精選高一上冊數學教學計劃3篇
日子如同白駒過隙,前方等待著我們的是新的機遇和挑戰,現在就讓我們好好地規劃一下吧。好的計劃是什么樣的呢?以下是小編收集整理的高一上冊數學教學計劃3篇,歡迎大家分享。
高一上冊數學教學計劃 篇1
一、設計理念
新課標指出:學生的數學學習活動不應只是接受、記憶、模仿、練習,教師應引導學生自主探究、合作學習、動手操作、閱讀自學,應注重提升學生的數學思維能力,注重發展學生的數學應用意識。
二、教材分析
本節課選自人教版《普通高中課程標準實驗教課書》必修1,第一章1.1.2集合間的基本關系。集合是數學的基本和重要語言之一,在數學以及其他的領域都有著廣泛的應用,用集合及對應的語言來描述函數,是高中階段的一個難點也是重點,因此集合語言作為一種研究工具,它的學習非常重要。本節內容主要是集合間基本關系的學習,重在讓學生類比實數間的關系,來進行探究,同時培養學生用數學符號語言,圖形語言進行交流的能力,讓學生在直觀的基礎上,理解抽象的概念,同時它也是后續學習集合運算的知識儲備,因此有著至關重要的作用。
三、學情分析
【年齡特點】:
假設本次的授課對象是普通高中高一學生,高一的學生求知欲強,精力旺盛,思維活躍,已經具備了一定的觀察、分析、歸納能力,能夠很好的配合教師開展教學活動。
【認知優點】
一方面學生已經學習了集合的概念,初步掌握了集合的三種表示法,對于本節課的學習有利一定的認知基礎。
【學習難點】
但是,本節課這種類比實數關系研究集合間的關系,這種類比學習對于學生來說還有一定的難度。
四、教學目標
? 知識與技能:
1. 理解子集、V圖、真子集、空集的概念。
2. 掌握用數學符號語言以及V圖語言表示集合間的基本關系。
3. 能夠區分集合間的包含關系與元素與集合的屬于關系。
? 過程與方法:
1. 通過類比實數間的關系,研究集合間的關系,培養學生類比、觀察、
分析、歸納的能力。
2. 培養學生用數學符號語言、圖形語言進行交流的能力。
? 情感態度與價值觀:
1.激發學生學習的興趣,圖形、符號所帶來的魅力。
2.感悟數學知識間的聯系,養成良好的思維習慣及數學品質。
五、教學重、難點
重點:
集合間基本關系。
難點:
類比實數間的關系研究集合間的關系。
六、教學手段
PPT輔助教學
七、教法、學法
? 教法:
探究式教學、講練式教學
遵循“教師主導作用與學生主體地位相結合的”教學規律,引導學生自主探究,合作學習,在教學中引導學生類比實數間關系,來研究集合間的關系,降低了學生學習的難度,同時也激發了學生學習的興趣,充分體現了以學生為本的教學思想。
? 學法:
自主探究、類比學習、合作交流
教師的“教”其本質是為了“不教”,教師除了讓學生獲得知識,提高解題能力,還應該讓學生學會學習,樂于學習,充分體現“以學定教”的教學理念。通過引導學生類比學習,同學間的合作交流,讓學生更好的學習集合的知識。
八、課型、課時
課型:新授課
課時:一課時
九、教學過程
(一)教學流程圖
(二)教學詳細過程
1..回顧就知,引出新知
問題一:實數間有相等、不等的關系,例如5=5,3﹤7,那么集合之間會有什么關系呢?
2.合作交流,探究新知
問題二:大家來仔細觀察下面幾個例子,你能發現集合間的關系嗎?
