1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>

    初一數學教案

    時間:2024-12-31 07:25:15 七年級數學教案 我要投稿

    【精】初一數學教案4篇

      作為一名教學工作者,就不得不需要編寫教案,教案是實施教學的主要依據,有著至關重要的作用。來參考自己需要的教案吧!以下是小編精心整理的初一數學教案,歡迎大家借鑒與參考,希望對大家有所幫助。

    【精】初一數學教案4篇

    初一數學教案1

      一、學習與導學目標:

      知識與技能:借助數軸理解相反數的意義,懂得數軸上表示相反數的兩個點關于原點對稱,會求有理數的相反數;

      過程與方法:經歷概念的生成、應用,體會相反數的意義,簡化數的符號,學習觀察、歸納、概括的策略與方法;

      情感態度:通過師生、生生合作學習,促進交流,激發興趣。

      二、學程與導程活動:

      A、準備活動:

      1、師生游戲“唱反調”:我們知道在小學學過的0以外的數前面加上負號“-”的數就是負數。現在我說一個正數,你們給它添上“-”號說出來,我如果說一個負數,你們反過來說出對應的`正數。+3、+1、-1/2、-18.4、0.75,學生很快說出-3、-1、1/2、18.4、-0.175。

      2、上述“唱反調”的兩個數3與-3,1與-1,-1/2與1/2……,在數軸上對應的點的位置如何?可建議生擇兩組在數軸上表示以后作答(在原點兩側到原點的距離相等,真可謂從原點背道而馳“唱反調”)。

      提問:數軸上與原點距離是4的點有幾個?這些點表示的數是多少?

      歸納:設a是一個正數,數軸上與原點距離是a的點有兩個,分別在原點左右表示-a和a,我們說這兩點關于原點對稱。

      B、學習概念:

      1、像3和-3,1和-1,-1/2和1/2這樣,只有負號不同的兩個數給它一個什么樣的關系名稱合適呢?生:互為相反數,師:很好,我們把上述只有負號不同的兩個數叫做互為相反數(oppositenumber)。也就是說3的相反數是-3,-3的相反數是3。可見:相反數是成對出現的,不能單獨存在。

      一般地,a和-a互為相反數。“-a”可讀成“a的相反數”。

      2、在數軸上看,表示相反數的兩個點和原點有什么關系?(關于原點對稱)

      3、從上述意義上看,你看如何規定0的相反數更為合理?

      商討得:0的相反數仍是0,即0的相反數等于它本身。

      C、應用舉例:

      1、兩人一組,一人任說一個有理數,請同伴說出它的相反數。

      2、如果a=-a,那么表示數a的點在數軸上的什么位置?a=?(a=0)。

      3、在正數前面添上“-”號,就得到這個數的相反數,同樣地,在任意一個數前面添上“-”號,新的數就表示原數的相反數,如:-(+5)=-5,-(-5)=5,-0=0。

      結合前面相反數意義的量的學習,還可賦予-(-5)怎樣的意義,從而幫助自己理解-(-5)=5嗎?

      4、化簡下列各數P124練習,你愿意繼續嘗試化簡下列各式嗎?

      +(-2/3),-(-2/3),-(+2/3),+(+2/3)

      你能試著總結規律嗎?(括號內外同號結果為正,括號內外異號結果為負)。

      5、若a=-5,則-a=;若-x=7,則x=。

      三、筆記與板書提綱:

      課題應用舉例中的2

      活動引例應用舉例中的4(學生練習),5、概念

      四、練習與拓展選題:

      1、教科書P18/3;

      2、如圖是正方形紙盒的側面展示圖,請你在正方形內分別填上6個不同的數,使折成正方體后相對的面上的兩個數互為相反數(寫出滿足條件的一種情形即可)。

    初一數學教案2

      【教學內容】

      第二章 2.1 正數與負數 2.2 數軸

      【教學目標】

      1、會判斷一個數是正數還是負數,理解負數的意義。

      2、會把已知數在數軸上表示,能說出已知點所表示的數。

      3、了解數軸的原點、正方向、單位長度,能畫出數軸。

      4、會比較數軸上數的大小。

      【知識講解】

      一、本講主要學習內容

      1、負數的'意義及表示 2、零的位置和地位

      3、有理數的分類 4、數軸概念及三要素

      5、數軸上數與點的對應關系 6、數軸上數的比較大小

      其中,負數的概念,數軸的概念及其三要素以及數軸上數的比較大小是重點。負數的意義是難點。

      下面概述一下這六點的主要內容

      1、負數的意義及表示

      把大于0的數叫正數如5,3,+3等。在正數前加上“-”號的數叫做負數如-5,-3,- 等。負數是表示相反意義的量,如:低于海平面-155米表示為-155m,虧損50元表示-50元。

