1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>八年級數學教案>八年級數學教案

    八年級數學教案

    時間:2024-06-25 08:04:30 八年級數學教案 我要投稿

    八年級數學教案(精)

      作為一位不辭辛勞的人民教師,編寫教案是必不可少的,教案有助于順利而有效地開展教學活動。教案要怎么寫呢?下面是小編收集整理的八年級數學教案,歡迎閱讀與收藏。

    八年級數學教案(精)

    八年級數學教案1

      一、教學目標

      1.使學生理解并掌握分式的概念,了解有理式的概念;

      2.使學生能夠求出分式有意義的條件;

      3.通過類比分數研究分式的教學,培養學生運用類比轉化的思想方法解決問題的能力;

      4.通過類比方法的教學,培養學生對事物之間是普遍聯系又是變化發展的辨證觀點的再認識.

      二、重點、難點、疑點及解決辦法

      1.教學重點和難點 明確分式的分母不為零.

      2.疑點及解決辦法 通過類比分數的.意義,加強對分式意義的理解.

      三、教學過程

      【新課引入】

      前面所研究的因式分解問題是把整式分解成若干個因式的積的問題,但若有如下問題:某同學分鐘做了60個仰臥起坐,每分鐘做多少個?可表示為,問,這是不是整式?請一位同學給它試命名,并說一說怎樣想到的?(學生有過分數的經驗,可猜想到分式)

      【新課】

      1.分式的定義

      (1)由學生分組討論分式的定義,對于“兩個整式相除叫做分式”等錯誤,由學生舉反例一一加以糾正,得到結論:

      用、表示兩個整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.

      (2)由學生舉幾個分式的例子.

      (3)學生小結分式的概念中應注意的問題.

      ①分母中含有字母.

      ②如同分數一樣,分式的分母不能為零.

      (4)問:何時分式的值為零?[以(2)中學生舉出的分式為例進行討論]

      2.有理式的分類

      請學生類比有理數的分類為有理式分類:

      例1 當取何值時,下列分式有意義?

      (1);

      解:由分母得.

      ∴當時,原分式有意義.

      (2);

      解:由分母得.

      ∴當時,原分式有意義.

      (3);

      解:∵恒成立,

      ∴取一切實數時,原分式都有意義.

      (4).

      解:由分母得.

      ∴當且時,原分式有意義.

      思考:若把題目要求改為:“當取何值時下列分式無意義?”該怎樣做?

      例2 當取何值時,下列分式的值為零?

      (1);

      解:由分子得.

      而當時,分母.

      ∴當時,原分式值為零.

      小結:若使分式的值為零,需滿足兩個條件:①分子值等于零;②分母值不等于零.

      (2);

      解:由分子得.

      而當時,分母,分式無意義.

      當時,分母.

      ∴當時,原分式值為零.

      (3);

      解:由分子得.

      而當時,分母.

      當時,分母.

      ∴當或時,原分式值都為零.

      (4).

      解:由分子得.

      而當時,,分式無意義.

      ∴沒有使原分式的值為零的的值,即原分式值不可能為零.

      (四)總結、擴展

      1.分式與分數的區別.

      2.分式何時有意義?

      3.分式何時值為零?

      (五)隨堂練習

      1.填空題:

      (1)當時,分式的值為零

      (2)當時,分式的值為零

      (3)當時,分式的值為零

      2.教材P55中1、2、3.

      八、布置作業

      教材P56中A組3、4;B組(1)、(2)、(3).

      九、板書設計

      課題 例1

      1.定義例2

      2.有理式分類

    八年級數學教案2

      一、教學目標

      1、理解分式的基本性質。

      2、會用分式的基本性質將分式變形。

      二、重點、難點

      1、重點:理解分式的基本性質。

      2、難點:靈活應用分式的基本性質將分式變形。

      3、認知難點與突破方法

      教學難點是靈活應用分式的基本性質將分式變形。突破的方法是通過復習分數的通分、約分總結出分數的基本性質,再用類比的方法得出分式的基本性質。應用分式的基本性質導出通分、約分的概念,使學生在理解的基礎上靈活地將分式變形。

      三、練習題的意圖分析

      1、P7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應用分式的`基本性質,相應地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。

      2、P9的例3、例4地目的是進一步運用分式的基本性質進行約分、通分。值得注意的是:約分是要找準分子和分母的公因式,最后的結果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母。

      教師要講清方法,還要及時地糾正學生做題時出現的錯誤,使學生在做提示加深對相應概念及方法的理解。

      3。P11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“—”號。這一類題教材里沒有例題,但它也是由分式的基本性質得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。

      “不改變分式的值,使分式的分子和分母都不含‘—’號”是分式的基本性質的應用之一,所以補充例5。

      四、課堂引入

      1、請同學們考慮:與相等嗎?與相等嗎?為什么?