(1)A={1,2,3},B={1,2,3,4,5};
(2)設A為新華中學高一(2)班女生的全體組成集合;B為這個班學生的全體組成集合;
(3)設C={x∣x是兩條邊相等的三角形},D={x∣x是等腰三角形}
【師生活動】:學生觀察例子后,得出結論,在(1)中集合A中的任何一個元素都是集合B中的元素,教師總結,這時我們說集合A與集合B 有包含關系。(2)中的集合也是這種關一般地,對于兩個集合A,B,如果集合A中任意一個元素都是集合B中的元素,我們就說這兩集合有包含關系,稱集合A為集合B 的子集,記作:A?B(B?A),讀作A含于B或者B包含A.
在數學中我們經常用平面上封閉的曲線內部代表集合,這樣上述集合A與集合B的包含關系,可以用下圖來表示:
問題三:你能舉出幾個集合,并說出它們之間的包含關系嗎?
【師生活動】:學生自己舉出些例子,并加以說明,教師對學生的回答進行補充。
問題四:對于題目中的第3小題中的.集合,你有什么發現嗎?
【師生活動1】:在(3)由于兩邊相等的三角形是等腰三角形,因此集合C,D都是所有等腰三角形的集合,集合C中任意一個元素都是集合D的元素 ,同時集合D任意一個元素都是集合C的元素,因此集合C與集合D相等,記作:C=D。
用集合的概念對相等做進一步的描述:
如果集合A是集合B 子集,且集合B是集合A的子集,此時集合A與集合B的元素一樣,因此集合A與集合B 相等,記作A=B。
強調:如果集合A?B,但存在元素x∈B, 且x?A,我們稱集合A是集合B的真子集,記作:A?B
【師生活動2】:教師引導學生以(1)為例,指出A?B,但4∈B, 4?A,教師總結所以集合A是集合B的真子集。
【師生活動】?,并規定空集是任何集合的
4.思維拓展,討論新知
問題六:包含關系{a}?A與屬于關系a∈A有什么區別?請大家用具體例子來說明
【師生活動1】:學生以(1)為例{1,2}?A,2∈A,說明前者是集合之間的關系,后者是
問題七:經過以上集合之間關系的學習,你有什么結論?
【師生活動】:師生討論得出結論:
(1)任何一個集合都是它本身的子集,即A?A
5.練習反饋,培養能力
例1寫出集合{a,b}的所有子集,并指出哪些是真子集
例2用適當的符號填空
(1)a_{a,b,c}
(2){0,1}_N
(3){2,1}_{X∣X2-3X+2=0}
6.課堂小結,布置作業
這節課你學到了哪些知識?
小結 知識上:
能力上:
情感上:
作業:必做題:P8,3
思考題:實數間有運算,那集合呢?
十、板書設計
十一、教學反思
高一上冊數學教學計劃 篇2
一、指導思想
準確把握《教學大綱》和《考試大綱》的各項基本要求,立足于基礎知識和基本技能的教學,注重滲透數學思想和方法。針對學生實際,不斷研究數學教學,改進教法,指導學法,奠定立足社會所需要的必備的基礎知識、基本技能和基本能力,著力于培養學生的創新精神,運用數學的意識和能力,奠定他們終身學習的基礎。
二、高一上冊數學教學教材特點:
我們所使用的教材是人教版《普通高中課程標準實驗教科書數學(A版)》,它在堅持我國數學教育優良傳統的前提下,認真處理繼承、借簽、發展、創新之間的關系,體現基礎性、時代性、典型性和可接受性等,具有如下特點:
1.親和力:以生動活潑的呈現方式,激發興趣和美感,引發學習激情.
2.問題性:以恰時恰點的問題引導數學活動,培養問題意識,孕育創新精神.
3.科學性與思想性:通過不同數學內容的聯系與啟發,強調類比、化歸等思想方法的運用,學習數學地思考問題的方式,提高數學思維能力,培育理性精神.
4.時代性與應用性:以具有時代感和現實感的素材創設情境,加強數學活動,發展應用意識.
