七年級數學上冊教案通用[15篇]
作為一無名無私奉獻的教育工作者,時常會需要準備好教案,教案是教學活動的依據,有著重要的地位。那么優秀的教案是什么樣的呢?以下是小編為大家整理的七年級數學上冊教案,僅供參考,大家一起來看看吧。
七年級數學上冊教案1
教 案
第一章 有理數
(1)本周小張一共用掉了多少錢?存進了多少錢?
根據上面的記錄,問:哪幾天生產的摩托車比計劃量多?星期幾生產的摩托車最多,是多少輛?星期幾生產的摩托車最少,是多少輛?
夯實基礎
(1)序號為幾的零件最接近標準?
④-(-) 0.025.
第2課時 加法運算律
教學目標:
1.能運用加法運算律簡化加法運算.
2.理解加法運算律在加法運算中的作用,適當進行推理訓練.
教學重點:如何運用加法運算律簡化運算.
教學難點:靈活運用加法運算律.
教與學互動設計:
(一)情境創設,導入新課
思考:在小學里,我們學過的加法運算有哪些運算律?它們的內容是什么?能否舉一兩個例子來?那這些加法運算律還適用于有理數范圍嗎?今天,我們一起來探究這個問題.
(二)合作交流,解讀探究
計算:20+(-30)與(-30)+20兩次得到的和相同嗎?
得出結論:20+(-30)=(-30)+20
換幾組數去試:得到加法交換律:a+b= (學生填).
其實,學生在小學中就已經接觸到運算律,此時,可以讓學生回憶在小學中除了學習了加法的交換律,還學習了加法的哪種運算律?(結合律)
計算:(1)[8+(-5)]+(-4);
(2)8+[(-5)+(-4)].
得出結論:加法結合律:(a+b)+c= .
【例1】計算:
16+(-25)+24+(-35)
【例2】課本P20例3
說明:把互為相反數的一對數結合起來相加,可以使運算簡化,這種方法是使用加法交換律和加法結合律.
總結:在進行多個有理數相加時,在下列情況下一般可以用加法交換律和加法結合律簡化運算:①有些加數相加后可以得到整數時,可以先行相加;②有相反數可以互相消去,和為0,可以先行相加;③有許多正數和負數相加時,可以先把符號相同的數相加,即正數和正數相加,負數和負數相加,再把一個正數和一個負數相加.
(三)應用遷移,鞏固提高
【例3】 利用有理數的加法運算律計算,使運算簡便.
(1)(+9)+(-7)+(+10)+(-3)+(-9)
(2)(+0.36)+(-7.4)+(+0.03)+(-0.6)+(+0.64)
(3)(+1)+(-2)+(+3)+(-4)+…+(+20xx)+(-20xx)
【例4】某出租司機某天下午營運全是在東西走向的人民大道上進行的,如果規定向東為正,向西為負,他這天下午行車里程如下:(單位:千米)+15,+14,-3,-11,+10,-12,+4,-15,+16,-18.
(1)他將最后一名乘客送到目的地,該司機與下午出發點的距離是多少千米?
(2)若汽車耗油量為a公升/千米,這天下午汽車共耗油多少公升?
(四)總結反思,拓展升華
本節課我們探索了有理數的加法交換律和結合律.靈活運用加法的運算律會使運算簡便.一般情況下,我們將互為相反數的數相結合,同分母的分數相結合,能湊整數的數相結合,正數負數分別相加,從而使計算簡便.
(五)課堂跟蹤反饋
夯實基礎
1.運用加法的運算律計算(+6)+(-18)+(+4)+(-6.8)+18+(-3.2)最適當的是( )
A.[(+6)+(+4)+18]+[(-18)+(-6.8)+(-3.2)]
B.[(+6)+(-6.8)+(+4)]+[(-18)+18+(-3.2)]
C.[(+6)+(-18)]+[(+4)+(-6.8)]+[18+(-3.2)]
D.[(+6)+(+4)]+[(-3.2)+(-6.8)]+[(-18)+18)]
2.計算:(-2)+4+(-6)+8+…+(-98)+100.
提升能力
3.小李到銀行共辦理了四筆業務,第一筆存入了120元,第二筆支取了85元,第三筆支取了70元,第四筆存入了130元.如果將這四筆業務合并為一筆,請你替他策劃一下這一筆業務該怎樣做?
4.某檢修小組乘汽車沿公路檢修線路,約定前進為正,后退為負.某天自A地出發到收工時所走路線(單位:千米)為:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.
(1)問收工時距A地多遠?
(2)若每千米路程耗油0.2升,問從A地出發到收工共耗油多少升?
第3課時 有理數的`減法
教學目標:
1.經歷探索有理數減法法則的過程,理解有理數減法法則.
2.會熟練進行有理數減法運算.
教學重點:有理數減法法則和運算.
教學難點:有理數減法法則的推導.
教與學互動設計
(一)創設情景,導入新課
觀察溫度計:
你能從溫度計看出4℃比-3℃高出多少度嗎?
學生普遍能直觀地看出4℃比-3℃高7℃,進一步地假定某地一天的氣溫是-3~4℃,那么溫差(減最低氣溫,單位℃)如何用算式表示?
按照剛才觀察到的結果,可知4-(-3)=7 ①,而4+(+3)=7 ②,∴由①②可知:4-(-3)=4+(+3) ③,上述結論的獲得應放手讓學生回答.
(二)動手實踐,發現新知
觀察、探究、討論:從③式能看出減-3相當于加哪個數嗎?
結論:減去-3等于加上-3的相反數+3.
(三)類比探究,總結提高
如果將4換成-1,還有類似于上述的結論嗎?
先讓學生直觀觀察,然后教師再利用“減法是與加法相反的運算”引導學生換一個角度去驗算.
計算(-1)-(-3)就是要求一個數x,使x與-3相加得-1,因為2與-3相加得-1,所以x應是2,即(-1)-(-3)=2 ①,
又因為(-1)+(+3)=2 ②,
由①②有(-1)-(-3)=-1+(+3) ③,
即上述結論依然成立.
試一試:如果把4換成0、-5,用上面的方法考慮0-(-3),(-5)-(-3),這些數減-3的結果與它加上+3的結果相同嗎?