      2、說出與之間變形的過程,與之間變形的過程,并說出變形依據?

      3、提問分數的基本性質,讓學生類比猜想出分式的基本性質。

      五、例題講解

      P7例2。填空:

      [分析]應用分式的基本性質把已知的分子、分母同乘以或除以同一個整式,使分式的值不變。

      P11例3。約分:

      [分析]約分是應用分式的基本性質把分式的分子、分母同除以同一個整式,使分式的值不變。所以要找準分子和分母的公因式,約分的結果要是最簡分式。

      P11例4。通分:

      [分析]通分要想確定各分式的公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母。

    八年級數學教案3

      總課時:7課時 使用人:

      備課時間:第八周 上課時間:第十周

      第4課時:5、2平面直角坐標系(2)

      教學目標

      知識與技能

      1.在給定的直角坐標系下,會根據坐標描出點的位置;

      2.通過找點、連線、觀察,確定圖形的大致形狀的問題,能進一步掌握平面直角坐標系的基本內容。

      過程與方法

      1.經歷畫坐標 系、描點、連線、看圖以及由點找坐標等過程,發展學生的數形結合思想,培養學生的合作 交流能力;

      2.通過由點確定坐標到根據坐標描點的轉化過程,進一步培養學生的轉化意識。

      情感態度與價值觀

      通過生動有趣的教學活動,發展學生的合情推理能力和豐富的.情感、態度,提高學生學習數學的興趣。

      教學重點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。

      教學難點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。

      教學過程

      第一環節 感 受生活中的情境,導入新課(10分鐘,學生自己繪圖找點)

      在上節課中我們學習了平面直角坐標系的定義,以及橫軸、縱軸、點 的坐標的定義,練習了在平面直角坐標系中由點找坐標,還探討了橫坐標或縱坐標相同的點的連線與坐標軸的關系,坐標軸上點的坐標有什么特點。

      練習:指出下列 各點以及所在象限或坐標軸:

      A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(0, ), G(0,0) (抽取學生作答)

      由點找坐標是已知點在直角坐標 系中的位置,根據這點在方格紙上對應的x軸、y軸上的數字寫出它的坐標,反過來,已知坐標,讓 你在直角坐標系中找點,你能找到嗎?這就是本節課的內容。

      第二環節 分類討論,探索新知.(15分鐘,小組討論,全班交流)

      1.請同學們拿出準備好的方格紙,自己建立平面直角坐標系,然后按照我給出的坐標,在直角坐標系中描點,并依次用線段連接起來。

      (-9,3),(-9,0),(-3,0),( -3,3)

      ( 學生操作完畢后)

      2.(出示投影)還是在這個平面直角坐標系中,描出下列各組內的點用線段依次連接起來。

      (1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);

      (2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);

      (3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);

      (4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。

      觀察所得的圖形,你覺得它像什么?

      分成4人小組,大家合作在剛才建立的平面直角坐標系中(選出小組中最好的)添畫。各人分工,每人畫一小題。看哪個小組做得最快?

      (出示學生的作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺得它像什么?

      這個圖形像一棟房子旁邊還有一棵大樹。

      3.做一做

      (出示投影)

      在書上已建立的直角坐標系畫,要求每位同學獨立完成。

      (學生描點、畫圖)

      (拿出一位做對的學生的作品投影)

      你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?

      (像貓臉)

      第三環節 學有所用.(10分鐘,先獨立完成,后小組討論)

      (補充)1.在直角坐標系中描出下列各點,并將各組內的點用線段順次連接起來。

      (1)(0,3),(-4,0),(0,-3),(4,0),(0,3);

      (2)(0,0),(4,-3),(8,0),(4,3),(0,0);

      (3)(2,0)

      觀察所得的圖形,你覺得它像什么?(像移動的菱形)

      2.在直角坐標系中,設法找到若干個點使得連接各點所得的封閉圖形是如下圖所示的十字。

      先獨立完成,然后小組討論是否正確。

      第四環節 感悟與收獲(5分鐘,學生總結,全班交流)

      本節課在復習上節課的基礎上,通過找點、連 線、觀察,確定圖形的大致形狀,進一步掌握平面直角坐標系的基本內容。

      在例題和練習中,我們畫出了不少美麗的圖形,自己設計一些圖形,并把圖形放在直角坐標系下,寫出點的坐標。

      第五環節 布置作業

      習題5、4

      A組(優等生)1、2、3

      B組(中等生)1、2

      C組(后三分之一生)1、2

    八年級數學教案4

      一、教學目的

      1.使學生進一步理解自變量的取值范圍和函數值的意義.

      2.使學生會用描點法畫出簡單函數的圖象.

      二、教學重點、難點

      重點:1.理解與認識函數圖象的意義.

      2.培養學生的看圖、識圖能力.

