1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>八年級數學教案>八年級數學教案

    八年級數學教案

    時間:2025-02-07 10:12:28 八年級數學教案 我要投稿

    八年級數學教案15篇15篇

      作為一名專為他人授業解惑的人民教師,就難以避免地要準備教案,教案有利于教學水平的提高,有助于教研活動的開展。那么寫教案需要注意哪些問題呢?下面是小編整理的八年級數學教案,僅供參考,希望能夠幫助到大家。

    八年級數學教案15篇15篇

    八年級數學教案1

      一、教學目標

      1、認識中位數和眾數,并會求出一組數據中的眾數和中位數。

      2、理解中位數和眾數的意義和作用。它們也是數據代表,可以反映一定的數據信息,幫助人們在實際問題中分析并做出決策。

      3、會利用中位數、眾數分析數據信息做出決策。

      二、重點、難點和難點的突破方法:

      1、重點:認識中位數、眾數這兩種數據代表

      2、難點:利用中位數、眾數分析數據信息做出決策。

      3、難點的突破方法:

      首先應交待清楚中位數和眾數意義和作用:

      中位數僅與數據的排列位置有關,某些數據的變動對中位數沒有影響,中位數可能出現在所給的數據中,當一組數據中的個別數據變動較大時,可用中位數描述其趨勢。眾數是當一組數據中某一重復出現次數較多時,人們往往關心的一個量,眾數不受極端值的影響,這是它的一個優勢,中位數的計算很少不受極端值的影響。

      教學過程中注重雙基,一定要使學生能夠很好的掌握中位數和眾數的求法,求中位數的步驟:⑴將數據由小到大(或由大到小)排列,⑵數清數據個數是奇數還是偶數,如果數據個數為奇數則取中間的數,如果數據個數為偶數,則取中間位置兩數的平均值作為中位數。求眾數的方法:找出頻數最多的那個數據,若幾個數據頻數都是最多且相同,此時眾數就是這多個數據。

      在利用中位數、眾數分析實際問題時,應根據具體情況,課堂上教師應多舉實例,使同學在分析不同實例中有所體會。

      三、例習題的意圖分析

      1、教材P143的例4的意圖

      (1)、這個問題的研究對象是一個樣本,主要是反映了統計學中常用到一種解決問題的方法:對于數據較多的研究對象,我們可以考察總體中的一個樣本,然后由樣本的研究結論去估計總體的情況。

      (2)、這個例題另一個意圖是交待了當數據個數為偶數時,中位數的求法和解題步驟。(因為在前面有介紹中位數求法,這里不再重述)

      (3)、問題2顯然反映學習中位數的意義:它可以估計一個數據占總體的相對位置,說明中位數是統計學中的一個重要的數據代表。

      (4)、這個例題再一次體現了統計學知識與實際生活是緊密聯系的,所以應鼓勵學生學好這部分知識。

      2、教材P145例5的意圖

      (1)、通過例5應使學生明白通常對待銷售問題我們要研究的是眾數,它代表該型號的產品銷售,以便給商家合理的建議。

      (2)、例5也交待了眾數的求法和解題步驟(由于求法在前面已介紹,這里不再重述)

      (3)、例5也反映了眾數是數據代表的一種。

      四、課堂引入

      嚴格的講教材本節課沒有引入的問題,而是在復習和延伸中位數的定義過程中拉開序幕的,本人很同意這種處理方式,教師可以一句話引入新課:前面已經和同學們研究過了平均數的這個數據代表。它在分析數據過程中擔當了重要的角色,今天我們來共同研究和認識數據代表中的新成員——中位數和眾數,看看它們在分析數據過程中又起到怎樣的作用。

      五、例習題的分析

      教材P144例4,從所給的數據可以看到并沒有按照從小到大(或從大到小)的順序排列。因此,首先應將數據重新排列,通過觀察會發現共有12個數據,偶數個可以取中間的兩個數據146、148,求其平均值,便可得這組數據的中位數。

      教材P145例5,由表中第二行可以查到23.5號鞋的頻數,因此這組數據的眾數可以得到,所提的建議應圍繞利于商家獲得較大利潤提出。

      六、隨堂練習

      1某公司銷售部有營銷人員15人,銷售部為了制定某種商品的銷售金額,統計了這15個人的`銷售量如下(單位:件)

      1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150

      求這15個銷售員該月銷量的中位數和眾數。

      假設銷售部負責人把每位營銷員的月銷售定額定為320件,你認為合理嗎?如果不合理,請你制定一個合理的銷售定額并說明理由。

      2、某商店3、4月份出售某一品牌各種規格的空調,銷售臺數如表所示:

      1匹1.2匹1.5匹2匹

      3月12臺20臺8臺4臺

      4月16臺30臺14臺8臺

      根據表格回答問題:

      商店出售的各種規格空調中,眾數是多少?

      假如你是經理,現要進貨,6月份在有限的資金下進貨單位將如何決定?

      答案:1. (1)210件、210件(2)不合理。因為15人中有13人的銷售額達不到320件(320雖是原始數據的平均數,卻不能反映營銷人員的一般水平),銷售額定為210件合適,因為它既是中位數又是眾數,是大部分人能達到的額定。

      2. (1)1.2匹(2)通過觀察可知1.2匹的銷售,所以要多進1.2匹,由于資金有限就要少進2匹空調。

      七、課后練習

      1.數據8、9、9、8、10、8、99、8、10、7、9、9、8的中位數是,眾數是

      2.一組數據23、27、20、18、X、12,它的中位數是21,則X的值是.

      3.數據92、96、98、100、X的眾數是96,則其中位數和平均數分別是( )

      A.97、96 B.96、96.4 C.96、97 D.98、97

      4.如果在一組數據中,23、25、28、22出現的次數依次為2、5、3、4次,并且沒有其他的數據,則這組數據的眾數和中位數分別是( )

      A.24、25 B.23、24 C.25、25 D.23、25

      5.隨機抽取我市一年(按365天計)中的30天平均氣溫狀況如下表:

      溫度(℃) -8 -1 7 15 21 24 30

      天數3 5 5 7 6 2 2

      請你根據上述數據回答問題:

      (1).該組數據的中位數是什么?

      (2).若當氣溫在18℃~25℃為市民“滿意溫度”,則我市一年中達到市民“滿意溫度”的大約有多少天?

      答案:1. 9;2. 22; 3.B;4.C; 5.(1)15. (2)約97天

    八年級數學教案2

       一、學習目標及重、難點:

      1、了解方差的定義和計算公式。

      2、理解方差概念的產生和形成的過程。

      3、會用方差計算公式來比較兩組數據的波動大小。

      重點:方差產生的必要性和應用方差公式解決實際問題。

      難點:理解方差公式

      二、自主學習:

      (一)知識我先懂:

      方差:設有n個數據 ,各數據與它們的平均數的差的平方分別是

      我們用它們的平均數,表示這組數據的方差:即用

      來表示。

      給力小貼士:方差越小說明這組數據越 。波動性越 。

      (二)自主檢測小練習:

      1、已知一組數據為2、0、-1、3、-4,則這組數據的方差為 。

      2、甲、乙兩組數據如下:

      甲組:10 9 11 8 12 13 10 7;

      乙組:7 8 9 10 11 12 11 12.