讓學生利用“減法是加法的相反運算”得出結果,再與加法算式的結果進行比較,從而得出這些數減-3的結果與它們加+3的結果相同的結論.
再試:把減數-3換成正數,結果又如何呢?
計算9-8與9+(-8);15-7與15+(-7)
從中又能有新發現嗎?
讓學生通過計算總結如下結論:減去一個正數等于加上這個正數的相反數.
歸納:由上述實驗可發現,有理數的減法可以轉化為加法來進行.
減法法則:減去一個數,等于加上這個數的相反數.
用字母表示:a-b=a+(-b).
(在上述實驗中,逐步滲透了一種重要的數學思想方法——轉化)
(四)例題分析,運用法則
【例】計算:
(1)(-3)-(-5); (2)0-7;
(3)7.2-(-4.8);(4)-3-5.
(五)總結鞏固,初步應用
總結這節課我們學習了哪些數學知識和數學思想?你能說一說嗎?
教師引導學生回憶本節課所學內容,學生回憶交流,教師和學生一起補充完善,使學生更加明晰所學的知識.
七年級數學上冊教案2
教學目標
1.進一步掌握有理數的運算法則和運算律;
2.使學生能夠熟練地按有理數運算順序進行混合運算;
3.注意培養學生的運算能力.
教學重點和難點
重點:有理數的混合運算.
難點:準確地掌握有理數的運算順序和運算中的符號問題.
課堂教學過程設計
一、從學生原有認知結構提出問題
1.計算(五分鐘練習):
(5)-252; (6)(-2)3;(7)-7+3-6; (8)(-3)×(-8)×25;
(13)(-616)÷(-28); (14)-100-27; (15)(-1)101; (16)021;
(17)(-2)4; (18)(-4)2; (19)-32; (20)-23;
(24)3.4×104÷(-5).
2.說一說我們學過的有理數的運算律:
加法交換律:a+b=b+a;
加法結合律:(a+b)+c=a+(b+c);
乘法交換律:ab=ba;
乘法結合律:(ab)c=a(bc);
乘法分配律:a(b+c)=ab+ac.
二、講授新課
前面我們已經學習了有理數的加、減、乘、除、乘方等運算,若在一個算式里,含有以上的混合運算,按怎樣的`順序進行運算?
1.在只有加減或只有乘除的同一級運算中,按照式子的順序從左向右依次進行.
審題:(1)運算順序如何?
(2)符號如何?
說明:含有帶分數的加減法,方法是將整數部分和分數部分相加,再計算結果.帶分數分成整數部分和分數部分時的符號與原帶分數的符號相同.
七年級數學上冊教案3
復習目標
1、 經歷猜測、試驗、收集與分析試驗結果等活動過程。
2、 初步體驗有些事件的發生是確定的,有些則是不確定的,能區分確定事件與不確定事件。
3、 知道事件發生的可能性是有大小的,能對一些簡單事件發生的可能性作出描述,能列舉出簡單試驗所有可能發生的結果,并和同伴交換想法。
復習內容
一、基礎知識填空
1.在一定條件下,肯定會發生的事情稱為 必然事件 ;在一定條件下,一定不會發生的事情稱為 不可能事件 ;必然 事件與 不可能 事件都是確定 的;在一定條件下,可能會發生,也可能不會發生的事件稱為 不確定 事件。
2.在“轉盤游戲”中,哪個區域的.面積大,則指針落到該區域的 可能性 大。
二、典型例題
例題1:下列事件中,哪些是必然事件?哪些是不可能事件,哪些是不確定事件?
(1)一年有12個月; (2)擲一枚一元硬幣,停止后國徽朝上;
(3)明天要下雪; (4)1/4周角=1直角;
(5)任意買一張電影票座位號是奇數;(6)小明的生日是2月30日;
(7)一條魚在白云中飛翔。
分析與解:(1)、(4)是必然事件;(6)、(7)是不可能事件;
(2)、(3)、(5)是不確定事件。因為(6)中2月只有28天,不可能有30日,所以是不可能事件。
注意:在判別事件是確定還是不確定,關鍵是根據一定的條件弄清它是一定會發生或一定不會發生,還是無法肯定它會不會發生。
例題2:醫院的護士給病人注射青霉素類藥水時,要先做皮試。但根據有關數據顯示,只有大約千分之一的人對青霉素過敏,但護士為什么每次都這樣做呢?這樣做是不是多此一舉?
分析與解:青霉素過敏的可能性只有千分之一,但它總是有可能發生的,我們不能確定每一個注射的病人都不會過敏,因此“青霉素過敏”這一事件是可能事件。為了每位病人的生命安全,一定要先做皮試,此種做法不是多此 一舉。
注意:“不太可能事件”雖然可能性很小,但它仍有可能發生。
例題3:一只螞蟻在如圖所示的一塊地板上爬行,這塊地板由黑白兩種不同顏色外其它完全相同的地磚鋪成,爬行一段時間后,螞蟻停在哪種顏色地磚上的可能性大,為什么?