      難點:在畫圖的三個步驟的列表中,如何恰當地選取自變量與函數的對應值問題.

      三、教學過程

      復習提問

      1.函數有哪三種表示法?(答:解析法、列表法、圖象法.)

      2.結合函數y=x的圖象,說明什么是函數的圖象?

      3.說出下列各點所在象限或坐標軸:

      新課

      1.畫函數圖象的方法是描點法.其步驟:

      (1)列表.要注意適當選取自變量與函數的對應值.什么叫“適當”?——這就要求能選取表現函數圖象特征的幾個關鍵點.比如畫函數y=3x的圖象,其關鍵點是原點(0,0),只要再選取另一個點如M(3,9)就可以了.

      一般地,我們把自變量與函數的對應值分別作為點的橫坐標和縱坐標,這就要把自變量與函數的對應值列出表來.

      (2)描點.我們把表中給出的有序實數對,看作點的坐標,在直角坐標系中描出相應的點.

      (3)用光滑曲線連線.根據函數解析式比如y=3x,我們把所描的兩個點(0,0),(3,9)連成直線.

      一般地,根據函數解析式,我們列表、描點是有限的幾個,只需在平面直角坐標系中,把這有限的幾個點連成表示函數的曲線(或直線).

      2.講解畫函數圖象的三個步驟和例.畫出函數y=x+0.5的'圖象.

      小結

      本節課的重點是讓學生根據函數解析式畫函數圖象的三個步驟,自己動手畫圖.

      練習

      ①選用課本練習(前一節已作:列表、描點,本節要求連線)

      ②補充題:畫出函數y=5x-2的圖象.

      作業

      選用課本習題.

      四、教學注意問題

      1.注意滲透數形結合思想.通過研究函數的圖象,對圖象所表示的一個變量隨另一個變量的變化而變化就更有形象而直觀的認識.把函數的解析式、列表、圖象三者結合起來,更有利于認識函數的本質特征.

      2.注意充分調動學生自己動手畫圖的積極性.

      3.認識到由于計算器和計算機的普及化,代替了手工繪圖功能.故在教學中要傾向培養學生看圖、識圖的能力.

    八年級數學教案5

      教學目標:

      1. 掌握三角形內角和定理及其推論;

      2. 弄清三角形按角的分類, 會按角的大小對三角形進行分類;

      3.通過對三角形分類的學習,使學生了解數學分類的基本思想,并會用方程思想去解決一些圖形中求角的問題。

      4.通過三角形內角和定理的證明,提高學生的邏輯思維能力,同時培養學生嚴謹的科學態

      5. 通過對定理及推論的分析與討論,發展學生的求同和求異的思維能力,培養學生聯系與轉化的辯證思想。

      教學重點:

      三角形內角和定理及其推論。

      教學難點:

      三角形內角和定理的證明

      教學用具:

      直尺、微機

      教學方法:

      互動式,談話法

      教學過程:

      1、創設情境,自然引入

      把問題作為教學的出發點,創設問題情境,激發學生學習興趣和求知欲,為發現新知識創造一個最佳的心理和認知環境。

      問題1 三角形三條邊的'關系我們已經明確了,而且利用上述關系解決了一些幾何問題,那么三角形的三個內角有何關系呢?

      問題2 你能用幾何推理來論證得到的關系嗎?

      對于問題1絕大多數學生都能回答出來(小學學過的),問題2學生會感到困難,因為這個證明需添加輔助線,這是同學們第一次接觸的新知識―――“輔助線 ”。教師可以趁機告訴學生這節課將要學習的一個重要內容(板書課題)

      新課引入的好壞在某種程度上關系到課堂教學的成敗,本節課從舊知識切入,特別是從知識體系考慮引入,“學習了三角形邊的關系,自然想到三角形角的關系怎樣呢?”使學生感覺本節課學習的內容自然合理。

      2、設問質疑,探究嘗試

      (1)求證:三角形三個內角的和等于

      讓學生剪一個三角形,并把它的三個內角分別剪下來,再拼成一個平面圖形。這里教師設計了電腦動畫顯示具體情景。然后,圍繞問題設計以下幾個問題讓學生思考,教師進行學法指導。

      問題1 觀察:三個內角拼成了一個

      什么角?問題2 此實驗給我們一個什么啟示?

      (把三角形的三個內角之和轉化為一個平角)

      問題3 由圖中AB與CD的關系,啟發我們畫一條什么樣的線,作為解決問題的橋梁?

      其中問題2是解決本題的關鍵,教師可引導學生分析。對于問題3學生經過思考會畫出此線的。這里教師要重點講解“輔助線”的有關知識。比如:為什么要畫這條線?畫這條線有什么作用?要讓學生知道“輔助線”是以后解決幾何問題有力的工具。它的作用在于充分利用條件;恰當轉化條件;恰當轉化結論;充分提示題目中各元素間的一些不明顯的關系,達到化難為易解決問題的目的。

      (2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?