      分別計算出這兩組數據的極差和方差,并說明哪一組數據波動較小.

      三、新課講解:

      引例:問題: 從甲、乙兩種農作物中各抽取10株苗,分別測得它的苗高如下:(單位:cm)

      甲:9、10、 10、13、7、13、10、8、11、8;

      乙:8、13、12、11、10、12、7、7、10、10;

      問:(1)哪種農作物的苗長的比較高(我們可以計算它們的平均數: = )

      (2)哪種農作物的苗長得比較整齊?(我們可以計算它們的極差,你發現了 )

      歸納: 方差:設有n個數據 ,各數據與它們的平均數的差的平方分別是

      我們用它們的平均數,表示這組數據的方差:即用 來表示。

      (一)例題講解:

      例1、 段巍和金志強兩人參加體育項目訓練,近期的'5次測試成績如下表所示,誰的成績比較穩定?為什么?、

      測試次數 第1次 第2次 第3次 第4次 第5次

      段巍 13 14 13 12 13

      金志強 10 13 16 14 12

      給力提示:先求平均數,在利用公式求解方差。

      (二)小試身手

      1、.甲、乙兩名學生在相同的條件下各射靶10次,命中的環數如下:

      甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7

      經過計算,兩人射擊環數的平均數是 ,但S = ,S = ,則S S ,所以確定

      去參加比賽。

      1、求下列數據的眾數:

      (1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2

      2、8年級一班46個同學中,13歲的有5人,14歲的有20人,15歲的15人,16歲的6人。8年級一班學生年齡的平均數,中位數,眾數分別是多少?

      四、課堂小結

      方差公式:

      給力提示:方差越小說明這組數據越 。波動性越 。

      每課一首詩:求方差,有公式;先平均,再求差;

      求平方,再平均;所得數,是方差。

      五、課堂檢測:

      1、小爽和小兵在10次百米跑步練習中成績如表所示:(單位:秒)

      小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

      小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

      如果根據這幾次成績選拔一人參加比賽,你會選誰呢?

      六、課后作業:必做題:教材141頁 練習1、2 選做題:練習冊對應部分習題

      七、學習小札記:

      寫下你的收獲,交流你的經驗,分享你的成果,你會感到無比的快樂!

    八年級數學教案3

      八年級下數學教案-變量與函數(2)

      一、教學目的

      1.使學生理解自變量的取值范圍和函數值的意義。

      2.使學生理解求自變量的取值范圍的兩個依據。

      3.使學生掌握關于解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數的自變量取值范圍的求法,并會求其函數值。

      4.通過求函數中自變量的取值范圍使學生進一步理解函數概念。

      二、教學重點、難點

      重點:函數自變量取值的求法。

      難點:函靈敏處變量取值的確定。

      三、教學過程

      復習提問

      1.函數的定義是什么?函數概念包含哪三個方面的內容?

      2.什么叫分式?當x取什么數時,分式x+2/2x+3有意義?

      (答:分母里含有字母的有理式叫分式,分母≠0,即x≠3/2。)

      3.什么叫二次根式?使二次根式成立的條件是什么?

      (答:根指數是2的根式叫二次根式,使二次根式成立的條件是被開方數≥0。)

      4.舉出一個函數的實例,并指出式中的變量與常量、自變量與函數。

      新課

      1.結合同學舉出的實例說明解析法的意義:用教學式子表示函數方法叫解析法。并指出,函數表示法除了解析法外,還有圖象法和列表法。

      2.結合同學舉出的實例,說明函數的自變量取值范圍有時要受到限制這就可以引出自變量取值范圍的意義,并說明求自變量的取值范圍的兩個依據是:

      (1)自變量取值范圍是使函數解析式(即是函數表達式)有意義。

      (2)自變量取值范圍要使實際問題有意義。

      3.講解P93中例2。并指出例2四個小題代表三類題型:(1),(2)題給出的是只含有一個自變量的整式;(3)題給出的是只含有一個自變量的`分式;(4)題給出的是只含有一個自變量的二次根式。

      推廣與聯想:請同學按上述三類題型自編3個題,并寫出解答,同桌互對答案,老師評講。

      4.講解P93中例3。結合例3引出函數值的意義。并指出兩點:

      (1)例3中的4個小題歸納起來仍是三類題型。

      (2)求函數值的問題實際是求代數式值的問題。

      補充例題

      求下列函數當x=3時的函數值:

      (1)y=6x-4; (2)y=--5x2; (3)y=3/7x-1; (4)。

      (答:(1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)

      小結

      1.解析法的意義:用數學式子表示函數的方法叫解析法。

      2.求函數自變量取值范圍的兩個方法(依據):

      (1)要使函數的解析式有意義。

      ①函數的解析式是整式時,自變量可取全體實數;

      ②函數的解析式是分式時,自變量的取值應使分母≠0;

      ③函數的解析式是二次根式時,自變量的取值應使被開方數≥0。

      (2)對于反映實際問題的函數關系,應使實際問題有意義。

      3.求函數值的方法:把所給出的自變量的值代入函數解析式中,即可求出相慶原函數值。

      練習:P94中1,2,3。

      作業:P95~P96中A組3,4,5,6,7。B組1,2。

      四、教學注意問題

      1.注意滲透與訓練學生的歸納思維。比如例2、例3中各是4個小題,對每一個例題均可歸納為三類題型。而對于例2、例3這兩道例題,雖然要求各異,但題目結構仍是三類題型:整式、分式、二次根式。

      2.注意訓練與培養學生的優質聯想能力。要求學生仿照例題自編題目是有效手段。

      3.注意培養學生對于“具體問題要具體分析”的良好學習方法。比如對于有實際意義來確定,由于實際問題千差萬別,所以我們就要具體分析,靈活處置。

    八年級數學教案4

      一、內容和內容解析

      1.內容

      三角形高線、中線及角平分線的概念、幾何語言表達及它們的畫法.

      2.內容解析

      本節內容概念較多,有三角形的高、中線、角平分線和重心等有關概念;需要學生動手的頻率也較高,要掌握任意三角形的高、中線、角平分線的畫法,培養學生動手操作及解決問題的能力;鼓勵學生主動參與,體驗幾何知識在現實生活中的真實性,激發學生熱愛生活、勇于探索的思想感情。

      理解三角形高、角平分線及中線概念到用幾何語言精確表述,這是學生在幾何學習上的一個深入.學習了這一課,對于學生增長幾何知識,運用幾何知識解決生活中的有關問題,起著十分重要的作用.它也是學習三角形的角、邊的延續以及三角形全等、相似等后繼知識一個準備.

