新能力,實現向素質教育的轉化和深入。
一、數學建模的含義及特點
數學建模即抓住問題的本質,抽取影響研究對象的主因素,將其轉化為數學問題,利用數學思維、數學邏輯進行分析,借助于數學方法及相關工具進行計算,最后將所得的答案回歸實際問題,即模型的檢驗,這就是數學建模的全過程。一般來說",數學建模"包含五個階段。
1.準備階段
主要分析問題背景,已知條件,建模目的等問題。
2.假設階段
做出科學合理的假設,既能簡化問題,又能抓住問題的本質。
3.建立階段
從眾多影響研究對象的因素中適當地取舍,抽取主因素予以考慮,建立能刻畫實際問題本質的數學模型。
4.求解階段
對已建立的數學模型,運用數學方法、數學軟件及相關的工具進行求解。
5.驗證階段
用實際數據檢驗模型,如果偏差較大,就要分析假設中某些因素的合理性,修改模型,直至吻合或接近現實。如果建立的模型經得起實踐的檢驗,那么此模型就是符合實際規律的,能解決實際問題或有效預測未來的,這樣的建模就是成功的,得到的模型必被推廣應用。
二、加強數學建模教育的作用和意義
(一) 加強數學建模教育有助于激發學生學習數學的興趣,提高數學修養和素質
數學建模教育強調如何把實際問題轉化為數學問題,進而利用數學及其有關的工具解決這些問題, 因此在大學數學的教學活動中融入數學建模思想,鼓勵學生參與數學建模實踐活動,不但可以使學生學以致用,做到理論聯系實際,而且還會使他們感受到數學的生機與活力,激發求知的興趣和探索的欲望,變被動學習為主動參與其效率就會大為改善。數學修養和素質自然而然得以培養并提高。
(二)加強數學建模教育有助于提高學生的分析解決問題能力、綜合應用能力
數學建模問題來源于社會生活的眾多領域,在建模過程中,學生首先需要閱讀相關的文獻資料,然后應用數學思維、數學邏輯及相關知識對實際問題進行深入剖析研究并經過一系列復雜計算,得出反映實際問題的最佳數學模型及模型最優解。因此通過數學建模活動學生的視野將會得以拓寬,應用意識、解決復雜問題的能力也會得到增強和提高。
(三)加強數學建模教育有助于培養學生的創造性思維和創新能力
所謂創造力是指"對已積累的知識和經驗進行科學地加工和創造,產生新概念、新知識、新思想的能力,大體上由感知力、記憶力、思考力、想象力四種能力所構成" .現今教育界認為,創造力的培養是人才培養的關鍵,數學建模活動的各個環節無不充滿了創造性思維的挑戰。
很多不同的實際問題,其數學模型可以是相同或相似的,這就要求學生在建模時觸類旁通,挖掘不同事物間的本質,尋找其內在聯系。而對一個具體的建模問題,能否把握其本質轉化為數學問題,是完成建模過程的關鍵所在。同時建模題材有較大的靈活性,沒有統一的標準答案,因此數學建模過程是培養學生創造性思維,提高創新能力的過程 .
(四)加強數學建模教育有助于提高學生科技論文的撰寫能力
數學建模的結果是以論文形式呈現的,如何將建模思想、建立的模型、最優解及其關鍵環節的處理在論文中清晰地表述出來,對本科生來說是一個挑戰。經歷數學建模全過程的磨練,特別是數模論文的撰寫,學生的文字語言、數學表述能力及論文的撰寫能力無疑會得到前所未有的提高。
(五)加強數學建模教育有助于增強學生的團結合作精神并提高協調組織能力建模問題通常較復雜,涉及的知識面也很廣,因此數學建模實踐活動一般效仿正規競賽的規則,三人為一隊在三天內以論文形式完成建模題目。要較好地完成任務,離不開良好的組織與管理、分工與協作 .