      學生回答后,電腦顯示圖表。

      (3)三角形中三個內角之和為定值

      ,那么對三角形的其它角還有哪些特殊的關系呢?問題1 直角三角形中,直角與其它兩個銳角有何關系?

      問題2 三角形一個外角與它不相鄰的兩個內角有何關系?

      問題3 三角形一個外角與其中的一個不相鄰內角有何關系?

      其中問題1學生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學生經過分析討論,得出結論并書寫證明過程。

      這樣安排的目的有三點:第一,理解定理之后的延伸――推論,培養學生良好的學習習慣。第二,模仿定理的證明書寫格式,加強學生書寫能力。第三,提高學生靈活運用所學知識的能力。

      3、三角形三個內角關系的定理及推論

      引導學生分析并嚴格書寫解題過程

    八年級數學教案6

      一、教材的地位和作用

      現實生活中,等腰三角形的應用比比皆是、所以,利用“軸對稱”的知識,進一步研究等腰三角形的特殊性質,不僅是現實生活的需要,而且從思想方法和知識儲備上,為今后研究“四邊形”和“圓”的性質打下堅實的基礎、

      性質“等腰三角形的兩個底角相等”是幾何論證過程中,證明“兩個角相等”的重要方法之一、“等腰三角形底邊上的三條重要線段重合”的性質是今后證明“兩條線段相等” “兩條直線互相垂直”“兩個角相等”等結論的重要理論依據、

      教學重點:

      1、讓學生主動經歷思考和探索的過程、

      2、掌握等腰三角形性質及其應用、

      教學難點:等腰三角形性質的理解和探究過程、

      二、學情分析

      本年級的學生已經研究過一般三角形的性質,積累了一定的經驗,動手能力強,善于與同伴交流,這就為本節課的學習做好了知識、能力、情感方面的準備、不同層次的學生因為基礎不同,在學習中必然會出現相異構想,這也將是我在教學過程中著重關注的一點、

      三、目標分析

      知識與技能

      1、了解等腰三角形的有關概念和掌握等腰三角形的性質

      2、了解等邊三角形的概念并探索其性質

      3、運用等腰三角形的性質解決問題

      過程與方法

      1、通過觀察等腰三角形的對稱性,發展學生的形象思維、

      2、探索等腰三角形的性質時,經歷了觀察、動手實踐、猜想、驗證等數學過程,積累數學活動經驗,發展了學生的歸納推理,類比遷移的能力、在與他人交流的過程中,能運用數學語言合乎邏輯的進行討論和質疑,提高了數學語言表達能力、

      情感態度價值觀:

      1、通過情境創設,使學生感受到等腰三角形就在自己的身邊,從而使學生認識到學習等腰三角形的必要性、

      2、通過等腰三角形的性質的歸納,使學生認識到科學結論的發現,是一個不斷完善的過程,培養學生堅強的意志品質、

      3、通過小組合作,發展學生互幫互助的精神,體驗合作學習中的樂趣和成就感、

      四、教法分析

      根據學生已有的認知,采取了激疑引趣——猜想探究——應用體驗——建構延伸的教學模式,并利用多媒體輔助教學、

      設計意圖

      同學們,我們在七年級已研究了一般三角形的.性質,今天我們一起來探究特殊的三角形:等腰三角形、

      等腰三角形的定義

      有兩條邊相等的三角形叫做等腰三角形、

      等腰三角形中,相等的兩邊都叫做腰,另一邊叫做底邊,兩腰的夾角叫做頂角、腰和底邊的夾角叫做底角、

      提出問題:生活中有哪些現象讓你聯想到等腰三角形?

      首先讓學生明確:本學段的幾何圖形都是按一般的到特殊的順序研究的

      通過學生描述等腰三角形在生活中的應用,讓學生感受到數學就在我們身邊,以及研究等腰三角形的必要性、

      剪紙游戲

      你能利用手中的這個矩形紙片剪出一個等腰三角形嗎?注意安全呦!

      學情分析:

      大部分學生會有自己的想法,根據軸對稱圖形的性質,利用對折紙片,再“剪一刀”就是就得到了兩條“腰”;

      可能還有的同學會利用正方形的折法,獲得特殊的等腰直角三角形;

      可能還有同學先畫圖,再依線條剪得、

      在這個過程中,注重落實三維目標、讓學生在獲取新知的過程中更好的認識自我,建立自信、我不失時機的對學生給予鼓勵和表揚,使活動更加深入,課堂充滿愉悅和溫馨、

      知其然,更重要的是知其所以然、因此,我力求讓學生關注剪法的理性思考、

      我設計了問題:你是如何想到的?為的是剖析學生的思維過程:“折疊”就是為了得到“對稱軸”,“剪一刀”就是就得到了兩條“腰”,由“重合”保證了“等腰”、這樣就建立了“操作”與“證明”的中間橋梁、從實際操作中得到證明的方法,也為發現“三線合一”做了鋪墊、

      提出問題:

      等腰三角形還有什么性質?請提出你的猜想,驗證你的猜想?并填寫在學案上、

      合作小組活動規則:

      1、有主記錄員記錄小組的結論;

      2、定出小組的主發言人(其它同學可作補充);

      3、小組探究出的結論是什么?

