八年級上冊數學教案匯編[5篇]
作為一名優秀的教育工作者,時常要開展教案準備工作,編寫教案助于積累教學經驗,不斷提高教學質量。我們該怎么去寫教案呢?以下是小編收集整理的八年級上冊數學教案,僅供參考,歡迎大家閱讀。
八年級上冊數學教案1
一、教學目標:
1.了解方差的定義和計算公式。
2.理解方差概念的產生和形成的過程。
3.會用方差計算公式來比較兩組數據的波動大小。
二、重點、難點和難點的突破方法:
1.重點:方差產生的必要性和應用方差公式解決實際問題。
2.難點:理解方差公式
3.難點的突破方法:
方差公式:S = [( - ) +( - ) +…+( - )]比較復雜,學生理解和記憶這個公式都會有一定困難,以致應用時常常出現計算的錯誤,為突破這一難點,我安排了幾個環節,將難點化解。
(1)首先應使學生知道為什么要學習方差和方差公式,目的不明確學生很難對本節課內容產生興趣和求知欲望。教師在授課過程中可以多舉幾個生活中的小例子,不如選擇儀仗隊隊員、選擇運動員、選擇質量穩定的電器等。學生從中可以體會到生活中為了更好的做出選擇判斷經常要去了解一組數據的波動程度,僅僅知道平均數是不夠的。
(2)波動性可以通過什么方式表現出來?第一環節中點明了為什么去了解數據的波動性,第二環節則主要使學生知道描述數據,波動性的方法。可以畫折線圖方法來反映這種波動大小,可是當波動大小區別不大時,僅用畫折線圖方法去描述恐怕不會準確,這自然希望可以出現一種數量來描述數據波動大小,這就引出方差產生的必要性。
(3)第三環節教師可以直接對方差公式作分析和解釋,波動大小指的是與平均數之間差異,那么用每個數據與平均值的差完全平方后便可以反映出每個數據的波動大小,整體的波動大小可以通過對每個數據的波動大小求平均值得到。所以方差公式是能夠反映一組數據的波動大小的一個統計量,教師也可以根據學生程度和課堂時間決定是否介紹平均差等可以反映數據波動大小的其他統計量。
三、例習題的意圖分析:
1.教材P125的討論問題的意圖:
(1).創設問題情境,引起學生的學習興趣和好奇心。
(2).為引入方差概念和方差計算公式作鋪墊。
(3).介紹了一種比較直觀的衡量數據波動大小的方法——畫折線法。
(4).客觀上反映了在解決某些實際問題時,求平均數或求極差等方法的局限性,使學生體會到學習方差的意義和目的。
2.教材P154例1的設計意圖:
(1).例1放在方差計算公式和利用方差衡量數據波動大小的規律之后,不言而喻其主要目的是及時復習,鞏固對方差公式的.掌握。
(2).例1的解題步驟也為學生做了一個示范,學生以后可以模仿例1的格式解決其他類似的實際問題。
四、課堂引入:
除采用教材中的引例外,可以選擇一些更時代氣息、更有現實意義的引例。例如,通過學生觀看2004年奧運會劉翔勇奪110米欄冠軍的錄像,進而引導教練員根據平時比賽成績選擇參賽隊員這樣的實際問題上,這樣引入自然而又真實,學生也更感興趣一些。
五、例題的分析:
教材P154例1在分析過程中應抓住以下幾點:
1.題目中“整齊”的含義是什么?說明在這個問題中要研究一組數據的什么?學生通過思考可以回答出整齊即波動小,所以要研究兩組數據波動大小,這一環節是明確題意。
2.在求方差之前先要求哪個統計量,為什么?學生也可以得出先求平均數,因為公式中需要平均值,這個問題可以使學生明確利用方差計算步驟。
3.方差怎樣去體現波動大小?
這一問題的提出主要復習鞏固方差,反映數據波動大小的規律。
六、隨堂練習:
1.從甲、乙兩種農作物中各抽取1株苗,分別測得它的苗高如下:(單位:cm)
甲:9、10、11、12、7、13、10、8、12、8;
乙:8、13、12、11、10、12、7、7、9、11;
問:(1)哪種農作物的苗長的比較高?
(2)哪種農作物的苗長得比較整齊?
2.段巍和金志強兩人參加體育項目訓練,近期的5次測試成績如下表所示,誰的成績比較穩定?為什么?