三、開展數學建模教育及活動的具體途徑和有效方法
(一)開展數學建模課堂教學
即在課堂教學中,教師以具體的案例作為主要的教學內容,通過具體問題的建模,介紹建模的過程和思想方法及建模中要注意的問題。案例教學法的關鍵在于把握兩個重要環節:
案例的選取和課堂教學的組織。
教學案例一定要精心選取,才能達到預期的教學效果。其選取一般要遵循以下幾點。
1. 代表性:案例的選取要具有科學性,能拓寬學生的知識面,突出數學建模活動重在培養興趣提高能力等特點。
2. 原始性:來自媒體的信息,企事業單位的報告,現實生活和各學科中的問題等等,都是數學建模問題原始資料的重要來源。
3. 創新性:案例應注意選取在建模的某些環節上具有挑戰性,能激發學生的創造性思維,培養學生的創新精神和提高創造能力。
案例教學的課堂組織,一部分是教師講授,從實際問題出發,講清問題的背景、建模的要求和已掌握的信息,介紹如何通過合理的假設和簡化建立優化的數學模型。還要強調如何用求解結果去解釋實際現象即檢驗模型。另一部分是課堂討論,讓學生自由發言各抒己見并提出新的模型,簡介關鍵環節的處理。最后教師做出點評,提供一些改進的方向,讓學生自己課外獨立探索和鉆研,這樣既突出了教學重點,又給學生留下了進一步思考的空間,既避免了教師的"滿堂灌",也活躍了課堂氣氛,提高了學生的課堂學習興趣和積極性,使傳授知識變為學習知識、應用知識,真正地達到提高素質和培養能力的教學目的 .
(二)開展數模競賽的專題培訓指導工作
建立數學建模競賽指導團隊,分專題實行教師負責制。每位教師根據自己的'專長,負責講授某一方面的數學建模知識與技巧,并選取相應地建模案例進行剖析。如離散模型、連續模型、優化模型、微分方程模型、概率模型、統計回歸模型及數學軟件的使用等。學生根據自己的薄弱點,選擇適合的專題培訓班進行學習,以彌補自己的不足。這種針對性的數模教學,會極大地提高教學效率。
(三)建立數學建模網絡課程
以現代網絡技術為依托,建立數學建模課程網站,內容包括:課程介紹,課程大綱,教師教案,電子課件,教學實驗,教學錄像,網上答疑等;還可以增加一些有關欄目,如歷年國內外數模競賽介紹,校內競賽,專家點評,獲獎心得交流;同時提供數模學習資源下載如講義,背景材料,歷年國內外競賽題,優秀論文等。以此為學生提供良好的自主學習網絡平臺,實現課堂教學與網絡教學的有機結合,達到有效地提高學生數學建模綜合應用能力的目的。
(四)開展校內數學建模競賽活動
完全模擬全國大學生數模競賽的形式規則:定時公布賽題,三人一組,只能隊內討論,按時提交論文,之后指導教師、參賽同學集中討論,進一步完善。筆者負責數學建模競賽培訓近 20 年,多年的實踐證明,每進行一次這樣的訓練,學生在建模思路、建模水平、使用軟件能力、論文書寫方面就有大幅提高。多次訓練之后,學生的建模水平更是突飛猛進,效果甚佳。
如 20xx 年我指導的隊榮獲全國高教社杯大學生數學建模競賽的最高獎---高教社杯獎,這是此賽設置的唯一一個名額,也是當年從全國(包括香港)院校的約 1 萬多個本科參賽隊中脫穎而出的。又如 20xx 年我校 57 隊參加全國大學生數學建模競賽,43 隊獲獎,獲獎比例達 75%,創歷年之最。
(五)鼓勵學生積極參加全國大學生數學建模競賽、國際數學建模競賽
全國大學生數學建模競賽創辦于 1992 年,每年一屆,目前已成為全國高校規模最大的基礎性學科競賽, 國際大學生數學建模競賽是世界上影響范圍最大的高水平大學生學術賽事。參加數學建模大賽可以激勵學生學習數學的積極性,提高運用數學及相關工具分析問題解決問題的綜合能力,開拓知識面,培養創造精神及合作意識。
四、結束語
數學建模本身是一個創造性的思維過程,它是對數學知識的綜合應用,具有較強的創新性,而高校數學教學改革的目的之一是要著力培養學生的創造性思維,提高學生的創新能力。因此應將數學建模思想融入教學活動中,通過不斷的數學建模教育和實踐培養學生的創新能力和應用能力從而提高學生的基本素質以適應社會發展的要求。
數學建模論文模板 篇12