      4、說明你們小組所獲得結論的理由、

      等腰三角形的性質:

      性質一:等腰三角形的兩個底角相等(簡稱“等邊對等角”)、

      性質二:等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(簡稱“三線合一”)、

      學情分析:這個環節是本節課的重點,也是教學難點、盡管在教學過程中,因為學生的相異構想,數學猜想的初始敘述不準確,甚至不正確,但我不會立即去糾正他們,而是讓同學們不斷地質疑﹑辨析、研討和歸納,逐漸完善結論、讓他們真正經歷數學知識的形成過程,真正的體現以人為本的教學理念,努力創設和諧的教育教學的生態環境、

      通過設置恰當的動手實踐活動,引導學生經歷觀察、動手實踐、猜想、驗證等數學探究活動,這種探究的學習過程,恰恰是研究幾何圖形性質的一般規律和方法、

      (1)在此環節中,我的教學要充分把握好“四讓”:能讓學生觀察的,盡量讓學生觀察;能讓學生思考的,盡量讓學生思考;能讓學生表達的,盡量讓學生表達;能讓學生作結論的,盡量讓學生作結論、

      這種教學方式,把學習的過程真正還給學生,不怕學生說不好,不怕學生出問題,其實學生說不好的地方、學生出問題的地方都正是我們應該教的地方,是教學的切入點、著眼點、增長點、

      (2)教師在這個過程中,充分聽取和參與學生的小組討論,對有困難的學生,及時指導、

      鞏固知識

      1、等腰三角形頂角為70°,它的另外兩個內角的度數分別為________;

      2、等腰三角形一個角為70°,它的另外兩個內角的度數分別為_____;

      3、等腰三角形一個角為100°,它的另外兩個內角的度數分別為_____、

      內化知識

      1、如圖1,在△ABC中,AB=AC,AD⊥BC,∠BAC=120°你能求出∠BAD的度數嗎?

      知識遷移

      等邊三角形有什么特殊的性質?簡單地敘述理由、

      等邊三角形的性質定理:

      等邊三角形的各角都相等,并且每一個角都等于60°、

      拓展延伸

      如圖2,在△ABC中,AB=AC,點D,E在BC上,AD=AE,你能說明BD=EC?

      由于學生之間存在知識基礎、經驗和能力的差異,我為學生提供了層次分明的反饋練習、將練習從易到難,從簡到繁,以適應不同階段、不同層次的學生的需要、讓學生拾階而上,逐步掌握知識,使學困生達到簡單運用水平,中等生達到綜合運用水平,優等生達到創建水平、

      暢談收獲

      總結活動情況,重在肯定與鼓勵、引導學生從本課學習中所得到的新知識,運用的數學思想方法,新舊知識的聯系等方面進行反思,提高學生自主建構知識網絡、分析解決問題的能力、

      幫助學生梳理知識,回顧探究過程中所用到的從特殊到一般的數學方法,啟發學生更深層次的思考,為學生的下一步學習做好鋪墊、

      反思過程不僅是學生學習過程的繼續,更重要的是一種提高和發展自己的過程、

      基礎性作業:P65習題1、2、3、4

    八年級數學教案7

      教學目標:

      1、經歷用數格子的辦法探索勾股定理的過程,進一步發展學生的合情推力意識,主動探究的習慣,進一步體會數學與現實生活的緊密聯系。

      2、探索并理解直角三角形的三邊之間的數量關系,進一步發展學生的說理和簡單的推理的意識及能力。

      重點難點:

      重點:了解勾股定理的由來,并能用它來解決一些簡單的'問題。

      難點:勾股定理的發現

      教學過程

      一、創設問題的情境,激發學生的學習熱情,導入課題

      出示投影1(章前的圖文p1)教師道白:介紹我國古代在勾股定理研究方面的貢獻,并結合課本p5談一談,講述我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數學家)在勾股定理方面的貢獻。

      出示投影2(書中的P2圖1—2)并回答:

      1、觀察圖

      1—2,正方形A中有_______個小方格,即A的面積為______個單位。

      正方形B中有_______個小方格,即A的面積為______個單位。

      正方形C中有_______個小方格,即A的面積為______個單位。

      2、你是怎樣得出上面的結果的?在學生交流回答的基礎上教師直接發問:

      3、圖

      1—2中,A,B,C之間的面積之間有什么關系?