      本節的重點是了解三角形的高、中線及角平分線概念的同時還要掌握它們的畫法,難點是鈍角三角形的高的畫法及不同類型的三角形高線的位置關系.

      二、目標和目標解析

      1.教學目標

      (1)理解三角形的高、中線與角平分線等概念;

      (2)會用工具畫三角形的高、中線與角平分線;

      2.教學目標解析

      (1)經歷畫圖實踐過程,理解三角形的高、中線與角平分線等概念.

      (2)能夠熟練用幾何語言表達三角形的高、中線與角平分線的性質.

      (3)掌握三角形的高、中線與角平分線的畫法.

      (4)了解三角形的三條高、三條中線與三條角平分線分別相交于一點.

      三、教學問題診斷分析

      三角形的'高線的理解:三角形的高是線段,不是直線,它的一個端點是三角形的頂點,另一個端點在這個頂點的對邊或對邊所在的直線上.

      三角形的中線的理解:三角形的中線也是線段,它是一個頂點和對邊中點的連線,它的一個端點是三角形的頂點,另一個端點是這個頂點的對邊中點.

      三角形的角平分線的理解:三角形的角平分線也是一條線段,角的頂點是一個端點,另一個端點在對邊上.而角的平分線是一條射線,即就是說三角形的角平分線與通常的角平線有一定的聯系又有本質的區別.

    八年級數學教案5

      【教學目標】

      1、了解三角形的中位線的概念

      2、了解三角形的中位線的性質

      3、探索三角形的中位線的性質的一些簡單的應用

      【教學重點、難點】

      重點:三角形的中位線定理。

      難點:三角形的中位線定理的.證明中添加輔助線的思想方法。

      【教學過程】

      (一)創設情景,引入新課

      1、如圖,為了測量一個池塘的寬BC,在池塘一側的平地上選一點A,再分別找出線段AB、AC的中點D、E,若測出DE的長,就可以求出池塘的寬BC,你知道這是為什么嗎?

      2、動手操作:剪一刀,將一張三角形紙片剪成一張三角形紙片和一張梯形紙片

      (1)如果要求剪得的兩張紙片能拼成平行的四邊形,剪痕的位置有什么要求?

      (2)要把所剪得的兩個圖形拼成一個平行四邊形,可將其中的三角形做怎樣的圖形變換?

      3、引導學生概括出中位線的概念。

      問題:(1)三角形有幾條中位線?(2)三角形的中位線與中線有什么區別?

      啟發學生得出:三角形的中位線的兩端點都是三角形邊的中點,而三角形中線只有一個端點是邊中點,另一端點上三角形的一個頂點。

      4、猜想:DE與BC的關系?(位置關系與數量關系)

      (二)、師生互動,探究新知

      1、證明你的猜想

      引導學生寫出已知,求證,并啟發分析。

      (已知:⊿ABC中,D、E分別是AB、AC的中點,求證:DE∥BC,DE=1/2BC)

      啟發1:證明直線平行的方法有哪些?(由角的相等或互補得出平行,由平行四邊形得出平行等)

      啟發2:證明線段的倍分的方法有哪些?(截長或補短)

      學生分小組討論,教師巡回指導,經過分析后,師生共同完成推理過程,板書證明過程,強調有其他證法。

      證明:如圖,以點E為旋轉中心,把⊿ADE繞點E,按順時針方向旋轉180゜,得到⊿CFE,則D,E,F同在一直線上,DE=EF,且⊿ADE≌⊿CFE。

      ∴∠ADE=∠F,AD=CF,

      ∴AB∥CF。

      又∵BD=AD=CF,

      ∴四邊形BCFD是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形),

      ∴DF∥BC(根據什么?),

      ∴DE 1/2BC

      2、啟發學生歸納定理,并用文字語言表達:三角形中位線平行于第三邊且等于第三邊的一半。

      (三)學以致用、落實新知

      1、練一練:已知三角形邊長分別為6、8、10,順次連結各邊中點所得的三角形周長是多少?

      2、想一想:如果⊿ABC的三邊長分別為a、b、c,AB、BC、AC各邊中點分別為D、E、F,則⊿DEF的周長是多少?

      3、例題:已知:如圖,在四邊形ABCD中,E,F,G,H分別是AB,BC,CD,DA的中點。

      求證:四邊形EFGH是平行四邊形。

      啟發1:由E,F分別是AB,BC的中點,你會聯想到什么圖形?

      啟發2:要使EF成為三角的中位線,應如何添加輔助線?應用三角形的中位線定理,能得到什么?你能得出EF∥GH嗎?為什么?

      證明:如圖,連接AC。

      ∵EF是⊿ABC的中位線,

      ∴EF 1/2AC(三角形的中位線平行于第三邊,并且等于第三邊的一半)。

      同理,HG 1/2AC。

      ∴EF HG。

      ∴四邊形EFGH是平行四邊形(一組對邊平行并且相等的四邊形是平行四邊形)

      挑戰:順次連結上題中,所得到的四邊形EFGH四邊中點得到一個四邊形,繼續作下去。。。你能得出什么結論?

      (四)學生練習,鞏固新知

      1、請回答引例中的問題(1)

      2、如圖,在四邊形ABCD中,AB=CD,M,N,P分別是AD,BC, BD的中點。求證:∠PNM=∠PMN

      (五)小結回顧,反思提高

      今天你學到了什么?還有什么困惑?

    八年級數學教案6

      一、學習目標

      1.使學生了解運用公式法分解因式的意義;

      2.使學生掌握用平方差公式分解因式

      二、重點難點

      重點:掌握運用平方差公式分解因式。

      難點:將單項式化為平方形式,再用平方差公式分解因式。

      學習方法:歸納、概括、總結。

      三、合作學習

      創設問題情境,引入新課

      在前兩學時中我們學習了因式分解的定義,即把一個多項式分解成幾個整式的積的形式,還學習了提公因式法分解因式,即在一個多項式中,若各項都含有相同的'因式,即公因式,就可以把這個公因式提出來,從而將多項式化成幾個因式乘積的形式。

      如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢?當然不是,只要我們記住因式分解是多項式乘法的相反過程,就能利用這種關系找到新的因式分解的方法,本學時我們就來學習另外的一種因式分解的方法——公式法。

      1.請看乘法公式

      左邊是整式乘法,右邊是一個多項式,把這個等式反過來就是左邊是一個多項式,右邊是整式的乘積。大家判斷一下,第二個式子從左邊到右邊是否是因式分解?