分析與解:
因為白色的塊數是10,黑色的塊數是6,白色區域的面積大,所以螞蟻停在白顏色地磚上的可能性大。
注意:有關可能性問題,有時可通過比較各種區域所占面積的大小來確定。
例題4:袋中有4只紅球、2只白球、1只黃球,這些球除了顏色以外完全相同,小華認為袋中共有三種不同顏色的球,所以從袋中任意摸出一球,摸到紅球、 白球、黃球的可能性一樣大,小強認為三種球的數量不同,摸到紅球、白球、黃球的可能性肯定也不同,你認為誰說的正確,并說明理由。
分析與解:
注意:此題中摸到各種顏色球的可能性大小只與該球的顏色有關,與該球的大小、形狀等其它因素無關。
三、課時
1、能舉例說明生活中的不確定事件,并能用“不可能”、“有可能”、“幾乎不可能” 等詞語描述它們發生的可能性大小。
2、了解事件發生的可能性是有大小的,并初步學會求不確定事件的可能性大小。
3、能養成獨立思考的習慣,學會與同伴充分交流的良好學習方式。
四、課外作業
七年級數學上冊教案4
學習目標:
1、知識技能:進一步理解正、負數及零的意義,熟練掌握正負數的表示方法,會用正、負數表示具有相反意義的量。毛
2、數學思考:體會數學符號與對應的思想。
3、情感態度:師生合作,聯系實際。培養學生的想象能力、理論聯系實際的能力、分析解決問題的能力,培養學生良好的個性品質和學習習慣。
重點:進一步理解正、負數及零表示的量的意義。
難點:理解負數及零表示的量的'意義。
課前準備
卷尺或皮尺
教學流程安排
活動1、復習正、負數 從學生已有的知識出發,為進一步學習做好知識準備。
活動2、活動安排 使學生進入問題情境,加深對負數的理解。
活動3、舉例說明 提高解決實際問題的能力。
活動4、鞏固練習 掌握正數和負數。
教學過程設計
活動1
1、 給出一組數,請學生說說哪些是正數、負數。
2、 學生舉例說明正、負數在實際中的應用。
師生行為及設計意圖
通過上一堂課的學習,讓一組同學任意給出一組數,另一組同學找出哪些是正數?哪些是負數?正整數?負分數?復習正、負數的定義。
活動2
1、各組派一名同學進行如下活動:按老師的指令表演,看哪一組獲勝。
2、分小組完成,用卷尺或皮尺量桌子的高度、桌面的長度和寬度,并將它們表示出來。(超出1米的部分用正數表示,不足1米的部分用負數表示。)
師生行為
1、老師說出指令:向前1步,向后3步,向前-2步,向后-2步。學生按老師的指令表演。
2、各小組派一名同學匯報完成的情況。
設計意圖
通過學生的活動,激發學生參與課堂教學的熱情,在活動中鞏固所學的知識。
活動3
問題展示
1、 一個月內,小明體重增加2千克,小華體重減少1千克,小強體重無變化,寫出他們這個月的體重的增長值。
2、 20xx年 商品進出口總額比上年的變化情況是:
美國減少6.4%% , 德國增長1.3%,
法國減少2.4% , 英國減少3.5%,
意大利增長0.2 %, 中國增長7.5%,
師生行為及設計意圖
在學生已初步掌握新知識的前提下,由問題1 、2提高學生綜合解決實際問題的能力。
活動4
1、 P6 練習
2、 總結:這堂課我們學習了那些知識?你能說一說嗎?
3、 作業 P7習題1 .1 4、7、8
師生行為及設計意圖
教師巡視、指導。學生交流、完成練習。對所學知識的鞏固是教學的一個重要環節,這里的練習可以分散進行。
教師引導學生回憶本節課所學內容。學生回憶、交流。教師和學生一起補充完善。教師要努力使學生自己回憶、總結、梳理所學的知識,將所學的知識與以前學過的知識進行緊密聯結,完善認知結構。
學生課后鞏固、提高、發展。
七年級數學上冊教案5
教學目標
1,整理前兩個學段學過的整數、分數(包括小數)的知識,掌握正數和負數的概念;
2,能區分兩種不同意義的量,會用符號表示正數和負數;
3,體驗數學發展的一個重要原因是生活實際的需要,激發學生學習數學的興趣。
教學難點正確區分兩種不同意義的量。
知識重點兩種相反意義的量
教學過程(師生活動)設計理念
設置情境
引入課題上課開始時,教師應通過具體的例子,簡要說明在前兩個學段我們已經學過的數,并由此請學生思考:生
活中僅有這些“以前學過的數”夠用了嗎?下面的例子
僅供參考.
師:今天我們已經是七年級的學生了,我是你們的數學老師.下面我先向你們做一下自我介紹,我的名字是XX,身高1。73米,體重58。5千克,今年40歲.我們的班級是七(13)班,有60個同學,其中男同學有22個,占全班總人數的37%…
問題1:老師剛才的介紹中出現了幾個數?分別是什么?你能將這些數按以前學過的數的分類方法進行分類嗎?
學生活動:思考,交流
師:以前學過的數,實際上主要有兩大類,分別是整數和分數(包括小數).
問題2:在生活中,僅有整數和分數夠用了嗎?
請同學們看書(觀察本節前面的幾幅圖中用到了什么數,讓學生感受引入負數的必要性)并思考討論,然后進行交流。
(也可以出示氣象預報中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)
學生交流后,教師歸納:以前學過的數已經不夠用了,有時候需要一種前面帶有“-”的新數。先回顧小學里學過的數的類型,歸納出我們已經學了整數和分數,然后,舉一些實際生活中共有相反意義的量,說明為了表示相反意義的量,我們需要引入負數,這樣做強調了數學的嚴密性,但對于學生來說,更多地感到了數學的枯燥乏味為了既復習小學里學過的數,又能激發學生的學習興趣,所以創設如下的問題情境,以盡量貼近學生的實際.
這個問題能激發學生探究的欲望,學生自己看書學習是培養學生自主學習的重要途徑,都應予以重視。
以上的情境和實例使學生體會生活中處處有數學,通過實例,使學生獲取大量的感性材料,為正確建立相反意義的量奠定基礎。
分析問題
探究新知問題3:前面帶有“一”號的新數我們應怎樣命名它呢?為什么要引人負數呢?通常在日常生活中我們用正數和負數分別表示怎樣的量呢?
這些問題都必須要求學生理解.
教師可以用多媒體出示這些問題,讓學生帶著這些問題看書自學,然后師生交流.
這階段主要是讓學生學會正數和負數的表示.
強調:用正,負數表示實際問題中具有相反意義的量,而相反意義的量包含兩個要素:一是它們的意義相反,如向東與向西,收人與支出;二是它們都是數量,而且是同類的量.這些問題是這節課的主要知識,教師要清楚地向學生說明,并且要注意語言的準確與規范,要舍得花時間讓學充分發表想法。
舉一反三思維拓展經過上面的討論交流,學生對為什么要引人負數,對怎樣用正數和負數表示兩種相反意義的量有了初步的理解,教師可以要求學生舉出實際生活中類似的例子,以加深對正數和負數概念的理解,并開拓思維.
問題4:請同學們舉出用正數和負數表示的例子.
問題5:你是怎樣理解“正整數”“負整數,,’’正分數”和“負分數”的呢?請舉例說明.