      學生交流后形成共識,教師板書,A+B=C,接著提出圖1—1中的A。B,C的關系呢?

      二、做一做

      出示投影3(書中P3圖1—4)提問:

      1、圖

      1—3中,A,B,C之間有什么關系?

      2、圖

      1—4中,A,B,C之間有什么關系?

      3、從圖

      1—1,1—2,1—3,1|—4中你發現什么?

      學生討論、交流形成共識后,教師總結:

      以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。

      三、議一議

      1、圖

      1—1、1—2、1—3、1—4中,你能用三角形的邊長表示正方形的面積嗎?

      2、你能發現直角三角形三邊長度之間的關系嗎?

      在同學的交流基礎上,老師板書:

      直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”

      也就是說:如果直角三角形的兩直角邊為a,b,斜邊為c

      那么

      我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。

      3、分別以

      5厘米和12厘米為直角邊做出一個直角三角形,并測量斜邊的長度(學生測量后回答斜邊長為13)請大家想一想(2)中的規律,對這個三角形仍然成立嗎?(回答是肯定的:成立)

      四、想一想

      這里的29英寸(74厘米)的電視機,指的是屏幕的長嗎?只的是屏幕的款嗎?那他指什么呢?

      五、鞏固練習

      1、錯例辨析:

      △ABC的兩邊為3和4,求第三邊

      解:由于三角形的兩邊為3、4

      所以它的第三邊的c應滿足=25

      即:c=5

      辨析:(1)要用勾股定理解題,首先應具備直角三角形這個必不可少的條件,可本題

      △ ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據。

      (2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并為交待C是斜邊

      綜上所述這個題目條件不足,第三邊無法求得。

      2、練習P

      7 §1.1 1

      六、作業

      課本P7 §1.1 2、3、4

    八年級數學教案8

      教學目標:

      1.了解軸對稱圖形和兩個圖形關于某直線對稱的概念.

      2.能識別簡單的軸對稱圖形及其對稱軸(直線),能找出兩個圖形關于某直線對稱的對稱點.

      3.了解軸對稱圖形與兩個圖形關于某直線對稱的區別和聯系.

      教學重點:

      1、軸對稱圖形和兩個圖形成軸對稱的概念;

      2、探索軸對稱的性質。

      教學難點:

      1、能夠識別軸對稱圖形并找出它的對稱軸;

      2、能運用其性質解答簡單的幾何問題。

      教學方法啟發誘導法

      教具準備多媒體課件,剪刀,彩色紙

      教學過程

      一、情境導入

      同學們,自古以來,對稱圖形被認為是和諧、美麗的'.不論在自然界里還是在建筑中,不論在藝術中還是在科學中,甚至最普通的日常生活用品中,對稱圖形隨處可見,對稱給我們帶來了美的感受!而軸對稱是對稱中很重要的一種,今天就讓我們一起走進軸對稱世界,探索它的秘密吧!

      我們先來看一下這節課的學習目標

      1.了解軸對稱圖形和兩個圖形關于某直線對稱的概念.

      2.能識別簡單的軸對稱圖形及其對稱軸,能找出兩個圖形關于某直線對稱的對稱點.

      3.了解軸對稱圖形與兩個圖形關于某直線對稱的區別和聯系.

      二、自主探究

      【探究一】

      (一)我們先來看幾幅圖片,觀察它們都有些什么共同特征.

      1、它們都是對稱的.

      2、它們沿著某條直線折疊后,直線兩旁的部分能完全重合。

      (二)動畫展示蝴蝶的折疊過程

      (三)做一做

      1.準備一張紙;

      2.對折紙;

      3.用鉛筆在紙上畫出你喜歡的圖案;

      4.剪下你畫的圖案;

      5.把紙打開鋪平,觀察所得的圖案,位于折痕兩側的部分有什么關系?

      【答】能互相重合一模一樣是對稱的

      從而得出軸對稱圖形的概念:

      如果一個圖形沿著一條直線折疊,只限兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。我們說這個圖形關于這條直線對稱。

    八年級數學教案9

      第11章平面直角坐標系

      11。1平面上點的坐標

      第1課時平面上點的坐標(一)

      教學目標

      【知識與技能】

      1。知道有序實數對的概念,認識平面直角坐標系的相關知識,如平面直角坐標系的構成:橫軸、縱軸、原點等。

      2。理解坐標平面內的點與有序實數對的一一對應關系,能寫出給定的平面直角坐標系中某一點的坐標。已知點的坐標,能在平面直角坐標系中描出點。

      3。能在方格紙中建立適當的平面直角坐標系來描述點的位置。

      【過程與方法】

      1。結合現實生活中表示物體位置的例子,理解有序實數對和平面直角坐標系的作用。

      2。學會用有序實數對和平面直角坐標系中的點來描述物體的位置。

      【情感、態度與價值觀】

      通過引入有序實數對、平面直角坐標系讓學生體會到現實生活中的問題的解決與數學的發展之間有聯系,感受到數學的價值。

      重點難點

      【重點】

      認識平面直角坐標系,寫出坐標平面內點的坐標,已知坐標能在坐標平面內描出點。

      【難點】

      理解坐標系中的坐標與坐標軸上的數字之間的關系。

      教學過程

      一、創設情境、導入新知

      師:如果讓你描述自己在班級中的位置,你會怎么說?