三、高一上冊數學教學教法分析:
1.選取與內容密切相關的、典型的、豐富的和學生熟悉的素材,用生動活潑的語言,創設能夠體現數學的概念和結論,數學的思想和方法,以及數學應用的學習情境,使學生產生對數學的親切感,引發學生看個究竟的沖動,以達到培養其興趣的目的.
2.通過觀察,思考,探究等欄目,引發學生的思考和探索活動,切實改進學生的學習方式.
3.在教學中強調類比、化歸等數學思想方法,盡可能養成其邏輯思維的習慣.
四、學情分析
高一作為起始年級,作為從義務階段邁入應試征程的適應階段,該有的是一份執著.他的特殊性就在于它的.跨越性,理想的期盼與學法的突變,難度的加強與惰性的生成等等矛盾沖突伴隨著高一新生的成長.面對新教材的我們也是邊摸索邊改變,樹立新的教學理念,并落實在課堂教學的各個環節,才能不負眾望.我們要從學生的認識水平和實際能力出發,研究學生的心理特征,做好初三與高一的銜接工作,幫助學生解決好從初中到高中學習方法的過渡.從高一起就注意培養學生良好的數學思維方法,良好的學習態度和學習習慣,以適應高中領悟性的學習方法.
五、高一上冊數學教學教學措施:
1、激發學生的學習興趣.由數學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。
2、注意從實例出發,從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考.
3、加強培養學生的邏輯思維能力和解決實際問題的能力,提高學生的自學能力,養成善于分析問題的習慣,進行辨證唯物主義教育.
4、抓住公式的推導和內在聯系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力.
5、重視數學應用意識及應用能力的培養.
高一上冊數學教學計劃 篇3
一、教學目標
1.知識與技能目標
(1). 掌握集合的兩種表示方法;能夠按照指定的方法表示一些集合.
(2).發展學生運用數學語言的能力;培養學生分析、比較、歸納的邏輯思維能力.
2.過程與方法目標
①通過實例抽象概括集合的共同特征,從而引出集合的概念是本節課的重要任務之一。因此教學時不僅要關注集合的基本知識的學習,同時還要關注學生抽象概括能力的培養。
②教學過程中應努力創造培養學生的思維能力,提高學生理解掌握概念的能力,訓練學生分析問題和處理問題的能力
情感態度與價值觀目標 感受集合語言的意義和作用,培養合作交流、勤于思考、積極探討的精神,發展用嚴密謹慎的集合語言描述問題的習慣;學習從數學的角度認識世界;通過合作學習增強合作意識;培養數學的特有文化——簡潔精煉,體會從感性到理性的思維過程。
2、教材分析 本節課位于我校現行教材≤中等職業教育國家規劃教材≥數學第一章第一節≤集合≥的第二課時,這節課主要學習集合的表示方法。
集合語言是現代數學的基本語言。通過集合語言的學習,有利于學生簡明準確地表達學習的數學內容。集合的初步知識是學生學習、掌握和使用數學語言的基礎,是中職數學學習的出發點。
在中職數學中,這部分知識與其他內容有著密切聯系,它們是學習、掌握和使用數學語言的基礎。例如,在后續學習的集合的相關內容和第二章≤不等式≥、
第三章≤函數≥,在代數中用到的有數集、解集等;在幾何中用到的有點集,都離不開集合。也是研究數學問題不可缺少的工具。這一課在本章的學習有很重要的意義,也是本章后續學習和后續學習的基礎,起到承上啟下的作用。
3、學情分析
學生在初中階段的學習中,雖然已經有了對集合的初步認知,由于中職學生的現狀,學生基礎比較弱,學習習慣比較差,根據我校的現行教材結合學生的實際情況,為了培養學