能否舉出例子是學生對知識掌握程度的體現,也能進一步幫助學生理解引負數的必要性
課堂練習教科書第5頁練習
小結與作業
課堂小結圍繞下面兩點,以師生共同交流的方式進行:
1,0由于實際問題中存在著相反意義的量,所以要引人負數,這樣數的范圍就擴大了;
2,正數就是以前學過的0以外的數(或在其前面加“+”),負數就是在以前學過的0以外的數前面加“-”。
本課作業教科書第7頁習題1。1第1,2,4,5(第3題作為下節課的思考題。
作業可設必做題和選做題,體現要求的'層次性,以滿足不同學生的需要
本課教育評注(課堂設計理念,實際教學效果及改進設想)
密切聯系生活實際,創設學習情境.本課是有理數的第一節課時.引人負數是數的范圍的一次重要擴充,學生頭腦中關于數的結構要做重大調整(其實是一次知識的順應過程),而負數相對于以前的數,對學生來說顯得更抽象,因此,這個概念并不是一下就能建立的.為了接受這個新的數,就必須對原有的數的結構進行整理,引人幣的舉例就是這個目的.
負數的產生主要是因為原有的數不夠用了(不能正確簡潔地表示數量),書本的例子
或圖片中出現的負數就是讓學生去感受和體驗這一點.使學生接受生活生產實際中確實
存在著兩種相反意義的量是本課的教學難點,所以在教學中可以多舉幾個這方面的例
子,并且所舉的例子又應該符合學生的年齡和思維特點。當學生接受了這個事實后,引入負數(為了區分這兩種相反意義的量)就是順理成章的事了.
這個教學設計突出了數學與實際生活的緊密聯系,使學生體會到數學的應用價值,
體現了學生自主學習、合作交流的教學理念,書本中的圖片和例子都是生活生產中常見
的事實,學生容易接受,所以應該讓學生自己看書、學習,并且鼓勵學生討論交流,教師作適當引導就可以了。
七年級數學上冊教案6
【學習目標】:
1、會用尺規畫一條線段等于已知線段;
2、會比較兩條線段的長短;
3、理解線段中點的 概念,了解“兩點之間,線段最短”的性質。
【學習重點】:線段 的中點概念,“兩點之間,線段最短”的性質是重點;
【學習難點】:畫一條線段等于已知線段是難點。
【導學指導】
一、溫故知新
1、過A、B、C三點作直線,小 明說有三條,小穎說有一條,小林說不是一條就是三條,你認為______的說法是對的。
二 、自主學習
問題:現有一根長木棒,如何從它上面截下一段,使截下的木棒等于另一根木棒的長 ?
上面的實際問題可以轉化為下面的數學問題:
2、比較兩條線段的長短
兩條線段可能相等,也可能不相等,那么怎樣比較兩條線段的長短呢?
我們先來回答下面的問題。
怎樣比較兩個同學的身高?
一是用尺子測量;二是站在一起比(腳在同一高度)。
如果把兩個同學看成兩條線段,那么比較兩條線段就有兩種方法。
(1)度量法:用刻度尺分別量出兩條線段的長度從而進行比較。
(2)把一條線段移到另一條線段上,使一端對齊,從而進行比較,我們稱為疊合法。
練習題
一、填空
1.我們在用玩具槍瞄準時,總是用一只眼對準準星和目標,用數學知識解釋為__________________.
2. 三條直線兩兩相交,則交點有_______________個.
二、下列說法中正確的是( )
A、兩點之間線段最短
B、若兩個角的頂點重合,那么這兩個角是對頂角
C、一條射線把一個角分成兩個角,那么這條射線是角的平分線
D、過直線外一點有兩條直線平行于已知直線
9、下列說法:①平角就是一條直線;②直線比射線線長;③平面內三條互不重合的`直線的公共點個數有0個、1個、2個或3個;④連接兩點的線段叫兩點之間的距離;⑤兩條射線組成的圖形叫做角;⑥一條射線把一個角分成兩個角,這條射線是這個角的角平分線,其中正確的有( )
A、0個B、1個C、2個D、3個
同步四維訓練
知識一:直線的性質
3.在開會前,工作人員進行會場布置,在主席臺上由兩人拉著一條繩子,然后以“準繩”為基準擺放茶杯,這樣做的理由是(B )
A.兩點之間線段最短
B.兩點確定一條直線
C.垂線段最短
D.過一點可以作無數條直線
知識點二:線段的作法及比較
4.在跳繩比賽中,要在兩條繩子中挑出較長的一條用于比賽,選擇的方法是(A )
A.把兩條繩子的一端對齊,然后拉直兩條繩子,另一端在外面的即為長繩
B.把兩條繩子接在一起
C.把兩條繩子重合觀察另一端的情況
D.沒有辦法挑選
七年級數學上冊教案7
知識目標
使學會解比例的方法,進一步理解和掌握比例的基本性質。
能力目標
聯系的生活實際創設情境,體現解比例在生產生活中的廣泛應用。
情感目標
利用所學知識解決生活中的問題,進一步培養綜合運用知識的能力及情度、價值觀的發展。
重點
使學會解比例的方法,進一步理解和掌握比例的基本性質。
難點
體現解比例在生產生活中的廣泛應用。
教學過程
教學預設個性修改
目標導學,復習激趣,自主合作,匯報交流,變式訓練
創境激疑一、舊知鋪墊
1、什么叫做比例?
2、什么叫做比例的基本性質?怎樣用比例的基本性質判斷兩個比能否組成比例?那么組成一個比例需要幾項呢?
3、比例有幾種表示形式?
合作探究二、探索新知
1、出示埃菲爾鐵掛圖
2、出示例題
(1)、讀題。
(2)、從這道題里,你們獲得了哪些信息?
(3)、在這信息里,關鍵理解哪里?(埃菲爾鐵模型與埃菲爾鐵塔的高度比是1:10)
(4)、這句話什么意思?(就是埃菲爾鐵塔模型的高度:埃菲爾鐵塔的高度=1:10)(板書)
(5)、還有一個條件是什么?(埃菲爾鐵塔的高是320米)
(6)、我們把這個條件換到我們的這個關系中,就是(板書:埃菲爾鐵塔的高度:320=1:10)
(7)、這道題怎么列比例式解答呢?請同學們想想,想出來的同學請舉手。
(8)、根據學生的`反饋板書:“解:設埃菲爾鐵塔模型的高度設為x米”,把這個x代入這個數學模式中就組成了一個比例式(板書x:320=1:10)
(9)、這樣在組成比例的四個項中,我們知道其中的幾個項?還有幾個項不知道?