      生甲:我在第3排第5個座位。

      生乙:我在第4行第7列。

      師:很好!我們買的電影票上寫著幾排幾號,是對應某一個座位,也就是這個座位可以用排號和列號兩個數字確定下來。

      二、合作探究,獲取新知

      師:在以上幾個問題中,我們根據一個物體在兩個互相垂直的方向上的數量來表示這個物體

      的位置,這兩個數量我們可以用一個實數對來表示,但是,如果(5,3)表示5排3號的話,那么(3,5)表示什么呢?

      生:3排5號。

      師:對,它們對應的不是同一個位置,所以要求表示物體位置的這個實數對是有序的。誰來說說我們應該怎樣表示一個物體的位置呢?

      生:用一個有序的實數對來表示。

      師:對。我們學過實數與數軸上的點是一一對應的,有序實數對是不是也可以和一個點對應起來呢?

      生:可以。

      教師在黑板上作圖:

      我們可以在平面內畫兩條互相垂直、原點重合的數軸。水平的數軸叫做x軸或橫軸,取向右為

      正方向;豎直的數軸叫做y軸或縱軸,取向上為正方向;兩軸交點為原點。這樣就構成了平面直角坐標系,這個平面叫做坐標平面。

      師:有了平面直角坐標系,平面內的點就可以用一個有序實數對來表示了。現在請大家自己動手畫一個平面直角坐標系。

      學生操作,教師巡視。教師指正學生易犯的錯誤。

      教師邊操作邊講解:

      如圖,由點P分別向x軸和y軸作垂線,垂足M在x軸上的坐標是3,垂足N在y軸上的坐標是5,我們就說P點的橫坐標是3,縱坐標是5,我們把橫坐標寫在前,縱坐標寫在后,(3,5)就是點P的坐標。在x軸上的點,過這點向y軸作垂線,對應的坐標是0,所以它的縱坐標就是0;在y軸上的點,過這點向x軸作垂線,對應的坐標是0,所以它的橫坐標就是0;原點的橫坐標和縱坐標都是0,即原點的坐標是(0,0)。

      教師多媒體出示:

      師:如圖,請同學們寫出A、B、C、D這四點的坐標。

      生甲:A點的坐標是(—5,4)。

      生乙:B點的坐標是(—3,—2)。

      生丙:C點的坐標是(4,0)。

      生丁:D點的坐標是(0,—6)。

      師:很好!我們已經知道了怎樣寫出點的坐標,如果已知一點的坐標為(3,—2),怎樣在平面直角坐標系中找到這個點呢?

      教師邊操作邊講解:

      在x軸上找出橫坐標是3的點,過這一點向x軸作垂線,橫坐標是3的點都在這條直線上;在y軸上找出縱坐標是—2的點,過這一點向y軸作垂線,縱坐標是—2的點都在這條直線上;這兩條直線交于一點,這一點既滿足橫坐標為3,又滿足縱坐標為—2,所以這就是坐標為(3,—2)的點。下面請同學們在方格紙中建立一個平面直角坐標系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)這幾個點。

      學生動手作圖,教師巡視指導。

      三、深入探究,層層推進

      師:兩個坐標軸把坐標平面劃分為四個區域,從x軸正半軸開始,按逆時針方向,把這四個區域分別叫做第一象限、第二象限、第三象限和第四象限。注意:坐標軸不屬于任何一個象限。在同一象限內的點,它們的橫坐標的符號一樣嗎?縱坐標的符號一樣嗎?

      生:都一樣。

      師:對,由作垂線求坐標的過程,我們知道第一象限內的點的橫坐標的符號為+,縱坐標的符號也為+。你能說出其他象限內點的坐標的符號嗎?

      生:能。第二象限內的點的坐標的符號為(—,+),第三象限內的點的坐標的符號為(—,—),第四象限內的點的坐標的符號為(+,—)。

      師:很好!我們知道了一點所在的象限,就能知道它的坐標的符號。同樣的,我們由點的坐標也能知道它所在的象限。一點的坐標的符號為(—,+),你能判斷這點是在哪個象限嗎?