      利用平方差公式進行的因式分解,第(2)個等式可以看作是因式分解中的平方差公式。

      a2—b2=(a+b)(a—b)

      2.公式講解

      如x2—16

      =(x)2—42

      =(x+4)(x—4)。

      9m2—4n2

      =(3m)2—(2n)2

      =(3m+2n)(3m—2n)。

      四、精講精練

      例1、把下列各式分解因式:

      (1)25—16x2;(2)9a2—b2。

      例2、把下列各式分解因式:

      (1)9(m+n)2—(m—n)2;(2)2x3—8x。

      補充例題:判斷下列分解因式是否正確。

      (1)(a+b)2—c2=a2+2ab+b2—c2。

      (2)a4—1=(a2)2—1=(a2+1)?(a2—1)。

      五、課堂練習

      教科書練習。

      六、作業

      1、教科書習題。

      2、分解因式:x4—16x3—4x4x2—(y—z)2。

      3、若x2—y2=30,x—y=—5求x+y。

    八年級數學教案7

      一、教材分析

      1、特點與地位:重點中的重點。

      本課是教材求兩結點之間的最短路徑問題是圖最常見的應用的之一,在交通運輸、通訊網絡等方面具有一定的實用意義。

      2、重點與難點:結合學生現有抽象思維能力水平,已掌握基本概念等學情,以及求解最短路徑問題的自身特點,確立本課的重點和難點如下:

      (1)重點:如何將現實問題抽象成求解最短路徑問題,以及該問題的解決方案。

      (2)難點:求解最短路徑算法的程序實現。

      3、教學安排:最短路徑問題包含兩種情況:一種是求從某個源點到其他各結點的最短路徑,另一種是求每一對結點之間的最短路徑。根據教學大綱安排,重點講解第一種情況問題的解決。安排一個課時講授。教材直接分析算法,考慮實際應用需要,補充旅游景點線路選擇的實例,實例中問題解決與算法分析相結合,逐步推動教學過程。

      二、教學目標分析

      1、知識目標:掌握最短路徑概念、能夠求解最短路徑。

      2、能力目標:

      (1)通過將旅游景點線路選擇問題抽象成求最短路徑問題,培養學生的數據抽象能力。

      (2)通過旅游景點線路選擇問題的解決,培養學生的獨立思考、分析問題、解決問題的能力。

      3、素質目標:培養學生講究工作方法、與他人合作,提高效率。

      三、教法分析

      課前充分準備,研讀教材,查閱相關資料,制作多媒體課件。教學過程中除了使用傳統的“講授法”以外,主要采用“案例教學法”,同時輔以多媒體課件,以啟發的方式展開教學。由于本節課的內容屬于圖這一章的'難點,考慮學生的接受能力,注意與學生溝通,根據學生的反應控制好教學進度是本節課成功的關鍵。

      四、學法指導

      1、課前上次課結課時給學生布置任務,使其有針對性的預習。

      2、課中指導學生討論任務解決方法,引導學生分析本節課知識點。

      3、課后給學生布置同類型任務,加強練習。

      五、教學過程分析

      (一)課前復習(3~5分鐘)回顧“路徑”的概念,為引出“最短路徑”做鋪墊。

      教學方法及注意事項:

      (1)采用提問方式,注意及時小結,提問的目的是幫助學生回憶概念。

      (2)提示學生“溫故而知新”,養成良好的學習習慣。

      (二)導入新課(3~5分鐘)以城市公路網為例,基于求兩個點間最短距離的實際需要,引出本課教學內容“求最短路徑問題”。教學方法及注意事項:

      (1)先講實例,再指出概念,既可以吸引學生注意力,激發學習興趣,又可以實現教學內容的自然過渡。

      (2)此處使用案例教學法,不在于問題的求解過程,只是為了說明問題的存在,所以這里的例子只需要概述,能夠說明問題即可。

      (三)講授新課(25~30分鐘)

      1、求某一結點到其他各結點的最短路徑(重點)主要采用案例教學法,提出旅游景點選擇的例子,解決如何選擇代價小、景點多的路線。

      (1)將實際問題抽象成圖中求任一結點到其他結點最短路徑問題。(3~5分鐘)教學方法及注意事項:

      ①主要采用講授法,將實際問題用圖形表示出來。語言描述轉換的方法(用圓圈加標號表示某一景點,用箭頭表示從某景點到其他景點是否存在旅游線路,并且將旅途費用寫在箭頭的旁邊。)一邊用語言描述,一邊在黑上畫圖。

      ②注意示范畫圖只進行一部分,讓學生獨立思考、自主完成余下部分的轉化。

      ③及時總結,原型抽象(景點作為圖的結點,景點間的線路作為圖的邊,旅途費用作為邊的權值),將案例求解問題抽象成求圖中某一結點到其他各結點的最短路徑問題。

      ④利用多媒體課件,向學生展示一張帶權有向圖,并略作解釋,為后續教學做準備。

      教學方法及注意事項:

      ①啟發式教學,如何實現按路徑長度遞增產生最短路徑?

      ②結合案例分析求解最短路徑過程中(重點)注意此處借助黑板,按照算法思想的步驟。同樣,也是只示范一部分,余下部分由學生獨立思考完成。

      (四)課堂小結(3~5分鐘)

      1、明確本節課重點

      2、提示學生,這種方式形成的圖又可以解決哪類實際問題呢?

      (五)布置作業

      1、書面作業:復習本次課內容,準備一道備用習題,靈活把握時間安排。

      六、教學特色

      以旅游路線選擇為主線,靈活采用案例教學、示范教學、多媒體課件等多種手段輔助教學,使枯燥的理論講解生動起來。在順利開展教學的同時,體現所講內容的實用性,提高學生的學習興趣。

    八年級數學教案8

      平方差公式

      學習目標:

      1、能推導平方差公式,并會用幾何圖形解釋公式;

      2、能用平方差公式進行熟練地計算;

      3、經歷探索平方差公式的推導過程,發展符號感,體會特殊一般特殊的認識規律.

      學習重難點:

      重點:能用平方差公式進行熟練地計算;

      難點:探索平方差公式,并用幾何圖形解釋公式.

      學習過程:

      一、自主探索

      1、計算:(1)(m+2) (m-2) (2)(1+3a) (1-3a)

      (3) (x+5y)(x-5y) (4)(y+3z) (y-3z)

      2、觀察以上算式及其運算結果,你發現了什么規律?再舉兩例驗證你的發現.

      3、你能用自己的語言敘述你的發現嗎?

      4、平方差公式的特征:

      (1)、公式左邊的兩個因式都是二項式。必須是相同的.兩數的和與差。或者說兩 個二項式必須有一項完全相同,另一項只有符號不同。

      (2)、公式中的a與b可以是數,也可以換成一個代數式。

      二 、試一試

      例1、利用平方差公式計算

      (1)(5+6x)(5-6x) (2)(x-2y)(x+2y) (3)(-m+n)(-m-n)

      例2、利用平方差公式計算

      (1)(1)(- x-y)(- x+y) (2)(ab+8)(ab-8) (3)(m+n)(m-n)+3n2

      三、合作交流

      如圖,邊長為a的大正方形中有一個邊長為b的小正方形.