      2、零的位置和地位

      零既不是正數,也不是負數,但它是自然數。它可以表示沒有,也可以在數軸上分隔正數和分數,甚至可以表示始點,表示缺位,這將在下面詳細介紹。

      3、有理數的分類

      正整數、零、負整數統稱為整數,正分數、負分數統稱為分數,整數和分數統稱為有理數。

      正整數

      整數 零 正有理數

      有理數 負整數 或 有理數 零

      分數 正分數 負有理數

      負分數

    初一數學教案3

      7.3.1多邊形

      [教學目標]

      1.了解多邊形及有關概念,理解正多邊形及其有關概念.

      2.區別凸多邊形與凹多邊形.

      [教學重點、難點]

      1.重點:

      (1)了解多邊形及其有關概念,理解正多邊形及其有關概念.

      (2)區別凸多邊形和凹多邊形.

      2.難點:

      多邊形定義的準確理解.

      [教學過程]

      一、新課講授

      投影:圖形見課本P84圖7.3一l.

      你能從投影里找出幾個由一些線段圍成的圖形嗎?

      上面三圖中讓同學邊看、邊議.

      在同學議論的基礎上,老師給以總結,這些線段圍成的圖形有何特性?

      (1)它們在同一平面內.

      (2)它們是由不在同一條直線上的幾條線段首尾順次相接組成的.

      這些圖形中有三角形、四邊形、五邊形、六邊形、八邊形,那么什么叫做多邊形呢?

      提問:三角形的定義.

      你能仿照三角形的定義給多邊形定義嗎?

      1.在平面內,由一些線段首位順次相接組成的圖形叫做多邊形.

      如果一個多邊形由n條線段組成,那么這個多邊形叫做n邊形.(一個多邊形由幾條線段組成,就叫做幾邊形.)

      2.多邊形的邊、頂點、內角和外角.

      多邊形相鄰兩邊組成的角叫做多邊形的內角,多邊形的邊與它的鄰邊的延長線組成的角叫做多邊形的外角.

      3.多邊形的對角線

      連接多邊形的'不相鄰的兩個頂點的線段,叫做多邊形的對角線.

      讓學生畫出五邊形的所有對角線.

      4.凸多邊形與凹多邊形

      看投影:圖形見課本P85.7.3—6.

      在圖(1)中,畫出四邊形ABCD的任何一條邊所在的直線,整個圖形都在這條直線的同一側,這樣的四邊形叫做凸四邊形,這樣的多邊形稱為凸多邊形;而圖(2)就不滿足上述凸多邊形的特征,因為我們畫BD所在直線,整個多邊形不都在這條直線的同一側,我們稱它為凹多邊形,今后我們在習題、練習中提到的多邊形都是凸多邊形.

      5.正多邊形

      由正方形的特征出發,得出正多邊形的概念.

      各個角都相等,各條邊都相等的多邊形叫做正多邊形.

      二、課堂練習

      課本P86練習1.2.

      三、課堂小結

      引導學生總結本節課的相關概念.

      四、課后作業

      課本P90第1題.

      備用題:

      一、判斷題.

      1.由四條線段首尾順次相接組成的圖形叫四邊形.()

      2.由不在一直線上四條線段首尾次順次相接組成的圖形叫四邊形.()

      3.由不在一直線上四條線段首尾順次接組成的圖形,且其中任何一條線段所在的直線、使整個圖形都在這直線的同一側,叫做四邊形.()

      4.在同一平面內,四條線段首尾順次連接組成的圖形叫四邊形.()

      二、填空題.

      1.連接多邊形的線段,叫做多邊形的對角線.

      2.多邊形的任何整個多邊形都在這條直線的,這樣的多邊形叫凸多邊形.

      3.各個角,各條邊的多邊形,叫正多邊形.

      三、解答題.

      1.畫出圖(1)中的六邊形ABCDEF的所有對角線.

      2.如圖(2),O為四邊形ABCD內一點,連接OA、OB、OC、OD可以得幾個三角形?它與邊數有何關系?

      3.如圖(3),O在五邊形ABCDE的AB上,連接OC、OD、OE,可以得到幾個三角形?它與邊數有何關系?

      4.如圖(4),過A作六邊形ABCDEF的對角線,可以得到幾個三角形?它與邊數有何關系?