測試次數1 2 3 4 5
段巍13 14 13 12 13
金志強10 13 16 14 12
參考答案:1.(1)甲、乙兩種農作物的苗平均高度相同;(2)甲整齊
2.段巍的成績比金志強的成績要穩定。
七、課后練習:
1.已知一組數據為2、0、-1、3、-4,則這組數據的方差為。
2.甲、乙兩名學生在相同的條件下各射靶10次,命中的環數如下:
甲:7、8、6、8、6、5、9、10、7、4
乙:9、5、7、8、7、6、8、6、7、7
經過計算,兩人射擊環數的平均數相同,但S S,所以確定去參加比賽。
3.甲、乙兩臺機床生產同種零件,10天出的次品分別是( )
甲:0、1、0、2、2、0、3、1、2、4
乙:2、3、1、2、0、2、1、1、2、1
分別計算出兩個樣本的平均數和方差,根據你的計算判斷哪臺機床的性能較好?
4.小爽和小兵在10次百米跑步練習中成績如表所示:(單位:秒)
小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9
小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8
如果根據這幾次成績選拔一人參加比賽,你會選誰呢?
答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙機床性能好
4. =10.9、S =0.02;
=10.9、S =0.008
選擇小兵參加比賽。
八年級上冊數學教案2
一、內容和內容解析
1.內容
三角形中相關元素的概念、按邊分類及三角形的三邊關系。
2.內容解析
三角形是一種最基本的幾何圖形,是認識其他圖形的基礎,在本章中,學好了三角形的有關概念和性質,為進一步學習多邊形的相關內容打好基礎,本節主要介紹與三角形的的概念、按邊分類和三角形三邊關系,使學生對三角形的有關知識有更為深刻的理解。
本節課的教學重點:三角形中的`相關概念和三角形三邊關系。
本節課的教學難點:三角形的三邊關系。
二、目標和目標解析
1.教學目標
(1)了解三角形中的相關概念,學會用符號語言表示三角形中的對應元素。
(2)理解并且靈活應用三角形三邊關系。
2.教學目標解析
(1)結合具體圖形,識三角形的概念及其基本元素。
(2)會用符號、字母表示三角形中的相關元素,并會按邊對三角形進行分類。
(3)理解三角形兩邊之和大于第三邊這一性質,并會運用這一性質來解決問題。
三、教學問題診斷分析
在探索三角形三邊關系的過程中,讓學生經歷觀察、探究、推理、交流等活動過程,培養學生的和推理能力和合作學習的精神。
四、教學過程設計
1.創設情境,提出問題
問題回憶生活中的三角形實例,結合你以前對三角形的了解,請你給三角形下一個定義。
師生活動:先讓學生分組討論,然后各小組派代表發言,針對學生下的定義,給出各種圖形反例,指出其不完整性,加深學生對三角形概念的理解。
【設計意圖】三角形概念的獲得,要讓學生經歷其描述的過程,借此培養學生的語言表述能力,加深學生對三角形概念的理解。
2.抽象概括,形成概念
動態演示“首尾順次相接”這個的動畫,歸納出三角形的定義。
師生活動:
三角形的定義:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
【設計意圖】讓學生體會由抽象到具體的過程,培養學生的語言表述能力。
補充說明:要求學生學會三角形、三角形的頂點、邊、角的概念以及幾何表達方法。
師生活動:結合具體圖形,教師引導學生分析,讓學生學會由文字語言向幾何語言的過渡。
【設計意圖】進一步加深學生對三角形中相關元素的認知,并進一步熟悉幾何語言在學習中的應用。
3.概念辨析,應用鞏固
如圖,不重復,且不遺漏地識別所有三角形,并用符號語言表示出來。
1.以AB為一邊的三角形有哪些?
2.以∠D為一個內角的三角形有哪些?
3.以E為一個頂點的三角形有哪些?