      (1)請表示圖中陰影部分的面積.

      (2)小穎將陰影部分拼成了一個長方形,這個長方形的長和寬分別是多少?你能表示出它的面積嗎? a a b

      (3)比較(1)(2)的結果,你能驗證平方差公式嗎?

      四、鞏固練習

      1、利用平方差公式計算

      (1)(a+2)(a-2) (2)(3a+2b)(3a-2b)

      (3)(-x+1)(-x-1) (4)(-4k+3)(-4k-3)

      2、利用平方差公式計算

      (1)803797 (2)398402

      3.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示( )

      A.只能是數 B.只能是單項式 C.只能是多項式 D.以上都可以

      4.下列多項式的乘法中,可以用平方差公式計算的是( )

      A.(a+b)(b+a) B.(-a+b)(a-b)

      C.( a+b)(b- a) D.(a2-b)(b2+a)

      5.下列計算中,錯誤的有( )

      ①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;

      ③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y)(x+y)=-x2-y2.

      A.1個 B.2個 C.3個 D.4個[來源:中.考.資.源.網WWW.ZK5U.COM]

      6.若x2-y2=30,且x-y=-5,則x+y的值是( )

      A.5 B.6 C.-6 D.-5

      7.(-2x+y)(-2x-y)=______.

      8.(-3x2+2y2)(______)=9x4-4y4.

      9.(a+b-1)(a-b+1)=(_____)2-(_____)2.

      10.兩個正方形的邊長之和為5,邊長之差為2,那么用較大的正方形的面積減去較小的正方形的面積,差是_____.

      11.利用平方差公式計算:20 19 .

      12.計算:(a+2)(a2+4)(a4+16)(a-2).

      五、學習反思

      我的收獲:

      我的疑惑:

      六、當堂測試

      1、下列多項式乘法中能用平方差公式計算的是( ).

      (A)(x+1)(1+x) (B)(1/2b+b)(-b-1/2a) (C)(-a+b)(-a-b) (D)(x2-y)(x+y2)[

      2、填空:(1)(x2-2)(x2+2)=

      (2)(5x-3y)( )=25x2-9y2

      3、計算:

      (1)(-2x+3y)(-2x-3y) (2)(a-2)(a+2)(a2+4)

      4.利用平方差公式計算

      ①1003997 ②14 15

      七、課外拓展

      下列各式哪些能用平方差公式計算?怎樣用?

      1) (a-b+c)(a-b-c)

      2) (a+2b-3)(a-2b+3)

      3) (2x+y-z+5)(2x-y+z+5)

      4) (a-b+c-d)(-a-b-c-d)

      2.2完全平方公式(1)

    八年級數學教案9

      一、課堂導入

      回顧平行四邊的性質定理及定義

      1.什么叫平行四邊形?平行四邊形有什么性質?

      2.將以上的性質定理,分別用命題形式敘述出來。(如果……那么……)

      根據平行四邊形的定義,我們研究了平行四邊形的其它性質,那么如何來判定一個四邊形是平行四邊形呢?除了定義還有什么方法?平行四邊形性質定理的逆命題是否成立?

      二、新課講解

      平行四邊形的判定:

      (定義法):兩組對邊分別平行的四邊形的'平邊形。

      幾何語言表達定義法:

      ∵AB∥CD,AD∥BC,∴四邊形ABCD是平行四邊形

      解析:一個四邊形只要其兩組對邊分別互相平行,則可判定這個四邊形是一個平行四邊形。

      活動:用做好的紙條拼成一個四邊形,其中強調兩組對邊分別相等。

      (平行四邊形判定定理):

      (一)兩組對邊分別相等的四邊形是平行四邊形。

      設問:這個命題的前提和結論是什么?

      已知:四邊形ABCD中,AB=CD,BC=DA。

      求證:四邊ABCD是平行四邊形。

      分析:判定平行四邊形的依據目前只有定義,也就是須證明兩組對邊分別平行,當然是借助第三條直線證明角等。連結BD。易證三角形全等。

      板書證明過程。

      小結:用幾何語言表達用定義法和剛才證明為正確的方法證明一個四邊形是平行四邊形的方法為:

      平行四邊形判定定理1:二組對邊分別相等的四邊形是平行四邊形∵AB=CD,AD=BC,∴四邊形ABCD是平行四邊形

      (二)設問:若一個四邊形有一組對邊平行且相等,能否判定這個四邊形也是平行四邊形呢?

      活動:課本探究內容,并用事準備好的紙條(紙條的長度相等),先將紙條放置不平行位置,讓學生設想若二紙條的端點為四邊形的頂點,則組成的四邊形是不是平行四邊形?若將紙條擺放為平行的位置,則同樣用二紙條的端點為頂點組成的四邊形是不是平行四邊形?

      設問:我們能否用推理的方法證明這個命題是正確的呢?(讓學生找出題設、結論,然后寫出已知、求證及證明過程。)

    八年級數學教案10

      一、教學目標

      1、理解分式的基本性質。

      2、會用分式的基本性質將分式變形。

      二、重點、難點

      1、重點:理解分式的基本性質。

      2、難點:靈活應用分式的基本性質將分式變形。

      3、認知難點與突破方法

      教學難點是靈活應用分式的基本性質將分式變形。突破的方法是通過復習分數的通分、約分總結出分數的基本性質,再用類比的方法得出分式的基本性質。應用分式的基本性質導出通分、約分的概念,使學生在理解的基礎上靈活地將分式變形。

      三、練習題的意圖分析

      1.P7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應用分式的基本性質,相應地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。

      2.P9的例3、例4地目的是進一步運用分式的基本性質進行約分、通分。值得注意的是:約分是要找準分子和分母的公因式,最后的結果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數的`最小公倍數,以及所有因式的次冪的積,作為最簡公分母。

      教師要講清方法,還要及時地糾正學生做題時出現的錯誤,使學生在做提示加深對相應概念及方法的理解。

      3.P11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號。這一類題教材里沒有例題,但它也是由分式的基本性質得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。

      “不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質的應用之一,所以補充例5。

      四、課堂引入

      1、請同學們考慮:與相等嗎?與相等嗎?為什么?

      2、說出與之間變形的過程,與之間變形的過程,并說出變形依據?