(10)、不知道的這個項,我們來給它起個名字,好不好?叫做什么?(板書:未知項)
(11)、指著x:320=1:10,問:“這個未知項是多少呢?那怎么辦?”誰上來做做? (指名板演)
(12)、為什么可以寫成這樣的等式呢?10x=320×1(根據比例的基本性質)
(13)、對了,把上面的比例式改寫成下面這樣一個等式,就是應用了比例的基本性質。應用比例的基本性質,把比例式改寫成了一個等式,這個等式還是一個什么樣的等式呀?(含有未知數的等式)
(14)、這樣含有未知數的等式,叫做方程。那么求出方程中的未知數就叫做什么?(解方程)那么在這個比例式中,我們知道了任意三項,要求出其中一項的過程又叫做什么?(解比例)出示比例的意義。
(15)、我們解出的答案對不對呢?怎么知道?可以怎樣檢驗? (把結果代入題目中看看對應的比的比值是不是能成比例.)
(16)這道題還有其他的解法嗎?(引導學生從比例的意義上來解。
2、教學例3
過渡:我們知道比例還有另一種表示形式,當是=這樣形式的時候,又該怎么解呢?
(1)、出示例3,問:這題與剛剛那個比例有哪些不同?
(2)、解這種比例時,要注意些什么呢?(找出比例的外項、內項)
(3)、在這個比例里,哪些是外項?哪些是內項?
(4)、解答(提問:你們是怎么解答的?)、檢驗。
(5)、 =
拓展應用在一個比例中,兩個外項的乘積正好互為倒數,已知一個內向是3,另一個內項是多少?
總結這節課主要學習了什么內容?
作業布置教材43頁5題
板書設計解比例
例3、解比例=
解:2.4 =1.5×6
=( )×( )
( )
教學札記
七年級數學上冊教案8
【學習目標】
1、理解什么是一元一次方程。
2、理解什么是方程的解及解方程,學會檢驗一個數值是不是方程的解的方法。
【重點難點】能驗證一個數是否是一個方程的解。
1.某工廠加強節能措施,去年下半年與上半年相比,月平均用電量減少2 000度,全年用電15萬度,如果設上半年每月平均用電x度,那么所列方程正確的是( )
A.6x+6(x-2 000)=150 000
B.6x+6(x+2 000)=150 000
C.6x+6(x-2 000)=15
D.6x+6(x+2 000)=15
2.李紅買了8個蓮蓬,付50元,找回38元.設每個蓮蓬的價格為x元,根據題意,列出方程為________.
3.一個正方形花圃邊長增加2 m,所得新正方形花圃的周長是28 m,則原正方形花圃的邊長是多少?(只列方程)
《3.1.等式的性質》同步四維訓練含答案
知識點一:等式的性質1
1.下列變形錯誤的是(D )
A.若a=b,則a+c=b+c
B.若a+2=b+2,則a=b
C.若4=x-1,則x=4+1
D.若2+x=3,則x=3+2
2.已知m+a=n+b,根據等式的性質變形為m=n,那么a,b必須符合的條件是(C )
A.a=-b
B.-a=b
C.a=b
D.a,b可以是任意有理
《3.1從算式到方程》同步練習含解析
7.解:把x=3代入方程,得:15-a=3,
解得:a=12.
故選B.
根據方程解的定義,將方程的解代入方程,就可得一個關于字母a的一元一次方程,從而可求出a的值.
本題考查了方程的解的定義,解決本題的'關鍵在于:根據方程的解的定義將x=3代入,從而轉化為關于a的一元一次方程.
8.解:A、7x-4=3x是方程;
B、4x-6不是等式,不是方程;
C、4+3=7沒有未知數,不是方程;
D、2x<5不是等式,不是方程;
故選:A.
根據方程的定義:含有未知數的等式叫方程解答即可.數或整式
七年級數學上冊教案9
總時:1時
第1時, 備時間:開學第十五周 上時間:第十六周
一、教學目標: (一)教學知識點
1.與身邊熟悉的 事物做比較 感受百萬分之一等較小的數據 并用科學記數法表示較小的數據.
2 .近似數和有效數字 并按要求取近似數.
3.從統計圖中獲取信息 并用統計圖形象地表示數據.
(二)能力訓練要求
1.體會描述較小 數據的方法 進一步發展數感.
2.了解近似數和有效數字的概念 能按要求取近似數 體會近似數的意義在生活中的作用.
3.能讀懂統計圖中的信息 并能收集、整理、描述和分析數據 有效、形象地用統計圖描述數據 發展統計觀念.
(三)情感與價值觀要求:1.培養學生用數學的意識和信心 體會數學的應用價值. 2.發展學生的創新能力和克服困難的勇氣.
二、教學重點:1.感受較小的數據.
2.用科學記數法表示較小的數.
3.近似數和有效數字 并能按要求取近似數.
4.讀懂統計圖 并能形象、有效地用統計圖描述數據.
教學難點:形象、有效地用統計圖描述數據.
教學過程:.創設情景 引入新
三.講授新:請你用熟悉的事物描述 一些較小的數據:大象是世界上最大的陸棲動物 它的體重可達幾噸。世界第一高峰——珠穆朗瑪峰 它的海拔高度約為8848米。
1.哪些數據用科學記數法表示比較方便?舉例說明.
2.用科學記數法表示下列各數:
(1)水由氫原子和氧原子組成 其中氫原子的直徑約為0.000 000 0001米.
(2)生物學家發現一種病毒的長度約為0.000043毫米;
(3)某種鯨的體重可達136 000 000千克;
(4)20xx年5月19日 國家郵政局特別發行“萬眾一心 抗擊‘非典’”郵票 收入全部捐給 衛生部門 用以支持抗擊“非典”斗爭 其郵票的發行量為12 500 000枚.
四.時小結:我們這節回顧了以下知識:
1.又一次經 歷感受 了百萬分之一 進一步體會描述較小數據的方法:與身邊事物比較 進一步學習了利 用科學記數法表示較小的數據.
2.在實際情景中進一步體會到了近似 數的意義和作用 并按要求取近似數和有效數字.
3.又一次欣賞了形象的統計圖 并從中獲取有用的信息.
(1)根據上表中的數據 制作統計圖表示這些主要河流的`河長情況 你的統計圖要盡可能的形象.
