1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教學論文>數學論文>與導數的函數題的統一解題技巧分析

    與導數的函數題的統一解題技巧分析

    時間:2022-08-07 23:16:16 數學論文 我要投稿
    • 相關推薦

    與導數有關的函數題的統一解題技巧分析

      與導數有關的函數題的統一解題技巧分析
      
      與導數有關的函數題是各省市檢測和高考年年必考的題目,形式層出不窮,絕大多數還是區分度頗高的壓軸題。許多中上水平的考生往往處理完第一問后,對第二、三問或是匆忙求導眼到手不到形成一堆爛賬,或是寫了一堆解答過程發現走進死胡同再出來,這樣做的結果往往是得分較低,浪費時間,長此以往對科學備考的負面影響較大。究其原因,很多考生表現為不知道自己“起步”錯誤,具體來說就是對哪個函數求導不明確,或為什么要構造新函數F (x)和如何構造函數F (x)不明確。本文結合近兩年的高考題,就解答與導數有關的區分度頗高的函數題,如何走好“動一發而系全身”的第一步,談如何構造函數F (x),給出程序化的構建模式,以達到“好的開始是成功的一半”的目的。
      
      一、與導數有關的函數題概述
      
      與導數有關的區分度頗高的函數題主要包括:討論含參(一元參數或二元參數)方程根的個數與范圍,含參(一元參數或二元參數)不等式的證明,求含參函數的最值或單調區間,含參(一元參數或二元參數)不等式恒成立時已知含參函數的最值或單調區間求某參數的范圍,已知含參(一元參數或二元參數)方程根的個數和范圍求某參數的范圍等。題目形式雖然千變萬化、層出不窮,但本質上就是一道題。本文為使問題說明得更加方便,不妨以 f(x)≥g(x)的形式來說明。
      
      二、程序化構造函數F (x)的統一模式
      
      1.直接法:令F (x)= f(x)-g(x)。
      
      2.化積法:若 f(x)-g(x)=h(x)k(x),且h(x)≥0,令F (x)= k(x)。
      
      3.伸縮法:若 f(x)≥ f1(x),則令F (x)= f1(x)-g(x),其中,f1(x)通常可由熟悉的不等式或前一問中的結論得出。
      
      4.控元法:含參問題若已給出參數k的范圍,由單調性控元、消元、消參,構建F (x)(F (x)不含參數)。
      
      5.分離變量法:若能分離出變量k≥k(x),則令F (x)=k(x)。
      
      三、程序化構造函數F (x)的統一模式在高考題中的運用
      
      例1 (2013年高考新課標全國Ⅱ卷理科卷第21題)已知函數f(x)=ex-ln(x+m)。
      
      (Ⅰ)設x=0是f(x)的極值點,求m,并討論 f(x)的單調性。
      
      (Ⅱ)當m≤2時,證明f(x)>0.
      
      (Ⅰ)解:m=1. f(x)在(-1,0)上單調遞減,在(0,+∞)上單調遞增。(解答過程省略)
      
      (Ⅱ)證明:當m≤2,x∈(-m,+∞)時,ln(x+2)≥ln(x+m)。記F (x)=ex-ln(x+2),則F ′(x)=ex- .
      
      ∵F ′′(x)=ex+ >0,∴F ′(x)在(-2,+∞)上單調遞增。
      
      ∵F ′(0)=1- >0,F ′(-1)= -1<0,即 = ,x0=-ln(x0+2),∴F (x0)= -ln(x0+2)= +x0= >0.
      
      當x∈(-2,x0)時,F ′(x)<0,此時函數F (x)單調遞減;當x∈(x0,+∞)時,F ′(x)>0,此時函數F (x)單調遞增。
      
      ∴ f(x)≥F (x)≥F min(x)=F (x0)>0.
      