生良好的學習習慣,打好基礎,對集合的兩種表示方法:列舉法和描述法通過講練結合、不斷地鞏固練習、提高練習來達到標準要求,鼓勵學生理解的基礎上記憶的學習方法來學習。
二、方法與手段
本節課采用新知識講授課的教學模式,教學策略為先熟悉再深入,采用啟發式、講練結合等教學方法,并采用多媒體教學手段輔助教學。
3、教學重難點
重點:列舉法、描述法。
難點:運用集合的三種常用表示方法正確表示一些簡單的集合
4、教學方法:實例歸納、學生的自主探究、主動參與與教師的引導相結合,充分體現學生在課堂中的主體作用和教師的主導作用。
5、教學手段:多媒體輔助教學——主要是利用多媒體展示圖片來增加學生的學習興趣和對集合知識的直觀理解。
6、教學思路:
7、教學過程
7.1創設情境,引入課題
【活動】多媒體展示:1、草原一群大象在緩步走來。
2、藍藍的天空中,一群鳥在飛翔
3、一群學生在一起玩。
引導學生舉出一些類似的例子問題
在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是一群大象、一群鳥、一群學生)對象的總體,而不是個別的對象,為此,我們將學習一個新的概念——集合,即是一些研究對象的總體。
【設計意圖】通過多媒體展示,極大地調動起了學生的積極性,吸引學生的注意力,設置輕松的學習氣氛。
7.2步步探索,形成概念
【活動1】觀察下列對象:
①1~20以內的所有質數;
②我國從1991—20xx年的13年內所發射的所有人造衛星
③金星汽車廠20xx年生產的所有汽車;
④20xx年1月1日之前與我國建立外交關系的所有國家;
⑤所有的正方形;
⑥到直線l的距離等于定長d的所有的點;
⑦方程x2+3x—2=0的所有實數根;
⑧新華中學20xx年9月入學的所有的高一學生。
師生共同概括8個例子的特征,得出結論,給出集合的含義:把研究對象統稱為元素,常用小寫字母啊a,b,c….表示,把一些元素組成的總體叫做集合,常用大寫字母A,B,C….來表示。
【設計意圖】使學生自己明確集合的含義,培養學生的概括能力。
【活動2】要求每個學生舉出一些集合的例子,選出具有代表性的幾個問題,比
如:
1)A={1,3},3、5哪個是A的元素?
2)B={身材較高的人},能否表示成集合?
3)C={1,1,3}表示是否準確?
4)D={中國的直轄市},E={北京,上海,天津,重慶}是否表示同一集合?
5)F={a,b,c}與G={c,b,a}這兩個集合是否一樣?
【分析】1)1,3是A的元素,5不是
2)我們不能準確的規定多少高算是身材較高,即不能確定集合的元素,
所以B不能表示集合
3)C中有二個1,因此表達不準確
4)我們知道E中各元素都是屬于中國的直轄市,但中國的直轄市并不 只有這幾個,因此不相等。
5)F和G的元素相同,只不過順序不同,但還是表示同一個集合
通過上述分析引導學生自由討論、探究概括出集合中各種元素的特點,并讓學生再舉出一些能夠構成集合的例子以及不能構成集合的例子,要求說明理由。師生一起得出集合的特征:
1)確定性:某一個具體對象,它或者是一個給定的集合的元素,或者不是該集合的元素,兩種情況必有一種且只有一種成立.
2)互異性:同一集合中不應重復出現同一元素.
3)無序性:集合中的元素沒有順序
4)集合相等:構成兩個集合的元素完全一樣
【設計意圖】引導學生自主探究得出集合的特征:確定性、互異性、無序性,集合相等,培養學生的抽象概括能力,同時使學生能更好的了解集合。
7.3集合與元素的關系
【問題】高一(4)班里所有學生組成集合A,a是高一(4)班里的'同學,b是
高一(5)班的同學,a、b與A分別有什么關系?