(2)從上表中的數據可以看出 河流的河長與流域面積有什么樣的聯系?
(3)在中國地形圖上找出主要河流 你認為河流年徑流量與河流所處的地理位置有關系嗎?
制作形象的統計圖 首先要處理好數據 即從表格中計算出這幾條河流長度的比例 然后選擇最大或最小作為基準量 按比例形象畫出即可.
(1)形象統計圖(略)只要合理即可.
(2)從表中的數據看出 河流越長 其流域面積越大.
(3)河流的年徑流量與河流所處的位置有關系.
五.后作業:
七年級數學上冊教案10
【教學目標】
知識與技能:了解并掌握數據收集的基本方法。
過程與方法:在調查的過程中,要有認真的態度,積極參與。
情感、態度與價值觀:體會統計調查在解決實際問題中的作用,逐步養成用數據說話的良好習慣。
【教學重難點】
重點:掌握統計調查的基本方法。
難點:能根據實際情況合理地選擇調查方法。
【教學過程】
講授新課
像前面提到的收集數據的活動中,全班同學是我們要考察的對象,我們采用問卷對全體同學作了逐一調查,像這樣對全體對象進行的調查叫做全面調查。
調查、試驗如采用普查可以收集到較全面、準確的數據,但普查的.工作量比較大,有時受客觀條件(人力、財力等)的限制難以進行,有時由于調查具有破壞性,不允許采用。在這些情況下,常常采用抽樣調查,即從被考察的全體對象中抽出一部分對象進行考察的調查方式。
在一個統計問題中,我們把所要考察對象的全體叫做總體,其中的每一個考察對象叫做個體,從總體中所抽取的一部分個體叫做總體的一個樣本(sample),樣本中個體的數目叫做樣本容量。
例如,在通過試驗考察500只新工藝生產的燈泡的使用壽命時,從中抽取50只進行試驗。這500只燈泡的使用壽命的全體是總體,其中每只燈泡的使用壽命是個體,抽取的50只燈泡的使用壽命是一個樣本,50是這個樣本的樣本容量。
為了使抽取的50只燈泡能很好地反映500只燈泡的情況,抽取時要使每只燈泡逐一進行編號,再把編號寫在小紙片上,將小紙片揉成團,放在一個不透明的容器內,充分攪拌后,從中一個個地抽取50個號簽。
上面抽取樣本的過程中,總體中的各個個體都有相等的機會被抽到,像這樣的抽樣方法是一種簡單隨機抽樣。
師:以“你知道父母的生日嗎?”為題在班級進行調查,請設計一張問卷調查表。
學生小組合作、討論,學生代表展示結果。
教師指導、評論。
師:除了問卷調查外,我們還有哪些方法收集到數據呢?
學生小組討論、交流,學生代表回答。
師:收集數據的直接方法有訪問、調查、觀察、測量、試驗等,間接方法有查閱資料、上網查詢等。就以下統計的數據,你認為選擇何種方法去收集比較合適?
(1)你班中的同學是如何安排周末時間的?
(2)我國瀕臨滅絕的植物數量;
(3)某種玉米種子的發芽率;
(4)學校門口十字路口每天7:00~7:10時的車流量。
七年級數學上冊教案11
教學目的:
1.知識與技能
體會有理數乘法的實際意義;
掌握有理數乘法的運算法則和乘法法則,靈活地運用運算律簡化運算。
2.過程與方法
經歷有理數乘法的推導過程,用分類討論的思想歸納出兩數相乘的法則,感悟中、小學數學中的乘法運算的重要區別。
通過體驗有理數的乘法運算,感悟和歸納出進行乘法運算的一般步驟。
3.情感、態度與價值觀
通過類比和分類的思想歸納乘法法則,發展舉一反三的能力。
教學重點:
應用法則正確地進行有理數乘法運算。
教學難點:
兩負數相乘,積的符號為正。
教具準備:
多媒體。
教學過程:
一、引入
前面我們已經學習了有理數的加法運算和減法運算,今天,我們開始研究有理數的乘法運算.
問題一:有理數包括哪些數?
回答:有理數包括正整數、正分數、負整數、負分數和零.
問題二:小學已經學過的乘法運算,屬于有理數中哪些數的運算?
回答:屬于正有理數和零的乘法運算.或答:屬于正整數、正分數和零的乘法運算.
計算下列各題;
以上這些題,都是對正有理數與正有理數、正有理數與零、零與零的乘法,方法與小學學過的相同,今天我們要研究的有理數的乘法運算,重點就是要解決引入負有理數之后,怎樣進行乘法運算的問題.
二、新課
我們以蝸牛爬行距離為例,為區分方向,我們規定:向左為負,向右為正,為區分時間,我們規定:現在前為負,現在后為正。
如圖,一只蝸牛沿直線l爬行,它現在的位置恰在l上的點O。
1.正數與正數相乘
問題一:如果蝸牛一直以每分2cm的速度向右爬行,3分后它在什么位置?
講解:3分后蝸牛應在l上點O右邊6cm處,這可表示為
(+2)×(+3)=+6
答:結果向東運動了6米.
2.負數與正數相乘
問題二:如果蝸牛一直以每分2cm的速度向左爬行,3分后它在什么位置?
講解:3分后蝸牛應在l上點O右邊6cm處,這可表示為
(-2)×(+3)=(-6)
3.正數與負數相乘
問題三:如果蝸牛一直以每分2cm的速度向右爬行,3分前它在什么位置?
講解:3分后蝸牛應為l上點O左邊6cm處,這可以表示為
(+2)×(-3)=-6
4.負數與負數相乘
問題四:如果蝸牛一直以每分2cm的.速度向左爬行,3分前它在什么位置?
講解:3分前蝸牛應為l上點O右邊6cm處,這可以表示為
(-2)×(-3)=+6
5.零與任何數相乘或任何數與零相乘
問題五:原地不動或運動了零次,結果是什么?
答:結果都是仍在原處,即結果都是零,若用式子表達:
0×3=0;0×(-3)=0;2×0=0;(-2)×0=0.
綜合上述五個問題得出:
(1)(+2)×(+3)=+6;
(2)(-2)×(+3)=-6;
(3)(+2)×(-3)=-6;
(4)(-2)×(-3)=+6.
(5)任何數與零相乘都得零.