      3、提問分數的基本性質,讓學生類比猜想出分式的基本性質。

      五、例題講解

      P7例2.填空:

      [分析]應用分式的基本性質把已知的分子、分母同乘以或除以同一個整式,使分式的值不變。

      P11例3.約分:

      [分析]約分是應用分式的基本性質把分式的分子、分母同除以同一個整式,使分式的值不變。所以要找準分子和分母的公因式,約分的結果要是最簡分式。

      P11例4.通分:

      [分析]通分要想確定各分式的公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母。

    八年級數學教案11

      一、平移:在平面內,將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。

      1.平移

      2.平移的性質:

      ⑴經過平移,對應點所連的線段平行且相等;

      ⑵對應線段平行且相等,對應角相等。

      ⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。

      (4)平移后的圖形與原圖形全等。

      3.簡單的平移作圖

      ①確定個圖形平移后的位置的條件:

      ⑴需要原圖形的位置;

      ⑵需要平移的方向;

      ⑶需要平移的距離或一個對應點的位置。

      ②作平移后的圖形的方法:

      ⑴找出關鍵點;⑵作出這些點平移后的對應點;

      ⑶將所作的對應點按原來方式順次連接,所得的;

      二、旋轉:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉,這個定點稱為旋轉中心,轉動的角稱為旋轉角。

      1.旋轉

      2.旋轉的性質

      ⑴旋轉變化前后,對應線段,對應角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。

      ⑵旋轉過程中,圖形上每一個點都繞旋轉中心沿相同方向轉動了相同的角度。

      ⑶任意一對對應點與旋轉中心的`連線所成的角都是旋轉角,對應點到旋轉中心的距離相等。

      ⑷旋轉前后的兩個圖形全等。

      3.簡單的旋轉作圖

      ⑴已知原圖,旋轉中心和一對對應點,求作旋轉后的圖形。

      ⑵已知原圖,旋轉中心和一對對應線段,求作旋轉后的圖形。

      ⑶已知原圖,旋轉中心和旋轉角,求作旋轉后的圖形。

      三、分析組合圖案的形成

      ①確定組合圖案中的“基本圖案”

      ②發現該圖案各組成部分之間的內在聯系

      ③探索該圖案的形成過程,類型有:⑴平移變換;⑵旋轉變換;⑶軸對稱變換;⑷旋轉變換與平移變換的組合;

      ⑸旋轉變換與軸對稱變換的組合;⑹軸對稱變換與平移變換的組合。

    八年級數學教案12

      課題:一元二次方程實數根錯例剖析課

      【教學目的】 精選學生在解一元二次方程有關問題時出現的典型錯例加以剖析,幫助學生找出產生錯誤的原因和糾正錯誤的方法,使學生在解題時少犯錯誤,從而培養學生思維的批判性和深刻性。

      【課前練習】

      1、關于x的方程ax2+bx+c=0,當a_____時,方程為一元一次方程;當 a_____時,方程為一元二次方程。

      2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當△_______時,方程有兩個相等的實數根,當△_______時,方程有兩個不相等的實數根,當△________時,方程沒有實數根。

      【典型例題】

      例1 下列方程中兩實數根之和為2的方程是()

      (A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

      錯答: B

      正解: C

      錯因剖析:由根與系數的關系得x1+x2=2,極易誤選B,又考慮到方程有實數根,故由△可知,方程B無實數根,方程C合適。

      例2 若關于x的方程x2+2(k+2)x+k2=0 兩個實數根之和大于-4,則k的取值范圍是( )

      (A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

      錯解 :B

      正解:D

      錯因剖析:漏掉了方程有實數根的前提是△≥0

      例3(20xx廣西中考題) 已知關于x的一元二次方程(1-2k)x2-2 x-1=0有兩個不相等的實根,求k的取值范圍。

      錯解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2

      錯因剖析:漏掉了二次項系數1-2k≠0這個前提。事實上,當1-2k=0即k= 時,原方程變為一次方程,不可能有兩個實根。

      正解: -1≤k<2且k≠

      例4 (20xx山東太原中考題) 已知x1,x2是關于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個實數根,當x12+x22=15時,求m的值。

      錯解:由根與系數的關系得

      x1+x2= -(2m+1), x1x2=m2+1,

      ∵x12+x22=(x1+x2)2-2 x1x2

      =[-(2m+1)]2-2(m2+1)

      =2 m2+4 m-1

      又∵ x12+x22=15

      ∴ 2 m2+4 m-1=15

      ∴ m1 = -4 m2 = 2

      錯因剖析:漏掉了一元二次方程有兩個實根的前提條件是判別式△≥0。因為當m = -4時,方程為x2-7x+17=0,此時△=(-7)2-4×17×1= -19<0,方程無實數根,不符合題意。

      正解:m = 2

      例5 若關于 x的方程(m2-1)x2-2 (m+2)x+1=0有實數根,求m的取值范圍。

      錯解:△=[-2(m+2)]2-4(m2-1) =16 m+20

      ∵ △≥0

      ∴ 16 m+20≥0,

      ∴ m≥ -5/4

      又 ∵ m2-1≠0,

      ∴ m≠±1

      ∴ m的取值范圍是m≠±1且m≥ -

      錯因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關于未知數x的方程,而未限定方程的次數,所以在解題時就必須考慮m2-1=0和m2-1≠0兩種情況。當m2-1=0時,即m=±1時,方程變為一元一次方程,仍有實數根。

      正解:m的取值范圍是m≥-

      例6 已知二次方程x2+3 x+a=0有整數根,a是非負數,求方程的整數根。

      錯解:∵方程有整數根,

      ∴△=9-4a>0,則a<2.25

      又∵a是非負數,∴a=1或a=2

      令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2

      ∴方程的整數根是x1= -1, x2= -2

      錯因剖析:概念模糊。非負整數應包括零和正整數。上面答案僅是一部分,當a=0時,還可以求出方程的另兩個整數根,x3=0, x4= -3

      正解:方程的整數根是x1= -1, x2= -2 , x3=0, x4= -3

      【練習】

      練習1、(01濟南中考題)已知關于x的方程k2x2+(2k-1)x+1=0有兩個不相等的實數根x1、x2。

      (1)求k的取值范圍;

      (2)是否存在實數k,使方程的兩實數根互為相反數?如果存在,求出k的值;如果不存在,請說明理由。

      解:(1)根據題意,得△=(2k-1)2-4 k2>0 解得k<

      ∴當k< 時,方程有兩個不相等的實數根。

      (2)存在。

      如果方程的'兩實數根x1、x2互為相反數,則x1+ x2=- =0,得k= 。經檢驗k= 是方程- 的解。

      ∴當k= 時,方程的兩實數根x1、x2互為相反數。

      讀了上面的解題過程,請判斷是否有錯誤?如果有,請指出錯誤之處,并直接寫出正確答案。

      解:上面解法錯在如下兩個方面:

      (1)漏掉k≠0,正確答案為:當k< 時且k≠0時,方程有兩個不相等的實數根。

      (2)k= 。不滿足△>0,正確答案為:不存在實數k,使方程的兩實數根互為相反數

      練習2(02廣州市)當a取什么值時,關于未知數x的方程ax2+4x-1=0只有正實數根 ?