引導學生閱讀教科書中的相關內容,思考上述問題,發表學生自己的看法。 得出結論:①如果a是集合A的元素,就說a屬于集合A,記作a∈A。
②如果b不是集合A的元素,就說b不屬于集合A,記作b?A。
再讓學生舉一些例子說明這種關系。
【設計意圖】使學生發揮想象,明確元素與集合的關系。
【活動】熟記數學中一些常用的數集及其記法
引導學生回憶數集擴充過程,閱讀教科書第3頁表格中的內容,認識常用數集記號。
【設計意圖】使學生熟記常用數集的記號,以免日后做題時混淆。
7.4集合的表示方法
【問題】由以上內容我們可以知道用自然語言可以描述一個集合,那么有沒有其他方式表示集合呢?
7.4.1集合的列舉法表示
【活動】嘗試用列舉法第4頁例1中的集合:
1)小于10的所有自然數組成的集合;
2)方程x2?x的所有實數根組成的集合;
3)由1到20以內的所有素數組成的集合;
并思考列舉法的特點。
引導學生閱讀教科書,自主學習列舉法,得出答案:
1)A={0,1,2,3,4,5,6,7,8,9}
2)A={0,1}
3)A={2,3,5,7,11,13,17,19}
通過上述講解請同學說說列舉法的特點:
1)用花括號{}把元素括起來
2)集合的元素可以具體一一列出
【設計意圖】使學生學習基本了解用列舉法表示集合的方法,并了解列舉法的特點。
7.4.2集合的描述法表示
【活動1】提出教科書中的思考題:
1)你能用自然語言描述集合{2,4,6,8}嗎?
2)你能用列舉法表示不等式x—7<3的解集嗎?
學生討論,師生總結:
1)從2開始到8的所有偶數組成的集合
2)這個集合中的元素不能一一列出,因此不可以用列舉法表示
引導學生思考、討論用列舉法表示相應集合的困難,激發學生學習描述法的積極性。
引導學生閱讀教科書中描述法的相關內容,讓學生討論交流,歸納描述法的特點。
例如2)可以用描述法表示為:A={x?R|x<10}
【設計意圖】使學生體會用描述法表示集合的必要性,會用描述法表示集合。
【活動2】引導學生完成第5頁例2
1) 方程x2?2?0的所有實數根組成的集合
2) 由大于10小于20的所有整數組成的集合
討論應當如何根據問題選擇適當的集合表示法。學生回答,老師進行總結:
1)描述法:A={ x?R|x2?2?0}
列舉法:
2)描述法:A={ x?Z|10
列舉法:A={11,12,13,14,15,16,17,18,19}
【設計意圖】使學生掌握好兩種表示法各自的特點,根據題目靈活選擇。
7.5課堂小結,學習反思
【問題】1)集合與元素的含義?
2)集合的特點?
3)集合的不同表示方法
引導學生整理概括這一節課所學的知識
【設計意圖】歸納整理知識,形成知識網絡,并培養學生自主對所學知識進行總結的能力。
8、作業布置,鞏固新知
課后作業:習題1.1A組第4題
課后思考作業: ①結合實例,試比較用自然語言、列舉法和描述法表示集合時各自的特點和適用的對象。
②自己舉出幾個集合的例子,并分別用自然語言、列舉法和描述法表示出來。
9、板書設計
1.1.1集合的含義與表示
1、元素的含義:把研究對象統稱為元素
2、集合的含義:一些元素組成的總體。
3、集合元素的三個特性:確定性,互異性,無序性,集合相等
4、元素與集合的關系:a?A,a?A
5、常用數集與記法
6、列舉法
7、描述法
8、課堂小結
【高一上冊數學教學計劃】相關文章:
高一數學上冊教學計劃02-08
高一數學上冊教學計劃03-20
高一上冊數學教學計劃五篇05-25
精選高一上冊數學教學計劃四篇06-12
高一上冊數學教學計劃匯編六篇06-18
高一上冊數學教學計劃合集五篇06-07
高一的數學教學計劃06-12
數學高一上冊教案12-17
數學上冊教學計劃04-25
上冊數學教學計劃02-17