摘要:為了培養小學生良好的數學學習興趣,激發他們的數學潛能,教師需要采取必要的措施注重數學建模思想的有效培養,促進學生的全面發展。在制定相關培養策略的過程中,教師應充分考慮小學生的性格特點,提高數學建模思想培養的有效性。基于此,文章將從不同的方面對小學生數學建模思想的培養策略進行初步的探討。
關鍵詞:小學生;數學建模思想;培養策略;性格特點
一、加強學生動手實踐能力培養,激發學生的建模興趣
作為小學數學教學中的重要組成部分,數學建模思想的滲透及相關教學活動的順利開展,有利于提高復雜數學問題的處理效率,保持數學課堂教學的高效性。要實現這樣的發展目標,增強小學生數學建模思想的實際培養效果,需要加強對學生動手實踐能力的培養,激發學生的更高興趣。建模的過程涉及問題表述、求解、必要解釋及有效驗證,在這四個環節中,可能會存在一定的問題,影響著數學教學計劃的實施。因此,教師需要利用學生動手實踐能力的作用,實現數學建模思想的有效培養,促使小學生能夠在數學建模過程中享受到更多的快樂。比如,在講解“認識角”知識的過程中,某些學生認為邊越長角度也越大。為了使學生能夠對其中的知識點有更加正確而全面的認識,教師可以通過在黑板上設置一些能夠活動的三角板,讓學生親自動手操作,以此得出角與邊長的正確關系,為后續教學計劃的實施打下堅實的基礎。通過這種教學方法的合理運用,可以激發出學生們在數學建模學習中的更高興趣,豐富他們的想象力,從而使他們對數學建模思想有一定的了解,在未來學習過程中能夠保持良好的`數學建模能力。
二、構建良好的數學模型,加深學生對各知識點的理解
通過對小學階段各種數學實踐教學活動實際概況的深入分析,可知構建良好的數學模型有利于加深學生對各知識(福建省莆田市秀嶼區東嶠前江小學,福建莆田351164)點的深入理解,增強其主動參與數學建模教學活動的積極性。因此,為了使小學生數學建模思想培養能夠達到預期的效果,教師需要結合實際的教學內容,建立必要的數學參考模型,提升學生對數學建模思想的整體認知水平。比如,在講授“異分母分數加減法”這部分知識的過程中,可以設置“0.8千克+300克”“1.6千克-400克”等問題,向學生提問是否可以直接計算,并說出原因。當學生通過對問題的深入思考,總結出“單位不同不能直接計算”的結論后,繼續向學生提問小數計算中為什么每一位都要對齊,實現“計數單位統一后才能計算”這一數學模型的構建。在這樣的教學過程中,學生可以加深對知識點的理解,實現數學建模思想的有效培養。
三、注重數學思想的靈活運用,增強模型構建的可靠性
加強小學生數學建模思想的有效培養,需要在具體的教學活動開展中注重對數學思想的靈活運用,增強相關模型構建的可靠性,促使學生在長期的數學學習中能夠不斷提高自身的數學能力,運用各種數學知識處理實際問題。比如,在“角的度量”這部分內容講解的過程中,為了提高學生對角的分類及畫角相關知識點的深入理解,教師可以將所有的學生分為不同的小組,讓學生們通過小組討論的方式,對角的正確分類及如何畫角有一定的了解,并讓每個小組代表在講臺上演示畫角的過程。此時,教師可以通過對多媒體教學設備的合理運用,利用動態化的文字與圖片對其中的知識要點進行展示,確保學生們能夠在良好的教學模式中提升自身的認知水平,并在不斷的思考過程中逐漸形成良好的創造性思維,強化自身的創新意識。比如,在講解“圖形變換”中的軸對稱、旋轉知識點的過程中,教師應通過對學生的正確引導,運用三角板、圓柱等教學輔助工具,讓學生從不同的角度對各種軸對稱圖形、旋轉后得到的圖形進行深入思考,提高自身數學建模過程中的創新能力,從不同的角度深入理解圖像變換過程,對這部分內容有更多的了解。因此,教師應注重小學生數學建模思想培養中多方位思考方式的針對性培養,提高學生的創新能力,優化學生的思維方式,全面提升小學數學建模教學水平。
總之,加強小學生數學建模思想培養策略的制定與實施,有利于滿足素質教育的更高要求,實現對小學生數學能力的有效鍛煉,確保相關的教學計劃能夠在規定的時間內順利地完成。與此同時,結合當前小學數學教育教學的實際發展概況,可知靈活運用各種科學的數學建模思想培養策略,有利于滿足學生數學建模學習中的多樣化需求,為相關教學目標的順利實現提供可靠的保障。
參考文獻:
[1]童小艷.小學數學教學中培養學生建模思想的策略[J].學子(教育新理念),20xx(6).
