七年級數學的教案
作為一名教學工作者,可能需要進行教案編寫工作,編寫教案有利于我們科學、合理地支配課堂時間。那要怎么寫好教案呢?以下是小編整理的七年級數學的教案,歡迎閱讀,希望大家能夠喜歡。
七年級數學的教案1
【知識講解】
一、本講主要學習內容
1、代數式的意義
2、列代數式的注意點
3、代數式值的意義
其中列代數式是重點,也是難點。
下面講述一下這三點知識的主要內容。
1、代數式的意義
用基本的運算符號(包括加、減、乘、除以及后面所要學的乘方、開方)將數及表示數的字母連接而成的式子叫代數式。單個的數字或字母也叫代數式。如:5,a,4x,ab,x+2y,,a2等
2.列代數式的注意點
⑴在代數式中出現的乘號“×”,通常寫作“·”或者省略不寫。如3×a可寫作3·a或3a,2×(x+y)可以寫作2·(x+y)或2(x+y)。
⑵數字與數字相乘時乘號,仍然用“×”,不宜用“·”,更不能省略不寫。
⑶數字寫在字母的前面。
⑷在代數式中出現除法運算時,一般按照分數的寫法來寫,如s÷t寫作。
⑸代數式中帶分數與字母相乘時,應寫成假分數與字母相乘的形式,如應寫作。
(6)兩個代數式相乘,應該用分數形式表示。
3.代數式值的意義
用數值代替代數式里的字母,按照代數式指明的運算,計算出的結果,就叫做代數式的值。
二、典型例題
例1填空
①棱長是acm的正方體的體積是___cm3。
②溫度由t°c下降2°c后是___°c。
③產量由m千克增長10%,就達到___千克。
④a和b的'倒數和是___。
⑤a和b的和的倒數是___。
解:①a3②(t-2)③(1+10%)m④⑤
說明:⑴列代數式的關鍵在于仔細審題,弄清題意,正確找出題中的數量關系和運算順序,對一些容易混淆的說法,要仔細進行對比,對一些比較復雜的數量關系,可先分段考慮,要正確地使用括號。
⑵像a3,(1+10%)m這樣的式子后在可直接寫單位,像t-2這樣的式子,需寫單位時,要將整個式子用括號括起來。
例2、用代數式表示
⑴被4整除得m的數
⑵被2除商為a余1的數
⑶兩數的平均數
⑷a和b兩數的平方差與這兩數平方和的商
⑸一項工程,甲獨做需x天,乙獨做需y天完成,甲乙兩人合做完成的天數。⑹某人先用v1千米/時速度行完全路程的一半,又用v2千米/時的速度行完另一半,若全路程長為a千米,用代數式表示此人行完全路程的平均速度。
⑺個位數字是8,十位數字是b的兩位數。
解:⑴4m⑵2a+1⑶設這兩個數分別為a、b、則平均數為。
⑷⑸⑹⑺10b+8
分析說明:
⑴數a除以數b,除得的商正好是整數,而沒有余數,我們稱a能被b整除。
⑵能被2整除的數叫偶數,不能被2整除的數叫奇數。兩個連續奇數,若較小的是n,則較大的是n+2。
⑶對于題⑶中兩數沒有給出,為說明其一般性。可先設這兩個數為a,b;用字母表示數時,在同一個問題中,不同的數要用不同的字母表示。
⑷題⑷中的a,b兩數的平方是a2-b2,不能顛倒,也不能寫成(a-b)2。
⑸題⑸中甲乙兩人的工作效率分別是和,所以甲乙兩人合作完成的時間是即。
⑹平均速度=
所以平均速度為解答本題容易錯寫成,這主要是概念不清造成的。
題⑺中主要應清楚自然數的十進制表示方法:n=an×10n+an-1×10n-1+……+a1×10+a0即一個自然數總可以用它各個數位上的數字來表示。
例3說出下列代數式的意義。
七年級數學的教案2
●教學目標
1.知識與能力目標:借助于數軸,初步理解絕對值的概念,能求一個數的絕對值,初步學會求絕對值等于某一個正數的有理數。
2.過程與方法目標:通過從數形兩個側面理解絕對值的意義,初步了解數形結合的思想方法。通過應用絕對值解決實際問題,體會絕對值的意義。
3.情感態度與價值觀:通過應用絕對值解決實際問題,培養學生濃厚的學習興趣,使學生能積極參與數學學習活動,對數學有好奇心與求知欲。
●教學重點與難點
教學重點:絕對值的幾何意義和代數意義,以及求一個數的絕對值。
教學難點:絕對值定義的得出、意義的理解,以及求絕對值等于某一個正數的有理數。
●教學準備
多媒體課件
●教學過程
一、創設問題情境
1、兩只小狗從同一點O出發,在一條筆直的街上跑,一只向右跑10米到達A點,另一只向左跑10米到達B點。若規定向右為正,則A處記作-__________,B處記作__________。
以O為原點,取適當的單位長度畫數軸,并標出A、B的位置。
(用生動有趣的引例吸引學生,即復習了數軸和相反數,又為下文作準備)。
2、這兩只小狗在跑的過程中,有沒有共同的地方?在數軸上的A、B兩點又有什么特征?(從形和數兩個角度去感受絕對值)。
3、在數軸上找到-5和5的點,它們到原點的距離分別是多少?表示-和的點呢?