      解:(1)當a=0時,方程為4x-1=0,∴x=

      (2)當a≠0時,∵△=16+4a≥0 ∴a≥ -4

      ∴當a≥ -4且a≠0時,方程有實數根。

      又因為方程只有正實數根,設為x1,x2,則:

      x1+x2=- >0 ;

      x1. x2=- >0 解得 :a<0

      綜上所述,當a=0、a≥ -4、a<0時,即當-4≤a≤0時,原方程只有正實數根。

      【小結】

      以上數例,說明我們在求解有關二次方程的問題時,往往急于尋求結論而忽視了實數根的存在與“△”之間的關系。

      1、運用根的判別式時,若二次項系數為字母,要注意字母不為零的條件。

      2、運用根與系數關系時,△≥0是前提條件。

      3、條件多面時(如例5、例6)考慮要周全。

      【布置作業】

      1、當m為何值時,關于x的方程x2+2(m-1)x+ m2-9=0有兩個正根?

      2、已知,關于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實數根。

      求證:關于x的方程

      (m-5)x2-2(m+2)x + m=0一定有一個或兩個實數根。

      考題匯編

      1、(20xx年廣東省中考題)設x1、 x2是方程x2-5x+3=0的兩個根,不解方程,利用根與系數的關系,求(x1-x2)2的值。

      2、(20xx年廣東省中考題)已知關于x的方程x2-2x+m-1=0

      (1)若方程的一個根為1,求m的值。

      (2)m=5時,原方程是否有實數根,如果有,求出它的實數根;如果沒有,請說明理由。

      3、(20xx年廣東省中考題)已知關于x的方程x2+2(m-2)x+ m2=0有兩個實數根,且兩根的平方和比兩根的積大33,求m的值。

      4、(20xx年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個根,且x1+x2=6,x12+x22=20,求p和q的值。

    八年級數學教案13

      總課時:7課時 使用人:

      備課時間:第八周 上課時間:第十周

      第4課時:5、2平面直角坐標系(2)

      教學目標

      知識與技能

      1.在給定的直角坐標系下,會根據坐標描出點的位置;

      2.通過找點、連線、觀察,確定圖形的大致形狀的問題,能進一步掌握平面直角坐標系的基本內容。

      過程與方法

      1.經歷畫坐標 系、描點、連線、看圖以及由點找坐標等過程,發展學生的數形結合思想,培養學生的合作 交流能力;

      2.通過由點確定坐標到根據坐標描點的轉化過程,進一步培養學生的轉化意識。

      情感態度與價值觀

      通過生動有趣的教學活動,發展學生的合情推理能力和豐富的情感、態度,提高學生學習數學的興趣。

      教學重點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。

      教學難點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。

      教學過程

      第一環節 感 受生活中的'情境,導入新課(10分鐘,學生自己繪圖找點)

      在上節課中我們學習了平面直角坐標系的定義,以及橫軸、縱軸、點 的坐標的定義,練習了在平面直角坐標系中由點找坐標,還探討了橫坐標或縱坐標相同的點的連線與坐標軸的關系,坐標軸上點的坐標有什么特點。

      練習:指出下列 各點以及所在象限或坐標軸:

      A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(0, ), G(0,0) (抽取學生作答)

      由點找坐標是已知點在直角坐標 系中的位置,根據這點在方格紙上對應的x軸、y軸上的數字寫出它的坐標,反過來,已知坐標,讓 你在直角坐標系中找點,你能找到嗎?這就是本節課的內容。

      第二環節 分類討論,探索新知.(15分鐘,小組討論,全班交流)

      1.請同學們拿出準備好的方格紙,自己建立平面直角坐標系,然后按照我給出的坐標,在直角坐標系中描點,并依次用線段連接起來。

      (-9,3),(-9,0),(-3,0),( -3,3)

      ( 學生操作完畢后)

      2.(出示投影)還是在這個平面直角坐標系中,描出下列各組內的點用線段依次連接起來。

      (1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);

      (2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);

      (3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);

      (4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。

      觀察所得的圖形,你覺得它像什么?

      分成4人小組,大家合作在剛才建立的平面直角坐標系中(選出小組中最好的)添畫。各人分工,每人畫一小題。看哪個小組做得最快?

      (出示學生的作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺得它像什么?

      這個圖形像一棟房子旁邊還有一棵大樹。

      3.做一做

      (出示投影)

      在書上已建立的直角坐標系畫,要求每位同學獨立完成。

      (學生描點、畫圖)

      (拿出一位做對的學生的作品投影)

      你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?

      (像貓臉)

      第三環節 學有所用.(10分鐘,先獨立完成,后小組討論)

      (補充)1.在直角坐標系中描出下列各點,并將各組內的點用線段順次連接起來。

      (1)(0,3),(-4,0),(0,-3),(4,0),(0,3);

      (2)(0,0),(4,-3),(8,0),(4,3),(0,0);

      (3)(2,0)

      觀察所得的圖形,你覺得它像什么?(像移動的菱形)

      2.在直角坐標系中,設法找到若干個點使得連接各點所得的封閉圖形是如下圖所示的十字。

      先獨立完成,然后小組討論是否正確。

      第四環節 感悟與收獲(5分鐘,學生總結,全班交流)

      本節課在復習上節課的基礎上,通過找點、連 線、觀察,確定圖形的大致形狀,進一步掌握平面直角坐標系的基本內容。

      在例題和練習中,我們畫出了不少美麗的圖形,自己設計一些圖形,并把圖形放在直角坐標系下,寫出點的坐標。

      第五環節 布置作業

      習題5、4

      A組(優等生)1、2、3

      B組(中等生)1、2

      C組(后三分之一生)1、2

    八年級數學教案14

      一、學情分析

      本學期本人繼續擔任八年級(2)班的數學教學工作,八年級是初中學習過程中的關鍵時期,學生基礎的好壞,直接影響到將來是否能升學。從上期期末考試的成績來看1班、2班的成績差異很大,2班有少數學生不上進,思維不緊跟老師,有部分同學基礎較差,問題較嚴重。要在本期獲得理想成績,老師和學生都要付出努力,查漏補缺,充分發揮學生是學習的主體,教師是教的主體作用,注重方法,培養能力。

      二、教材分析

      本學期教學內容共計五章,知識的前后聯系,教材的教學目標,重、難點分析如下:

      第十七章分式

      本章的主要內容包括:分式的概念,分式的基本性質,分式的約分與通分,分式的加、減、乘、除運算,整數指數冪的概念及運算性質,分式方程的概念及可化為一元一次方程的分式方程的解法。

      第十八章函數及其圖像

      函數是研究現實世界變化規律的一個重要模型,本單元學生在學習了一次函數后,進一步研究反比例函數。學生在本章中經歷:反比例函數概念的抽象概括過程,體會建立數學模型的思想,進一步發展學生的抽象思維能力;經歷反比例函數的圖象及其性質的探索過程,在交流中發展能力這是本章的重點之一;經歷本章的重點之二:利用反比例函數及圖象解決實際問題的過程,發展學生的數學應用能力;經歷函數圖象信息的識別應用過程,發展學生形象思維;能根據所給信息確定反比例函數表達式,會作反比例函數圖象,并利用它們解決簡單的實際問題。本章的難點在于對學生抽象思維的培養,以及提高數形結合的意識和能力。