[2]白 寧.先學而后教——小學生數學建模思想培養的捷徑[J].數學學習與研究,20xx(16).
數學建模論文模板 篇13
數學建模是用數學知識建立描述實際問題的模型,再進行模型求解,然后得到解決實際問題的方案.數學建模是運用數學及計算機等工具來解決生產和生活中的各種實際問題,是培養和提高學生創新能力和綜合素質的一個有效途徑.數學建模競賽不僅是一項普通的學科競賽,更是培養學生綜合能力和創新意識的有效途徑.數學建模與創新人才培養的關系,一直是教育教學研究方面的熱點[1-8].現有文獻大多是從人才培養模式入手,而從機制角度出發的研究文獻尚不多見.因此,本文考慮依托數學建模競賽,構建起一個創新型人才培養的五大機制,推動創新人才培養,對高校人才培養的方式、方法進行有益的探索與嘗試.
1、創新型人才培養的五大機制
以數學建模競賽活動為依托和載體,以培養創新型人才為目標,建立“引導、轉化、協作、溝通表達、問題導向”五大機制,提高學生的學習興趣,激發學生的學習動力,著重培養一種精神及三大能力,即團隊精神,理論轉化為實踐的動手能力、語言文字表達能力和自主學習能力.五大機制與創新型人才培養關系見圖 1.
圖 1 創新型人才培養的五大機制
2、創新型人才培養五大機制的構建
2.1、建立引導機制,激發學習動力
數學建模競賽所涉及的問題,都是來源于現實社會的生產與生活,有很強的實用性.參加數學建模競賽的學生,通過競賽活動本身,能夠體會到大學所學的高等數學、線性代數、概率論、運籌優化等數學類課程.數據結構、C 語言、Matlab 等計算機課程以及文獻檢索類課程,都是非常有用的.對學生而言,參加數學建模競賽,首要的效果是激發了學習興趣,解決了學習的動力問題.即使沒有獲獎,對他們來說,收獲也很大.對任何一門學科或一項工作,能產生興趣,才能有不竭的動力,才有學習的主觀能動性.創新的前提是有學習的興趣和學習的快樂,只有解決這一根本問題,才能考慮創新型人才培養過程中的其他環節.因此,為培養創新型人才,要大力引導學生積極參加數學建模競賽,建立培養創新型人才的引導機制.對每個學生,不以獲獎為目標,而以“貴在參與”為宗旨.參與一次,體會一次,觸動思想,產生興趣,激發學習的動力,從而培養創新型人才的自我激勵式自主學習能力.