小結:在實際生活中,有時存在這樣的情況,無需考慮數的正負性質,比如:在計算小狗所跑的路程中,與小狗跑的方向無關,這時所走的路程只需用正數,這樣就必須引進一個新的概念-———絕對值。
二、建立數學模型
1、絕對值的概念
(借助于數軸這一工具,師生共同討論,引出絕對值的概念)
絕對值的幾何定義:一個數在數軸上對應的點到原點的距離叫做這個數的絕對值。比如:-5到原點的距離是5,所以-5的絕對值是5,記-5=5;5的絕對值是5,記做5=5。
注意:①與原點的關系②是個距離的概念
2..練習1:請學生舉一個生活中的實際例子,說明解決有的問題只需考慮的數絕對值。[溫度上升了5度,用+5表示的話,那么下降了5度,就用-5表示,如果我們不去考慮它的意義(即:上升還是下降),只考慮數量(即:溫度)的變化,我們可以說:溫度的變化都是5度。銀行存款,如果存入100元用+100表示,那么取出100元就用-100表示,如果我們不去考慮它的意義(即:存入還是取出),只考慮數量的多少,我們可以說:金額都是100元。]
(通過應用絕對值解決實際問題,體會絕對值的意義與作用,感受數學在生活中的價值。)
三、應用深化知識
1、例題求解
例1、求下列各數的絕對值
-1.6,,0,-10,+10
2、根據上述題目,讓學生歸納總結絕對值的特點。(教師進行補充小結)
特點:1、一個正數的絕對值是它本身
2、一個負數的絕對值是它的相反數
3、零的絕對值是零
4、互為相反數的兩個數的絕對值相等
3.出示題目
(1)-3的符號是_______,絕對值是______;
(2)+3的符號是_______,絕對值是______;
(3)-6.5的符號是_______,絕對值是______;
(4)+6.5的符號是_______,絕對值是______;
學生口答。
師:上面我們看到任何一個有理數都是由符號,和絕對值兩個部分構成。現在老師有一個問題想問問大家,在上一節課中我們規定只有符號不同的`兩個數稱互為相反數。那么大家在今天學習了絕對值以后,你能給相反數一個新的解釋嗎?
5、練習3:回答下列問題
①一個數的絕對值是它本身,這個數是什么數?
②一個數的絕對值是它的相反數,這個數是什么數?
③一個數的絕對值一定是正數嗎?
④一個數的絕對值不可能是負數,對嗎?
⑤絕對值是同一個正數的數有兩個,它們互為相反數,這句話對嗎?
(由學生口答完成,進一步鞏固絕對值的概念)
6、例2.求絕對值等于4的數
(讓學生考慮這樣的數有幾個,是怎樣得出這個結果的呢?對后一個問題由學生去討論,啟發學生從數與形兩個方面考慮,培養學生的發散思維能力。)
分析:
①從數字上分析
∵+4=4,-4=4∴絕對值等于4的數是+4和-4畫一個數軸(如下圖)
②從幾何意義上分析,畫一個數軸(如下圖)
因為數軸上到原點的距離等于4個單位長度的點有兩個,即表示+4的點P和表示-4的點M
所以絕對值等于4的數是+4和-4.
6、練習:做書上12頁課內練習1、2兩題。
四、歸納小結
1、本節課我們學習了什么知識?