觀察上述(1)~(4)回答:
1.積的符號與因數的符號有什么關系?
2.積的絕對值與因數的絕對值有什么關系?
答:1.若兩個因數的符號相同,則積的符號為正;若兩個因數的符號相反,則積的符號為負.2.積的絕對值等于兩個因數的絕對值的積.
由此我們可以得到:
兩數相乘,同號得正,異號得負,并把絕對值相乘.
(1)~(5)包括了兩個有理數相乘的所有情況,綜合上述各種情況,得到有理數乘法的法則:
口答:確定下列兩數積的符號:
例題:計算下列各題:
解題步驟:
1.認清題目類型.
2.根據法則確定積的符號.
3.絕對值相乘.
練習:
1.口答下列各題:
(1)6×(-9);(2)(-6)×(-9);
(3)(-6)×9;(4)(-6)×1;
(5)(-6)×(-1);(6)6×(-1);
(7)(-6)×0;(8)0×(-6);
(9)(-6)×0.25;(10)(-0.5)×(-8);
注意:由(4)(5)(6)得:一個數與1相乘得原數,一個數與-1相乘,得原數的相反數.
2.在表中的各個小方格里,填寫所在的橫行的第一個數與所在直列的第一個數的積:
3.計算下列各題:
(1)(-36)×(-15);(2)-48×1.25;
4.填空:
(1)1×(-5)=____;(-1)×(-5)=____;
+(-5)=____;-(-5)=____;
(2)1×a=____;(-1)×a=____;
(3)1×|-5|=____;-1×|-5|=____;
-|-5|=____
(4)1+(-5)=____;(-1)+(-5)=____;
(-1)+5=____.
三、小結
(1)指導學生看書,精讀乘法法則.
(2)強調運用法則進行有理數乘法的步驟.
(3)比較有理數乘法的符號法則與有理數加法的符號法則的區別,以達到進一步鞏固有理數乘法法則的目的.
四、作業
1.計算:
(1)(-16)×15;(2)(-9)×(-14);
(3)(-36)×(-1);(4)13×(-11);
(5)(-25)×16;(6)(-10)×(-16).
2.計算:
(1)2.9×(-0.4);(2)-30.5×0.2;
(3)0.72×(-1.25);(4)100×(-0.001);
(5)-4.8×(-1.25);(6)-4.5×(-0.32).
3.計算:
4.填空:(用“>”或“<”號連接)
(1)如果a<0,b>0,那么,ab____0;
(2)如果a<0,b<0,那么,ab____0;
(3)當a>0時,a____2a;
(4)當a<0時,a____2a.
板書設計
1.4有理數的乘法
法則:練習
教學設計思路
本節課是在小學已接觸到的乘法、初中剛學習過的有理數的加減法基礎上進行的。通過對實際問題的解決,引入有理數的乘法法則。在講解運動的例子時運用現代化教學手段,把圖形中的“靜”變“動”,增強了直觀性,初步培養想象能力。
教學反思
強調學生與教師一起共同參與教學活動,我們堅持把教學活動過程體現在教學中,又激發學生的思維積極性,讓學生學會分析問題和解決問題。
七年級數學上冊教案12
教學目標:
知識與技能:1.知道去括號的意義;2.會去括號,并能利用去括號的法則進行簡單的計算。
過程與方法:經歷探究去括號法則的過程,培養學生的觀察能力、歸納能力。
情感態度與價值觀:根據乘法對加法的'分配律理解去括號法則的正確性。
教學重點:1.去括號的法則;2.利用去括號法則進行簡單計算。
教學難點:括號前面有系數時,注意括號中各項都要與系數相乘。
教材分析:本節是本章的重點內容。也是以后學習整式乘除、分式運算、一次方程和函數等知識的基礎,同時也為其他學科的學習奠定基礎。故在學習過程中重視對學生基礎知識和基本技能的訓練,關注學生對知識發生發展過程的體驗和應用能力的培養。
教學方法:師生互動法
教具:電腦、投影儀、課件資源、投影片
課時安排:1課時
教學過程:
板書設計:
6.3去括號
a+(b+c)=a+b+c例1:
a-(b+c)=?
去括號法則:略例2:
教學反思:本節課采用加法結合律與實例相結合的方式導入,經歷對同一問題的數量關系的不同表示方法,讓學生更形象更具體地體會去括號法則的合理性,整個過程以學生為主,讓學生觀察思考合作交流來發現并親身體會去括號法則的過程和數與式之間的關系,收到效果較好。但在教學中還應給予學生較多的思考反思總結的時間效果會更好些。
七年級數學上冊教案13
【學習目標】:
1、掌握正數和負數概念;
2、會區分兩種不同意義的量,會用符號表示正數和負數;
3、體驗數學發展是生活實際的需要,激發學生學習數學的興趣。
【重點難點】:正數和負數概念
【教學過程】:
一、知識鏈接:
1、小學里學過哪些數請寫出來:
2、閱讀課本P2三幅圖(重點是三個例子,邊閱讀邊思考)回答下面提出的問題:
3、在生活中,僅有整數和分數夠用了嗎?有沒有比0小的數?如果有,那叫做什么數?
二、自主學習
1、正數與負數的產生
(1)、生活中具有相反意義的量
如:運進5噸與運出3噸;上升7米與下降8米;向東50米與向西47米等都是生活中遇到的具有相反意義的量。請你也舉一個具有相反意義量的例子: 。
(2)負數的產生同樣是生活和生產的需要
2、正數和負數的表示方法
(1)一般地,我們把上升、運進、零上、收入、前進、高出等規定為正的,而與它相反的量,如:下降、運出、零下、支出、后退、低于等規定為負的。正的量就用小學里學過的數表示,有時也在它前面放上一個“+”(讀作正)號,如前面的5、7、50;負的量用小學學過的數前面放上“—”(讀作負)號來表示,如上面的'—3、—8、—47。
(2)活動: 兩個同學為一組,一同學任意說意義相反的兩個量,另一個同學用正負數表示.