2.2、建立轉化機制,促進知識向能力的轉化
將課本上的理論知識轉化成為解決實際問題的實踐能力是創新型人才培養過程中的關鍵環節.會學會用,學以致用,能解決實際問題是衡量人才的重要標準,紙上談兵是不能適應社會需要的.數學建模競賽能夠使學生將所學的理論知識,通過競賽活動,轉化成自身的實踐能力.如學習微分方程后,在考慮傳染病傳播問題時,就可以建立相應的微分方程模型,求解模型,然后根據模型計算結果提出傳染病傳播問題的相關解決方案.順利地經歷這樣一個完整的過程,就可以將原來的微分方程知識轉化成解決變化率與時間有關的一類實際問題的實踐能力.當然,還有一些有趣的例子,如國防科技大學的周星、克居正建立了一個研究男生追女生的數學模型[9],用人類最理性的數學公式為人類最感性的戀愛行為建立了初步的動力學模型.將變量與因素的互動寫成了一個隨時間變化的常微分非線性方程組,從解析計算和數值模擬兩個方面著重討論了方程可能的結果,以及每種結果的穩定水平.依托數學建模競賽,建立培養創新型人才的轉化機制,大力推進知識向能力的轉化,不斷提高創新型人才的實踐能力.這是創新型人才培養的關鍵環節.
2.3、建立協作機制,增強團隊意識
高校學生在平時的學習過程中,絕大多數情況下,基本上都是獨自學習,與他人合作研究和解決問題機會很少.而在各種層次級別的數學建模競賽中,參賽學生要 3 人一組,以團隊而不是個人身份參賽.在正式比賽之前,要按照學科、特長等因素尋找隊友,組成隊伍.在比賽期間,由于隊友經常是來自不同專業,知識能力水平各有所長,脾氣秉性各有特點,需要在比賽時認真溝通,相互協調,合理分工,團結協作共同完成整個比賽.為了比賽,在發生矛盾時,要學會忍耐和妥協,而不能意氣用事.在整個比賽期間,求同存異,取長補短,優勢互補,最終合作完成任務.這個過程,無形中就培養了學生的合作意識和團隊精神,使學生親身感受到現代社會與人合作是大多數人成功的必要選擇.依托數學建模競賽,培養創新型人才的團隊協作意識,建立培養人才的.合作交流機制,這是適應社會和時代需要的人才培養過程中的重要環節之一。
2.4、建立溝通表達機制,提高學生的語言及文字表達能力
不同于其它類以答題為特點的學科競賽,在數學建模競賽中,參賽隊員需要用自己的語言對賽題進行描述,在假設、建模、分析、求解、計算、結果分析及優缺點論述等環節都需要進行學術性的表達,最終完成一篇符合學術規范的論文.在這個過程中,參賽隊員之間需要廣泛交流溝通,選擇最合適的方式,撰寫完成一篇學術論文.在求解以及表達這些模型的過程中,提高了學生的軟件應用水平和文章的寫作水平,以及學生的口頭表達能力和中英文科技論文寫作能力.通過比賽,學生的語言及文字表達能力得到了極好的訓練,對科研工作也有了初步的比較完整的了解.在現代社會,良好的語言及文字表達能力,對人際交往、經營業務往來、日常工作等各方面都是非常重要的.通過數學建模競賽,建立溝通表達機制,有效地提高學生的表達能力,適應社會對創新型人才的要求.
2.5、建立問題導向機制,培養學生主動式學習的自主學習能力
歷年來的數學建模競賽試題,無一不是來源于工程技術和管理科學中的實際問題,內容涉及經濟、能源、交通、環境、生態、醫學、人口、生物和談判等眾多領域,具有很強的實際應用背景.數學建模題目都是各領域、各學科的一些具體實際問題,參賽的學生在之前不可能都了解這些背景和知識,有時候甚至是一無所知.所以學生必須在短時間內主動去收集資料、查閱大批文獻以了解研究課題的實際背景及研究現狀,然后創建數學模型、求解、檢驗和結果分析,最后將解決問題的最佳方案用英文寫成科技論文.此外,建模過程中還必須自主地去研究和學習解決問題所需的各種數學新知識及大量的相關學科的新知識,背景和已有方法都清楚了,解決問題的新方法可能就自然生成了.通過數學建模競賽活動,建立問題導向機制,變傳統的“要我學”為“我要學”,實現主動式學習而非被動式學習,就會使創新型人才所必須具備的自主學習能力和快速學習能力得到充分的鍛煉.
