1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現(xiàn)在位置:范文先生網(wǎng)>教學論文>數(shù)學論文>淺談數(shù)學思想方法在課堂教學中的滲透

    淺談數(shù)學思想方法在課堂教學中的滲透

    時間:2022-08-21 11:00:18 數(shù)學論文 我要投稿
    • 相關推薦

    淺談數(shù)學思想方法在課堂教學中的滲透

      淺談數(shù)學思想方法在課堂教學中的滲透
      
      文/陳 嬌
      
      摘 要:數(shù)學思想方法是一種科學的思想方法,它對數(shù)學教育起到了方法論的作用。從數(shù)學思想方法的內(nèi)容入手,指出如何在數(shù)學教學中滲透數(shù)學思想方法。
      
      關鍵詞:思想方法;滲透;高中教學
      
      在大力提倡素質(zhì)教育的今天,數(shù)學教育是素質(zhì)教育的一個重要方面。而在數(shù)學教育中發(fā)揮重要作用的是在數(shù)學學習中逐步形成的數(shù)學精神和數(shù)學思想方法,故在數(shù)學教學中加強數(shù)學思想方法的滲透,既是進一步提高數(shù)學教學質(zhì)量的需要,也是實施素質(zhì)教育的需要。
      
      一、高中數(shù)學思想方法的內(nèi)容
      
      高中數(shù)學思想方法的內(nèi)容包括函數(shù)與方程、轉(zhuǎn)化與化歸、分類討論、數(shù)形結(jié)合。
      
      函數(shù)思想,是指用函數(shù)的概念和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題。方程思想,是從問題的數(shù)量關系入手,運用數(shù)學語言將問題中的條件轉(zhuǎn)化為數(shù)學模型(方程、不等式、或方程與不等式的混合組),然后通過解方程(組)或不等式(組)來使問題獲解。有時,還實現(xiàn)函數(shù)與方程的互相轉(zhuǎn)化、接軌,達到解決問題的目的。等價轉(zhuǎn)化是把未知的解的問題轉(zhuǎn)化到在已有知識范圍內(nèi)可解的問題的一種重要的思想方法。通過不斷的轉(zhuǎn)化,把不熟悉、不規(guī)范、復雜的問題轉(zhuǎn)化為熟悉、規(guī)范甚至模式化、簡單的問題。分類討論法是在解答某些數(shù)學問題時,有時會遇到多種情況,需要對各種情況加以分類,并逐類求解,然后綜合得解。數(shù)形結(jié)合就是根據(jù)數(shù)量與圖形之間的對應關系,把抽象的數(shù)學語言與直觀的圖形相結(jié)合,使抽象思維和形象思維相結(jié)合,通過數(shù)與形的相互轉(zhuǎn)化來解決數(shù)學問題。它可以使代數(shù)問題幾何化,幾何問題代數(shù)化。
      
      二、教學中滲透數(shù)學思想方法的途徑問題
      
      1.在知識的發(fā)生過程中,適時滲透數(shù)學思想方法
      
      對于數(shù)學而言,知識的發(fā)生過程,實際上也是數(shù)學思想方法的發(fā)生過程。因此,必須把握好教學過程中進行數(shù)學思想方法的滲透時機和分寸。如概念的形成過程、結(jié)論的推導過程、方法的思考過程、問題的被發(fā)現(xiàn)過程、思路的探索過程、規(guī)律被揭示過程等,都蘊藏著向?qū)W生滲透數(shù)學思想方法,是訓練思維的極好機會。
      
      如在探究二次函數(shù)的性質(zhì)(主要包括圖象的開口方向、頂點坐標、對稱軸方程、單調(diào)區(qū)間、最大值和最小值),如何讓學生形象、直觀地得出其性質(zhì)?這時教師就借助其圖象,通過數(shù)形結(jié)合的方法可得二次函數(shù)的所有性質(zhì),也銜接了初中學習的二次函數(shù)內(nèi)容。緊接著在求已知二次函數(shù)在已知閉區(qū)間的最大值和最小值問題,二次函數(shù)的區(qū)間固定、對稱軸不定的最值問題(軸變區(qū)間定)問題,二次函數(shù)的對稱軸固定、區(qū)間不定的最值問題(軸定區(qū)間變),我們都是畫出草圖進行分析。這一過程既使學生感悟到數(shù)形結(jié)合思想的意義,又符合維果斯基的“最近發(fā)展區(qū)理論”,使學生的知識得到遷移。
      