(3)閱讀P2的內容
3、正數、負數的概念
1)大于0的數叫做 ,小于0的數叫做 。
2)正數是大于0的數,負數是 的數,0既不是正數也不是負數。
【課堂練習】:
1. P3第1,2題(直接做在課本上)。
2.小明的姐姐在銀行工作,她把存入3萬元記作+3萬元,那么支取2萬元應記作_______,-4萬元表示________________。
3.已知下列各數:?13,?2,3.14,+3065,0,-239; 54
則正數有_____________________;負數有____________________。
4.下列結論中正確的是 ????????????????( )
A.0既是正數,又是負數
C.0是最大的負數
【要點歸納】:
正數、負數的概念:
(1)大于0的數叫做 ,小于0的數叫做 。
(2)正數是大于0的數,負數是 的數,0既不是正數也不是負數。
【拓展訓練】:
1.零下15℃,表示為_________,比O℃低4℃的溫度是_________。
2.地圖上標有甲地海拔高度30米,乙地海拔高度為20米,丙地海拔高度為-5米,
其中最高處為_______地,最低處為_______地.
3.“甲比乙大-3歲”表示的意義是______________________。
4.如果海平面的高度為0米,一潛水艇在海水下40米處航行,一條鯊魚在潛水艇上方10米處游動,試用正負數分別表示潛水艇和鯊魚的高度。
【課后作業】P5第1、2題
七年級數學上冊教案14
一、教學目標
1.使學生認識平行線的特征,能靈活地利用平行線的三個特征解決問題.
2.繼續對學生進行初步的數學語言的訓練,使學生能用數學語言敘述平行線的特征,并能用初步的數學語言進行簡單的邏輯推理.
3.使學生理解平移的思想,知道圖形經過平移以后的位置,并能畫出平移后的圖形.
4.通過利用“幾何畫板”所做的數學實驗的演示等,培養學生的觀察能力,即在圖形的運動變化中抓住圖形的'本質特征,發展學生邏輯思維能力,通過實際問題的解決培養學生分析問題和解決問題的能力.
5.通過課堂設疑,培養學生勇于發現、探索新知識的精神.
6.通過創設問題情境,讓學生親身體驗、直觀感知并操作確認,激發學生自主學習的欲望,使之愛學、會學、學會、會用.
二、教學重點
平行線的三個特征.
三、教學難點
靈活地利用平行線的三個特征解決問題.
四、教學過程
老師:同學們,如圖所示,是我們大連的馬欄河,河上有兩座橋:新華橋和光明橋.河的兩岸是兩條平行的公路:黃河路與高爾基路,某測量員在A點測得.如果你不通過測量,能否猜出的度數是多少?
王亮:.
老師:他到底猜得對不對呢?下面我們要先做一個實驗,拿出尺子,畫兩條平行的直線a、b,第三條直線l和這兩條直線相交,標出所得到的角,用量角器量出各個角的度數,觀察當兩直線平行時,各種角有什么關系.
學生動手按要求做實驗.
老師:將你發現的規律與組內同學進行交流.
學生以小組為單位進行交流與研究.
老師:請每組派一名代表將你們得到的規律寫到黑板上,并結合你畫的圖講解你們組的結論.
第1組學生代表:如果兩直線平行,同位角就相等。
七年級數學上冊教案15
【學習目標】
1、使學生能根據商品銷售問題中的數量關系找出等量關系,列出方程,掌握商品盈虧的求法;
2、培養學生分析問題,解決實際問題的能力;
3、讓學生在實際生活問題中,感受到數學的價值。
【學習重點】用列方程的方法解決打折銷售問題。
【學習難點】準確理解打折銷售問題中的利潤(利潤率)、成本、銷售價之間的關系。
《3.4實際問題與一元一次方程》同步練習含解析
1.班主任老師在七年級(1)班新生分組時發現,若每組7人則多2人,若每組8人則少4人,那么這個班的學生人數是( )人.
A.40 B.44 C.51 D.56
2.某玩具的標價是132元,若降價以9折出售仍可獲利10%,則該玩具的進價是( )元.
A.118 B.108 C.106 D.105
3.某車間有27名工人,生產某種由一個螺栓套兩個螺母的產品,每人每天生產螺母16個或螺栓22個,若分配x名工人生產螺栓,其他工人生產螺母,恰好使每天生產的螺栓和螺母配套,則下面所列方程中正確的'是( )
A.22x=16(27-x) B.16x=22(27-x)
C.2×16x=22(27-x) D.2×22x=16(27-x)
4.甲倉庫與乙倉庫共存糧450 噸、現從甲倉庫運出存糧的60%.從乙倉庫運出存糧的40%.結果乙倉庫所余的糧食比甲倉庫所余的糧食多30 噸.若設甲倉庫原來存糧x噸,則有( )
A.(1-60%)x-(1-40%)(450-x)=30 B.60%x-40%?(450-x)=30
C.(1-40%)(450-x)-(1-60%)x=30 D.40%?(450-x)-60%?x=30
《3.4實際問題與一元一次方程》同步四維訓練含答案
1.(20xx·黑龍江哈爾濱中考)某車間有26名工人,每人每天可以生產800個螺釘或1 000個螺母,1個螺釘需要配2個螺母,為使每天生產的螺釘和螺母剛好配套.設安排x名工人生產螺釘,則下面所列方程正確的是(C )
A.2×1 000(26-x)=800x
B.1 000(13-x)=800x
C.1 000(26-x)=2×800x
D.1 000(26-x)=800x
2.(20xx·廣西南寧中考)超市店慶促銷,某種書包原價每個x元,第一次降價打“八折”,第二次降價每個又減10元,經兩次降價后售價為90元,則得到方程(A )
A.0.8x-10=90 B.0.08x-10=90
C.90-0.8x=10 D.x-0.8x-10=90
3.(20xx·黑龍江綏化中考)一個長方形的周長為30 cm,若這個長方形的長減少1 cm,寬增加2 cm就可成為一個正方形,設長方形的長為x cm,可列方程為(D )
A.x+1=(30-x)-2 B.x+1=(15-x)-2
C.x-1=(30-x)+2 D.x-1=(15-x)+2
【七年級數學上冊教案】相關文章:
數學七年級上冊教案04-16
湘教版數學七年級上冊教案01-09
[優]數學七年級上冊教案06-13
七年級上冊數學教案12-16
七年級數學上冊教案(精選)06-14
七年級數學上冊教案[精選]06-16
七年級數學上冊教案01-11
七年級上冊數學教學教案06-01
七年級上冊數學教案01-19
數學新七年級上冊教案模板01-24