3、創新型人才培養五大機制的實施效果
3.1、促進了學生全面發展
參加過數學建模競賽的學生,潛移默化地接受了按照五大機制運作的培養方法,提高了學習興趣,增強了學習動力.課堂表現優于一般學生,能夠積極參加其他類別的科技競賽,主動參與教師的科研課題項目等,所表現出的積極進取精神和良好的科研素質習慣,得到了專業教師的認可.
3.2、提高了學生的就業質量
通過五大機制,培養了學生的實踐能力、表達能力和自主學習能力,并且幫助學生樹立了終身學習的理念,極大地提高了學生的就業競爭力.參加過數學建模競賽的學生,考研和就業表現均優于一般學生,很多學生在國外就業或進入世界 500 強企業工作,且大多都受到用人單位的好評,普遍認為這些學生基礎扎實,理工融合,能夠勝任不同工作崗位的需求.
參考文獻:
[1] 張曉鵬.美國大學創新人才培養模式探析[J].中國大學教學,20xx(3):7-11
[2] 周義倉,郝孝良.知識經濟時代的創新人才培養與數學建模[J].工科數學,20xx(1):78-81
[3] 劉鳳秋,畢卉,陳東彥,等.融合數學建模思想的理工科研究生創新能力培養模式[J].高師理科學刊,20xx,34(9):82-84
[4] 楊啟帆,談之奕.通過數學建模教學培養創新人才——浙江大學數學建模方法與實踐教學取得明顯人才培養效益[J].中國高教研究,20xx(12):84-85
[5] 王樹忠,趙輝,陳東彥.數學建模在創新型人才培養中的作用[J].高師理科學刊,20xx,27(5):85-88
[6] 史彥龍.醫藥類高職高專數學建模的實踐和創新型人才的培養探究[J].亞太教育,20xx(26):58-59
[7] 陳朝輝.探索數學建模活動對應用型人才創新實踐能力的培養[J].黑龍江教育:理論與實踐,20xx(1):73-74
[8] 陳傳軍,孫豐云,王智峰.數學建模教學是應用型本科數學人才培養的有效途徑[J].教育教學論壇,20xx(24):166-167
[9] 周星,克居正.男生追女生的數學模型[J].數學的實踐與認識,20xx(12):1-8
數學建模論文模板 篇14
一、強化數學課程的應用功能是順應教育改革潮流的需要
信息化時代,數學科學與其他學科交叉融合,使得數學技術變成了一種普適性的關鍵技術。大學加強數學課程的應用功能,不但可以為學生提供解決問題的思想和方法,而且更為重要的是可以培養學生應用數學科學進行定量化、精確化思維的意識,學會創造性地解決問題的應用能力。數學建模課程將數學的基本原理、現代優化算法以及程序設計知識很好地融合在一起,有助于培養學生綜合應用數學知識將現實問題化為數學問題,并進行求解運算的能力,激發學生對解決現實問題的探索欲望,強化數學課程本身的應用功能,凸顯數學課程的教育價值,適應大學數學課程以培養學生創新意識為宗旨的教育改革需要。
大學傳統的數學主干課程,如高等數學、線性代數、概率論與數理統計在奠定學生的數學基礎、培養自學能力以及為后續課程的學習在基礎方面發揮奠基作用。但是,這種原有的教學模式重在突出培養學生嚴格的邏輯思維能力,而對數學的應用重視不夠,這使得學生即使掌握了較為高深的數學理論,卻并不能將其靈活應用于現實生活解決實際問題,更是缺乏將數學應用于專業研究和軍事工程的能力,與創新教育的基本要求差距甚遠。教育轉型要求數學教學模式從傳統的傳授知識為主向以培養能力素質為主轉變,特別是將數學建模的思想方法融入到數學主干課程之中,在教學過程中引導學生將數學知識內化為學生的應用能力,充分發揮數學建模思想在數學教學過程中的引領作用。數學課程教學改革要適應這一教學模式轉型需要,深入探究融入式教學模式的理論與方式,是推進數學教育改革的重要舉措。