4.說出ΔBCD的三個角。
師生活動:引導學生從概念出發進行思考,加深學生對三角形中相關元素概念的理解。
4.拓廣延伸,探究分類
我們知道,按照三個內角的大小,可以將三角形分為銳角三角形、直角三角形和鈍角三角形,如果要按照邊的大小關系對三角形進行分類,又應該如何分呢?小組之間同學進行交流并說說你們的想法。
師生活動:通過討論,學生類比按角的分類方法按邊對三角形進行分類,接著引出等腰三角形及等邊三角形的概念,引導學生了解等腰三角形與等邊三角形的聯系,強化學生對三角形按邊分類的理解。
八年級上冊數學教案3
教學內容
本節課主要介紹全等三角形的概念和性質。
教學目標
1、知識與技能
領會全等三角形對應邊和對應角相等的有關概念。
2、過程與方法
經歷探索全等三角形性質的過程,能在全等三角形中正確找出對應邊、對應角。
3、情感、態度與價值觀
培養觀察、操作、分析能力,體會全等三角形的應用價值。
重、難點與關鍵
1、重點:會確定全等三角形的對應元素。
2、難點:掌握找對應邊、對應角的方法。
3、關鍵:找對應邊、對應角有下面兩種方法:(1)全等三角形對應角所對的邊是對應邊,兩個對應角所夾的邊是對應邊;(2)對應邊所對的角是對應角,?兩條對應邊所夾的角是對應角。教具準備
四張大小一樣的紙片、直尺、剪刀。
教學方法
采用“直觀──感悟”的教學方法,讓學生自己舉出形狀、大小相同的實例,加深認識。教學過程
一、動手操作,導入課題
1、先在其中一張紙上畫出任意一個多邊形,再用剪刀剪下,?思考得到的圖形有何特點?
2、重新在一張紙板上畫出任意一個三角形,再用剪刀剪下,?思考得到的圖形有何特點?
【學生活動】動手操作、用腦思考、與同伴討論,得出結論。
【教師活動】指導學生用剪刀剪出重疊的.兩個多邊形和三角形。
學生在操作過程中,教師要讓學生事先在紙上畫出三角形,然后固定重疊的兩張紙,注意整個過程要細心。
【互動交流】剪出的多邊形和三角形,可以看出:形狀、大小相同,能夠完全重合。這樣的兩個圖形叫做全等形,用“≌”表示。
概念:能夠完全重合的兩個三角形叫做全等三角形。
【教師活動】在紙版上任意剪下一個三角形,要求學生手拿一個三角形,做如下運動:平移、翻折、旋轉,觀察其運動前后的三角形會全等嗎?
【學生活動】動手操作,實踐感知,得出結論:兩個三角形全等。
【教師活動】要求學生用字母表示出每個剪下的三角形,同時互相指出每個三角形的頂點、三個角、三條邊、每條邊的邊角、每個角的對邊。
【學生活動】把兩個三角形按上述要求標上字母,并任意放置,與同桌交流:(1)何時能完全重在一起?(2)此時它們的頂點、邊、角有何特點?
【交流討論】通過同桌交流,實驗得出下面結論:
1、任意放置時,并不一定完全重合,?只有當把相同的角旋轉到一起時才能完全重合。
2、這時它們的三個頂點、三條邊和三個內角分別重合了。
3、完全重合說明三條邊對應相等,三個內角對應相等,?對應頂點在相對應的位置。
八年級上冊數學教案4
一、內容和內容解析
1、內容
三角形中相關元素的概念、按邊分類及三角形的三邊關系。
2、內容解析
三角形是一種最基本的幾何圖形,是認識其他圖形的基礎,在本章中,學好了三角形的有關概念和性質,為進一步學習多邊形的相關內容打好基礎,本節主要介紹與三角形的的概念、按邊分類和三角形三邊關系,使學生對三角形的有關知識有更為深刻的理解。
本節課的教學重點:三角形中的相關概念和三角形三邊關系。
本節課的教學難點:三角形的三邊關系。
二、目標和目標解析
1、教學目標
(1)了解三角形中的'相關概念,學會用符號語言表示三角形中的對應元素。
(2)理解并且靈活應用三角形三邊關系。
2、教學目標解析
(1)結合具體圖形,識三角形的概念及其基本元素。
(2)會用符號、字母表示三角形中的相關元素,并會按邊對三角形進行分類。
(3)理解三角形兩邊之和大于第三邊這一性質,并會運用這一性質來解決問題。
三、教學問題診斷分析
在探索三角形三邊關系的過程中,讓學生經歷觀察、探究、推理、交流等活動過程,培養學生的和推理能力和合作學習的精神。
四、教學過程設計
1、創設情境,提出問題
問題回憶生活中的三角形實例,結合你以前對三角形的了解,請你給三角形下一個定義。
師生活動:先讓學生分組討論,然后各小組派代表發言,針對學生下的定義,給出各種圖形反例,如下圖,指出其不完整性,加深學生對三角形概念的理解。
【設計意圖】三角形概念的獲得,要讓學生經歷其描述的過程,借此培養學生的語言表述能力,加深學生對三角形概念的理解。
2、抽象概括,形成概念
動態演示“首尾順次相接”這個的動畫,歸納出三角形的定義。
師生活動:
三角形的定義:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
【設計意圖】讓學生體會由抽象到具體的過程,培養學生的語言表述能力。
補充說明:要求學生學會三角形、三角形的頂點、邊、角的概念以及幾何表達方法。
師生活動:結合具體圖形,教師引導學生分析,讓學生學會由文字語言向幾何語言的過渡。
【設計意圖】進一步加深學生對三角形中相關元素的認知,并進一步熟悉幾何語言在學習中的應用。
3、概念辨析,應用鞏固
如圖,不重復,且不遺漏地識別所有三角形,并用符號語言表示出來。
1、以AB為一邊的三角形有哪些?