      小結 本題是一道含參不等式的證明題,考生若不假思索地直接采用構造F (x)=左-右,則在求F ′(x)=0時會走進死胡同。問題出在含參,因此應該控元,將兩個變量變為一個變量,使其常態化。
      
      例2 (2012年高考山東理科卷第22題)已知函數f(x)= (k為常數,e=2.71828…是自然對數的底數),曲線y= f(x)在點(1,f(1))處的切線與x軸平行。
      
      (Ⅰ)求k的值。
      
      (Ⅱ)求 f(x)的單調區間。
      
      (Ⅲ)設g(x)=(x2+x) f ′(x),其中 f ′(x)為 f (x)的導函數。證明:對任意x>0,g(x)<1+e-2.
      
      (Ⅰ)解:k=1.(解答過程省略)
      
      (Ⅱ)解:函數 f(x)在(0,1)上單調遞增,在(1,+∞)上單調遞減。(解答過程省略)
      
      (Ⅲ)證明:g(x)=(x2+x)· =(1+x)· .
      
      欲證g(x)<1+e-2,即證1-x(ln x+1)< (1+e-2)。①
      
      令F 1(x)=1-x(ln x+1),則F (x)=-ln x-2.令F (x)=0,得ln x =-2,∴x = e- 2∈(0,+∞)。
      
      當x∈(0,e- 2)時,F (x)>0,此時F 1(x)單調遞增;當x∈(e- 2,+∞)時,F (x)<0,此時F 1(x)單調遞減。∴F 1max(x)=F1 (e- 2)=1+e- 2.
      
      令F 2(x)= .∵F (x)= = > 0,∴F 2(x)在(0,+∞)上單調遞增。∴F 2(x)>F 2(0)=1.∴不等式①得證。∴ g(x)<1+e- 2(x>0)。
      
      小結 如何構造函數F(x),關鍵在于F ′(x)=0是否易求(或易估)。若直接求g(x),則g′(x)=0的求解將陷入泥潭。
      
      例3 (2012年高考遼寧理科卷第21題)設f(x)=ln(x+1)+ +ax+b(a,b∈R,a,b為常數),曲線y= f(x)與直線y= x在(0,0)點相切。
      
      (Ⅰ)求a,b的值。
      
      (Ⅱ)證明:當0  (Ⅰ)解:a=0,b=-1.(解答過程省略)
      
      (Ⅱ)證明:由(Ⅰ)知f(x)=ln(x+1)+ -1.
      
      ∵ < (0  構造F (x)=ln(x+1)+ - ,則F ′(x)= + - = .
      
      當x∈(0,2)時,∵x2+15x-36<0,∴F ′(x)<0.∴F (x)單調遞減。∴F (x)  ∴ln(x+1)+ < .∴ln(x+1)+ -1< ,即f(x)< .
      
      小結 本題若直接對f(x)求導,則會在計算f ′(x)=0時碰壁。原因在于對 求導時,既有根式又有分式,而ln(x+1)的導數僅有分式,使得在求f ′(x)=0時眼到手不到。
      
      (作者單位:廈門工商旅游學校;廈門英才學校)
      
      (責任編校/周峰)
      
      《高中生》·高考網助你解答函數壓軸題有一個好的開始——
      
      《利用二次求導巧解高考函數壓軸題》
      
      隨著課改的不斷深入,導數知識考查的要求逐漸加強,現在已由前幾年高考只在解決問題中起輔助作用,上升為分析與解決問題時不可缺少的工具。

    【與導數的函數題的統一解題技巧分析】相關文章:

    《函數性質的運用》案例分析08-17

    分析說明題08-17

    “函數的對稱性與周期性的探究”課例分析08-17

    函數08-17

    例談古詩詞以景襯情題的解題技巧08-15

    《隋的統一》08-17

    秦的統一08-17

    函數的圖像08-17

    正比例應用題教學設計與分析08-16

    例析高考中詩歌鑒賞題的分析技巧08-13

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      一级电影在线亚洲 | 亚洲综合一区自偷自拍 | 竹菊精品久久久久久久99 | 日本丝袜综合久久 | 亚洲精品99久久久久中文字幕 | 日韩精精品一区二区三区四区 |