      第十九章全等三角形

      本章主要內容是探索三角形全等的判定方法,領略推理證明的奧秘,由于三角形全等的判定方法與全等三角形的性質具有“互逆”的特點,所以本章因勢利導,介紹了命題與定理、逆命題與逆命題的有關知識。此外,本章教材最后還介紹了幾種常用的基本作圖和簡單的尺規作圖的方法。

      第二十章平行四邊形的判定

      本章的內容包括平行四邊形的判定;矩形、菱形、正方形等幾種特殊平行四邊形的判定;等腰梯形的判定等幾個部分。本章首先通過回顧平行四邊形的性質,由性質引出判定方法,在此基礎上,學習矩形、菱形、正方形等特殊平行四邊形的判定,最后介紹了等腰梯形的判定與應用。本章知識是在學習了平行線、三角形、平行四邊形的性質等知識的基礎上的進一步深化和提高,是今后學習其他幾何知識的基礎。

      第二十一章數據的整理與初步處理

      本章主要研究平均數、中位數、眾數以及極差、方差等統計量的統計意義,學習如何利用這些統計量分析數據的集中趨勢和離散情況,并通過研究如何用樣本的平均數和方差估計總體的平均數和方差,進一步體會用樣本估計總體的思想。

      三、提高學科教育質量的主要措施:

      1、認真做好教學六認真工作。把教學六認真作為提高成績的主要方法,認真研讀新課程標準,鉆研新教材,根據新課程標準,擴充教材內容,認真上課,批改作業,認真輔導,認真制作測試試卷,也讓學生學會認真學習。

      2、興趣是最好的老師,愛因斯坦如是說。激發學生的興趣,給學生介紹數學家,數學史,介紹相應的數學趣題,給出數學課外思考題,激發學生的興趣。

      3、引導學生積極參與知識的構建,營造民主、和諧、平等、自主、探究、合作、交流、分享發現快樂的高效的學習課堂,讓學生體會學習的快樂,享受學習。引導學生寫小論文,寫復習提綱,使知識來源于學生的構造。

      4、引導學生積極歸納解題規律,引導學生一題多解,多解歸一,培養學生透過現象看本質,提高學生舉一反三的能力,這是提高學生素質的根本途徑之一,培養學生的發散思維,讓學生處于一種思如泉涌的狀態。

      5、運用新課程標準的'理念指導教學,積極更新自己腦海中固有的教育理念,不同的教育理念將帶來不同的教育效果。

      6、培養學生良好的學習習慣,陶行知說:教育就是培養習慣,有助于學生穩步提高學習成績,發展學生的非智力因素,彌補智力上的不足。

      7、指導成立“課外興趣小組”的民間組織,開展豐富多彩的課外活動,開展對奧數題的研究,課外調查,操作實踐,帶動班級學生學習數學,同時發展這一部分學生的特長。

      8、開展分層教學,布置作業設置A、B、C三類分層布置分別適合于差、中、好三類學生,課堂上的提問照顧好好、中、差三類學生,使他們都等到發展。

      9、進行個別輔導,優生提升能力,扎實打牢基礎知識,對差生,一些關鍵知識,輔導差生過關,為差生以后的發展鋪平道路。

      10、培養學生學習數學的良好習慣。這些習慣包括:

      ①認真做作業的習?包括作業前清理好桌面,作業后認真檢查;

      ②預習的習慣;

      ③認真看批改后的作業并及時更正的習慣;

      ④認真做好課前準備的習慣;

      ⑤在書上作精要筆記的習慣;

      ⑥妥善保管書籍資料和學習用品的習慣;

      ⑦認真閱讀數學教材的習慣。

    八年級數學教案15

      數據的波動

      教學目標:

      1、經歷數據離散程度的探索過程

      2、了解刻畫數據離散程度的三個量度極差、標準差和方差,能借助計算器求出相應的數值。

      教學重點:會計算某些數據的極差、標準差和方差。

      教學難點:理解數據離散程度與三個差之間的關系。

      教學準備:計算器,投影片等

      教學過程:

      一、創設情境

      1、投影課本P138引例。

      (通過對問題串的解決,使學生直觀地估計從甲、乙兩廠抽取的20只雞腿的平均質量,同時讓學生初步體會平均水平相近時,兩者的離散程度未必相同,從而順理成章地引入刻畫數據離散程度的一個量度極差)

      2、極差:是指一組數據中最大數據與最小數據的差,極差是用來刻畫數據離散程度的一個統計量。

      二、活動與探究

      如果丙廠也參加了競爭,從該廠抽樣調查了20只雞腿,數據如圖(投影課本159頁圖)

      問題:1、丙廠這20只雞腿質量的平均數和極差是多少?

      2、如何刻畫丙廠這20只雞腿質量與其平均數的差距?分別求出甲、丙兩廠的20只雞腿質量與對應平均數的差距。

      3、在甲、丙兩廠中,你認為哪個廠雞腿質量更符合要求?為什么?

      (在上面的情境中,學生很容易比較甲、乙兩廠被抽取雞腿質量的極差,即可得出結論。這里增加一個丙廠,其平均質量和極差與甲廠相同,此時導致學生思想認識上的矛盾,為引出另兩個刻畫數據離散程度的`量度標準差和方差作鋪墊。

      三、講解概念:

      方差:各個數據與平均數之差的平方的平均數,記作s2

      設有一組數據:x1, x2, x3,,xn,其平均數為

      則s2= ,

      而s= 稱為該數據的標準差(既方差的算術平方根)

      從上面計算公式可以看出:一組數據的極差,方差或標準差越小,這組數據就越穩定。

      四、做一做

      你能用計算器計算上述甲、丙兩廠分別抽取的20只雞腿質量的方差和標準差嗎?你認為選哪個廠的雞腿規格更好一些?說說你是怎樣算的?

      (通過對此問題的解決,使學生回顧了用計算器求平均數的步驟,并自由探索求方差的詳細步驟)

      五、鞏固練習:課本第172頁隨堂練習

      六、課堂小結:

      1、怎樣刻畫一組數據的離散程度?

      2、怎樣求方差和標準差?

      七、布置作業:習題5.5第1、2題。

    【八年級數學教案】相關文章:

    八年級數學教案12-09

    (經典)八年級數學教案06-25

    八年級《函數》數學教案04-03

    八年級數學教案12-31

    八年級《函數》數學教案02-07

    八年級數學教案【熱門】05-29

    八年級數學教案(精)06-25

    八年級數學教案[通用]06-21

    八年級數學教案(優選)06-24

    八年級數學教案【精品】06-22

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      宅男噜噜69国产精品观看 | 在线视欧美亚洲日本 | 图片专区欧美日韩 | 日本一区二区在线观看免费 | 精品国产高清免费第一区二区三区 | 中文字幕久精品在线观看 |