2、以∠D為一個內角的三角形有哪些?
3、以E為一個頂點的三角形有哪些?
4、說出ΔBCD的三個角。
師生活動:引導學生從概念出發進行思考,加深學生對三角形中相關元素概念的理解。
4、拓廣延伸,探究分類
我們知道,按照三個內角的大小,可以將三角形分為銳角三角形、直角三角形和鈍角三角形,如果要按照邊的大小關系對三角形進行分類,又應該如何分呢?小組之間同學進行交流并說說你們的想法。
師生活動:通過討論,學生類比按角的分類方法按邊對三角形進行分類,接著引出等腰三角形及等邊三角形的概念,引導學生了解等腰三角形與等邊三角形的聯系,強化學生對三角形按邊分類的理解。
八年級上冊數學教案5
學習目標
1、通過運算多項式乘法,來推導平方差公式,學生的認識由一般法則到特殊法則的能力。
2、通過親自動手、觀察并發現平方差公式的結構特征,并能從廣義上理解公式中字母的含義。
3、初步學會運用平方差公式進行計算。
學習重難點重點:
平方差公式的推導及應用。
難點是對公式中a,b的廣泛含義的理解及正確運用。
自學過程設計教學過程設計
看一看
認真閱讀教材,記住以下知識:
文字敘述平方差公式:_________________
用字母表示:________________
做一做:
1、完成下列練習:
①(m+n)(p+q)
②(a+b)(x-y)
③(2x+3y)(a-b)
④(a+2)(a-2)
⑤(3-x)(3+x)
⑥(2m+n)(2m-n)
想一想
你還有哪些地方不是很懂?請寫出來。
_______________________________
_______________________________
________________________________、
1、下列計算對不對?若不對,請在橫線上寫出正確結果、
(1)(x-3)(x+3)=x2-3( ),__________;
(2)(2x-3)(2x+3)=2x2-9( ),_________;
(3)(-x-3)(x-3)=x2-9( ),_________;
(4)(2xy-1)(2xy+1)=2xy2-1( ),________、
2、(1)(3a-4b)( )=9a2-16b2; (2)(4+2x)( )=16-4x2;
(3)(-7-x)( )=49-x2; (4)(-a-3b)(-3b+a)=_________、
3、計算:50×49=_________、
應用探究
1、幾何解釋平方差公式
展示:邊長a的大正方形中有一個邊長為b的小正方形。
(1)請計算圖的陰影部分的`面積(讓學生用正方形的面積公式計算)。
(2)小明將陰影部分拼成一個長方形,這個長方形長與寬是多少?你能表示出它的面積嗎?
2、用平方差公式計算
(1)103×93 (2)59、8×60、2
拓展提高
1、閱讀題:
我們在計算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)時,發現直接運算很麻煩,如果在算式前乘以(2-1),即1,原算式的值不變,而且還使整個算式能用乘法公式計算、解答過程如下:
原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(24-1)(24+1)(28+1)(216+1)(232+1)
=……=264-1
你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值嗎?請試試看!
2、仔細觀察,探索規律:
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
(x-1)(x4+x3+x2+x+1)=x5-1
……
(1)試求25+24+23+22+2+1的值;
(2)寫出22006+22005+22004+…+2+1的個位數、
堂堂清
一、選擇題
1、下列各式中,能用平方差公式計算的是( )
(1)(a-2b)(-a+2b);
(2)(a-2b)(-a-2b);
(3)(a-2b)(a+2b);
(4)(a-2b)(2a+b)、
【八年級上冊數學教案】相關文章:
八年級上冊數學教案11-09
八年級上冊人教版數學教案02-27
八年級上冊數學教案12-11
人教版八年級上冊數學教案02-22
(集合)八年級上冊數學教案05-24
八年級上冊數學教案[熱門]07-03
(薦)八年級上冊數學教案08-29
八年級上冊數學教案(精華)07-04
八年級上冊數學教案優秀05-08
[推薦]八年級上冊數學教案05-23