    初一數學教案4

      教學目標:

      (1)透徹理解、掌握一元二次方程、一元二次不等式與二次函數的內在聯系,會解一元二次不等式;

      (2)培養學生數學的數形結合思想和轉化能力,學會主動探求問題和尋找解決問題的方法。

      教學重點:一元二次不等式的解法(圖象法)

      教學難點:

      (1)一元二次方程、一元二次不等式與二次函數的關系;

      (2)數形結合思想的滲透

      教學方法與教學手段:

      嘗試探索教學法、歸納概括。

      教學過程:

      一、復習引入

      1.復習一元一次方程、一元一次不等式與一次函數的關系

      [師]前面我們已經學習了絕對值不等式的解法,今天開始研究一元二次不等式的解法。(板書課題)記得在初中我們已學習了一元一次不等式的解法,還記得是用什么方法解的嗎?

      學生可能回答是代數方法,也可能說是利用直線圖象。

      [師]初中學習了一次函數的圖象,使得我們對一元一次不等式的解法有了更深入的了解。首先請同學們畫出 y=2x-7

      [師]請同學們畫出圖象,并回答問題。

      一次函數y=2x-7的圖象如下:

      填表:

      當x 時,y = 0,即 2x-7 0;

      當x 時,y < 0,即 2x-7 0;

      當x 時,y > 0,即 2x-7 0;

      注:(1)引導學生由圖象得出結論(數形結合)

      (2)由學生填空(一邊演示y<0,y>0部分圖象)

      從上例的特殊情形,你能得出什么結論?

      注:教師引導下學生發現其結論,并由學生嘗試敘述:一元一次方程ax+b=0的根實質上就是直線y=ax+b與x軸交點的橫坐標;一元一次不等式ax+b>0(或ax+b<0)的解集實質上就是使得函數的圖象在x軸上方還是下方時x的取值范圍。

      2.新課導入

      [師]我們可以利用一次函數的圖象快速準確地求出一元一次不等式的解集,那能否也可以借助二次函數的圖象來解一元二次不等式呢?

      二、講解新課

      1、一元二次不等式解法的探索

      [師] 你知道二次函數的草圖是怎樣畫出的嗎?(用"特殊點法"而非課本上的"列表描點法")你能回答以下問題嗎?二次函數 y=x2-4x+3的圖象如下:

      填表:方程x2-4x+3=0(即y=0)的解是

      不等式x2-4x+3>0(即y>0)的解集是

      不等式x2-4x+3<0(即y<0)的解集是

      注:學生類比前面的知識,能根據二次函數的圖象確定與x軸的交點,確定對應的一元二次方程的根,從而確定一元二次不等式的.解集。(邊說邊畫y>0,y<0部分圖象)

      [師]現在如果我變動這條拋物線,請大家觀察拋物線與x軸的交點有何變化?

      注:引導學生發現一元二次方程的根有三種情況,其對應的二次函數圖象與x軸的位置關系也有三種情況,是由 >0, =0,<0來確定的。

      2、講解例題

      [師]接下來請同學們再來分析幾個具體例子

      (板書)例:解下列各不等式

      (1)2x2-3x-2>0;

      (2) -3x2+6x>2;

      (3)4x2-4x+1>0;

      (4)-x2+2x-3>0.

      注:跟學生共同詳細分析(1),強調解題規范性,其余(2)(3)(4)由學生完成,并小組討論。

      解:(1)方程2x2-3x-2=0的兩根為x1=- 或 x2=2,(畫草圖,結合圖象)

      所以原不等式的解集是{x| x<- x="">2 }

      四、課后作業:書P21/習題1.5/1.3.5.6

      五、教學設計說明:

      1、本節課教學設計力圖體現以學生發展為本,遵循學生的認知規律,體現循序漸進的教學原則,通過對原有知識的復習,引導學生類比探索新的知識,激發學生的求知欲望,調動學生的積極性。

      2、本節課采用在教師引導下啟發學生探索發現,體會解題過程中形結合思想方法,使之獲得內心感受。

      3、本節課的重點是利用圖象解一元二次不等式,讓學生明確一元二次方程、一元二次不等式與二次函數之間的聯系。在思維訓練方面,注重從特殊到一般,從具體到抽象思維的培養。歸納總結可以訓練學生的收斂思維,有助于完善學生的思維結構。

      4、本節課的例題及課堂練習是課本上的習題,其目的在于落實基礎,提高運算能力。

    【初一數學教案】相關文章:

    初一數學教案11-14

    初一數學教案12-22

    初一數學教案[實用]01-22

    初一數學教案上冊11-19

    初一數學教案(精選6篇)02-26

    初一數學教案精選【15篇】11-23

    初一上冊數學教案01-17

    初一數學教案設計01-17

    青島初一數學教案模板10-28

    初一數學教案設計06-20

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      一本久久综合久久久 | 午夜福利院视频免观看在线 | 日本三级香港三级理论视频 | 日本a级综合久久a | 在线不卡日本v二区707 | 一本久久a久久精品不卡 |