二、大學數學主干課程融入數學建模思想需著力解決的幾個關鍵問題
2.1 理清數學建模思想方法與數學主干課程的關系。數學主干課程提供了大學數學的基礎理論與基本原理,將數學建模的思想方法有機地融入到數學主干課程中,不但可以有效地提升數學課程的應用功能,而且有利于深化學生對數學本原知識的理解,培養學生的綜合應用能力。深入研究數學主干課程的功能定位,主要從課程目標上的一致性、課程內容上的互補性、學習形式上的互促性、功能上的整體優化性等方面,研究數學建模本身所承載的思想、方法與數學主干課程的內容與邏輯關系,闡述數學建模思想方法對提高學生創新能力和對數學教育改革的重要意義,探索開展融入式教學及創新數學課程教學模式的有效途徑。
2.2 探索融入式教學模式提升數學主干課程應用功能的方式。融入式教學主要有輕度融入、中度融入和完全融入三種方式。根據主干課程的基本特點,對課程體系進行調整,在問題解決過程中安排需要融入的知識體系,按照三種方式融入數學建模的思想與方法。以學生能力訓練為主導,在培養深厚的數學基礎和嚴格的邏輯思維能力的基礎上,充分發揮數學建模思想方法對學生思維方式的培養功能和引導作用,培養學生敏銳的分析能力、深刻的'歸納演繹能力以及將數學知識應用于工程問題的創新能力。
2.3 建立數學建模思想方法融入數學主干課程的評價方式。融入式教學是處于探索中的教學模式,教學成效有待于實踐檢驗。選取開展融入式教學的實驗班級,對數學建模思想方法融入主干課程進行教學效果實踐驗證。設計相應的考察量表,從運用直覺思維深入理解背景知識、符號翻譯開展邏輯思維、依托圖表理順數量關系、大膽嘗試進行建模求解等多方面對實驗課程的教學效果進行檢驗,深入分析融入式教學模式的成效與不足,為探索有效的教學模式提出改進的對策。
三、大學數學主干課程融入數學建模思想的實踐研究
3.1 改革課程教學內容,滲透數學建模的思想方法。傳統的數學主干課程教學內容,將數學看作嚴謹的演繹體系,教學過程中著力于對學生傳授大學數學的基礎知識,而對應用能力的培養卻重視不夠。使得本應能夠發揮應用功能的數學知識則淪為僵死的教條性數學原理,這失去了教學的活力。學生即使掌握了再高深的數學知識,仍難以學會用數學的基本方法解決現實問題。現行的大學數學課程教學內容中,適當地滲透一些應用性比較廣泛的數學方法,如微元法、迭代法及最佳逼近等方法,有利于促進學生對數學基礎知識的掌握,同時理解數學原理所蘊涵的思想與方法。
這樣,在解決實際問題的時候,學生就會有意識地從數學的角度進行思考,嘗試建立相應的數學模型并進行求解,拓展了數學知識的深度與廣度,提升了學生的數學應用能力四、結語數學建模是數學科學在科技、經濟、軍事等領域廣泛應用的接口,是數學科學轉化成科學技術的重要途徑。在數學主干課程中融入數學建模的思想與方法,可以推動大學數學教育改革的深入發展,加深學生對相關知識的理解和掌握,有助于從思維方式上培養學生的創新意識與創新能力。
此外,數學建模思想方法融入教學主干課程還涉及到許多問題,比如數學建模與計算技術如何有效結合以進行模擬仿真、融入式教學模式的基本理論、構建新的課程體系等問題,仍將有待于更深入的研究。
【數學建模論文】相關文章:
數學建模論文模板07-20
數學建模A優秀論文08-01
數學建模工作總結05-28
參加數學建模競賽心得08-19
數學建模心得體會05-02
數學建模學習心得(精選14篇)05-27
數學的論文09-30
數學小論文12-07
數學小論文02-14