2、你覺得本節課有什么收獲?
3、由學生自行總結在自主探究,合作學習中的體會。
五、課后作業
1、讓學生去尋找一些生活中只考慮絕對值的實際例子。
2、課本15頁的作業題。
七年級數學的教案3
7.3.1多邊形
[教學目標]
1.了解多邊形及有關概念,理解正多邊形及其有關概念.
2.區別凸多邊形與凹多邊形.
[教學重點、難點]
1.重點:
(1)了解多邊形及其有關概念,理解正多邊形及其有關概念.
(2)區別凸多邊形和凹多邊形.
2.難點:
多邊形定義的準確理解.
[教學過程]
一、新課講授
投影:圖形見課本P84圖7.3一l.
你能從投影里找出幾個由一些線段圍成的圖形嗎?
上面三圖中讓同學邊看、邊議.
在同學議論的基礎上,老師給以總結,這些線段圍成的圖形有何特性?
(1)它們在同一平面內.
(2)它們是由不在同一條直線上的幾條線段首尾順次相接組成的
這些圖形中有三角形、四邊形、五邊形、六邊形、八邊形,那么什么叫做多邊形呢?
提問:三角形的定義.
你能仿照三角形的定義給多邊形定義嗎?
1.在平面內,由一些線段首位順次相接組成的圖形叫做多邊形.
如果一個多邊形由n條線段組成,那么這個多邊形叫做n邊形.(一個多邊形由幾條線段組成,就叫做幾邊形.)
2.多邊形的邊、頂點、內角和外角.
多邊形相鄰兩邊組成的角叫做多邊形的內角,多邊形的邊與它的鄰邊的延長線組成的角叫做多邊形的外角.
3.多邊形的對角線
連接多邊形的不相鄰的兩個頂點的線段,叫做多邊形的對角線.
讓學生畫出五邊形的所有對角線.
4.凸多邊形與凹多邊形
看投影:圖形見課本P85.7.3—6.
在圖(1)中,畫出四邊形ABCD的任何一條邊所在的直線,整個圖形都在這條直線的同一側,這樣的四邊形叫做凸四邊形,這樣的多邊形稱為凸多邊形;而圖(2)就不滿足上述凸多邊形的特征,因為我們畫BD所在直線,整個多邊形不都在這條直線的'同一側,我們稱它為凹多邊形,今后我們在習題、練習中提到的多邊形都是凸多邊形.
5.正多邊形
由正方形的特征出發,得出正多邊形的概念.
各個角都相等,各條邊都相等的多邊形叫做正多邊形.
二、課堂練習
課本P86練習1.2.
三、課堂小結
引導學生總結本節課的相關概念.
四、課后作業
課本P90第1題.
備用題:
一、判斷題.
1.由四條線段首尾順次相接組成的圖形叫四邊形.()
2.由不在一直線上四條線段首尾次順次相接組成的圖形叫四邊形.()
3.由不在一直線上四條線段首尾順次接組成的圖形,且其中任何一條線段所在的直線、使整個圖形都在這直線的同一側,叫做四邊形.()
4.在同一平面內,四條線段首尾順次連接組成的圖形叫四邊形.()
二、填空題.
1.連接多邊形的線段,叫做多邊形的對角線.
2.多邊形的任何整個多邊形都在這條直線的,這樣的多邊形叫凸多邊形.
3.各個角,各條邊的多邊形,叫正多邊形.
三、解答題.
1.畫出圖(1)中的六邊形ABCDEF的所有對角線.
2.如圖(2),O為四邊形ABCD內一點,連接OA、OB、OC、OD可以得幾個三角形?它與邊數有何關系?
3.如圖(3),O在五邊形ABCDE的AB上,連接OC、OD、OE,可以得到幾個三角形?它與邊數有何關系?
4.如圖(4),過A作六邊形ABCDEF的對角線,可以得到幾個三角形?它與邊數有何關系?
【七年級數學的教案】相關文章:
七年級下冊教案數學教案06-29
數學七年級上冊教案04-16
七年級數學教案08-23
七年級數學湘教版教案12-27
七年級數學下冊教案01-01
七年級人教版數學教案11-03
七年級數學教學教案01-08
湘教版數學七年級上冊教案01-09
七年級數學《數軸》教案03-19