      2.通過小結(jié)和復習提煉概括數(shù)學思想方法
      
      由于同內(nèi)容可表現(xiàn)為不同的數(shù)學思想方法,而同一數(shù)學思想方法又常常分布在許多不同的知識點里,因此在單元小結(jié)或復習時,就應該在縱橫兩方面整理出數(shù)學思想方法的系統(tǒng)。例如在復習等差數(shù)列的性質(zhì)時可以類比得出等比數(shù)列的性質(zhì);在探索并掌握等差數(shù)列的通項公式及前n項和的公式時,類比得出并掌握等比數(shù)列的通項公式及前n項和公式;而等差數(shù)列又可以看成一次函數(shù),因此得出等差數(shù)列的單調(diào)性;同樣的等比數(shù)列可看成指數(shù)函數(shù),從而得出等比數(shù)列的單調(diào)性,這又體現(xiàn)了轉(zhuǎn)化和化歸的思想方法。
      
      3.通過“問題解決”,突出和深化數(shù)學思想方法
      
      數(shù)學問題的解決,離不開數(shù)學思想方法的指導、運用和創(chuàng)新。數(shù)學的思想方法存在于數(shù)學問題的解決之中,數(shù)學問題的步步轉(zhuǎn)化,無不遵循數(shù)學思想方法指示的方向。例如,設不等式2x-1>m(x-1)對滿足m≤2的一切實數(shù)m的取值都成立,求x的取值范圍。
      
      分析:此問題由于常見的思維定式,易把它看成關于x的不等式討論。然而,若變換一個角度以m為變量,即關于m的一次不等式(x-1)m-(2x-1)<0在[-2,2]上恒成立的問題。對此的研究,設f (m)=(x-1)m-(2x-1),則問題轉(zhuǎn)化為求一次函數(shù)(或常數(shù)函數(shù))f (m)的值在[-2,2]內(nèi)恒為負值時參數(shù)x應該滿足的條件。通過此題師生共同總結(jié):一般的,在一個含有多個變量的數(shù)學問題中,要確定合適的變量和參數(shù),從而揭示函數(shù)關系,使問題更明朗化;或者含有參數(shù)的函數(shù)中,將函數(shù)自變量作為參數(shù),而參數(shù)作為函數(shù),更具有靈活性,從而巧妙地解決有關問題。教師可以通過問題再舉例讓學生更深刻地體會函數(shù)與方程的思想。
      
      數(shù)學思想方法是從數(shù)學內(nèi)容中提煉出來的數(shù)學學科的精髓,是將數(shù)學知識轉(zhuǎn)化為數(shù)學能力的橋梁。這就要求我們教師在教學中高屋建瓴、持之以恒,寓數(shù)學思想方法于平時的教學之中,使學生真正形成個性的思維活動,從而全面提高自身的數(shù)學素養(yǎng)。
      
      (作者單位 安徽省宿州市蕭縣師范學校)

    【淺談數(shù)學思想方法在課堂教學中的滲透】相關文章:

    淺談英語課堂教學中的文化滲透與課堂活力建設08-24

    淺談英語課堂教學中對中華傳統(tǒng)文化的滲透08-24

    淺談滲透在語文教學細節(jié)中的育人08-22

    小學數(shù)學中的德育滲透教育08-24

    小學數(shù)學教學中的德育滲透08-23

    淺談小學低段數(shù)學課堂教學中的提問設計08-24

    在英語課堂教學中滲透人文關懷08-25

    淺談數(shù)學課堂教學設計08-23

    數(shù)學思想在初中課堂中的滲透08-25

    淺談初中數(shù)學課堂教學中的小組合作學習08-23

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      夜夜揉揉日日人人青青 | 亚洲线精品一区二区三区四区 | 午夜性爱在线视频 | 一本久久a久久免费精品顶级 | 亚洲日韩欧美无线码在线 | 亚洲欧美中文日韩二区一区 |