      生:能,在第二象限。

      四、練習新知

      師:現在我給出幾個點,你們判斷一下它們分別在哪個象限。

      教師寫出四個點的坐標:A(—5,—4),B(3,—1),C(0,4),D(5,0)。

      生甲:A點在第三象限。

      生乙:B點在第四象限。

      生丙:C點不屬于任何一個象限,它在y軸上。

      生丁:D點不屬于任何一個象限,它在x軸上。

      師:很好!現在請大家在方格紙上建立一個平面直角坐標系,在上面描出這些點。

      學生作圖,教師巡視,并予以指導。

      五、課堂小結

      師:本節課你學到了哪些新的知識?

      生:認識了平面直角坐標系,會寫出坐標平面內點的坐標,已知坐標能描點,知道了四個象限以及四個象限內點的符號特征。

      教師補充完善。

      教學反思

      物體位置的說法和表述物體的'位置等問題,學生在實際生活中經常遇到,但可能沒有想到這些問題與數學的聯系。教師在這節課上引導學生去想到建立一個平面直角坐標系來表示物體的位置,讓學生參與到探索獲取新知的活動中,主動學習思考,感受數學的魅力。在教學中我讓學生由生活中的實例與坐標的聯系感受坐標的實用性,增強了學生學習數學的興趣。

      第2課時平面上點的坐標(二)

      教學目標

      【知識與技能】

      進一步學習和應用平面直角坐標系,認識坐標系中的圖形。

      【過程與方法】

      通過探索平面上的點連接成的圖形,形成二維平面圖形的概念,發展抽象思維能力。

      【情感、態度與價值觀】

      培養學生的合作交流意識和探索精神,體驗通過二維坐標來描述圖形頂點,從而描述圖形的方法。

      重點難點

      【重點】

      理解平面上的點連接成的圖形,計算圍成的圖形的面積。

      【難點】

      不規則圖形面積的求法。

      教學過程

      一、創設情境,導入新知

      師:上節課我們學習了平面直角坐標系的概念,也學習了已知點的坐標,怎樣在平面直角坐標系中把這個點表示出來。下面請大家在方格紙上建立一個平面直角坐標系,并在上面標出A(5,1),B(2,1),C(2,—3)這三個點。

      學生作圖。

      教師邊操作邊講解:

      二、合作探究,獲取新知

      師:現在我們把這三個點用線段連接起來,看一下得到的是什么圖形?

      生甲:三角形。

      生乙:直角三角形。

      師:你能計算出它的面積嗎?

      生:能。

      教師挑一名學生:你是怎樣算的呢?

      生:AB的長是5—2=3,BC的長是1—(—3)=4,所以三角形ABC的面積是×3×4=6。

      師:很好!

      教師邊操作邊講解:

      大家再描出四個點:A(—1,2),B(—2,—1),C(2,—1),D(3,2),并將它們依次連接起來看看形成的是什么

      圖形?

      學生完成操作后回答:平行四邊形。

      師:你能計算它的面積嗎?

      生:能。

      教師挑一名學生:你是怎么計算的呢?

      生:以BC為底,A到BC的垂線段AE為高,BC的長為4,AE的長為3,平行四邊形的面積就是4×3=12。師:很好!剛才是已知點,我們將它們順次連接形成圖形,下面我們來看這樣一個連接成的圖形:

      教師多媒體出示下圖:

    八年級數學教案10

      一、內容和內容解析

      1.內容

      三角形高線、中線及角平分線的概念、幾何語言表達及它們的畫法.

      2.內容解析

      本節內容概念較多,有三角形的高、中線、角平分線和重心等有關概念;需要學生動手的頻率也較高,要掌握任意三角形的高、中線、角平分線的畫法,培養學生動手操作及解決問題的能力;鼓勵學生主動參與,體驗幾何知識在現實生活中的真實性,激發學生熱愛生活、勇于探索的思想感情。

      理解三角形高、角平分線及中線概念到用幾何語言精確表述,這是學生在幾何學習上的一個深入.學習了這一課,對于學生增長幾何知識,運用幾何知識解決生活中的有關問題,起著十分重要的作用.它也是學習三角形的角、邊的延續以及三角形全等、相似等后繼知識一個準備.

      本節的重點是了解三角形的'高、中線及角平分線概念的同時還要掌握它們的畫法,難點是鈍角三角形的高的畫法及不同類型的三角形高線的位置關系.

      二、目標和目標解析

      1.教學目標

      (1)理解三角形的高、中線與角平分線等概念;

      (2)會用工具畫三角形的高、中線與角平分線;

      2.教學目標解析

      (1)經歷畫圖實踐過程,理解三角形的高、中線與角平分線等概念.

      (2)能夠熟練用幾何語言表達三角形的高、中線與角平分線的性質.

      (3)掌握三角形的高、中線與角平分線的畫法.

      (4)了解三角形的三條高、三條中線與三條角平分線分別相交于一點.

      三、教學問題診斷分析

      三角形的高線的理解:三角形的高是線段,不是直線,它的一個端點是三角形的頂點,另一個端點在這個頂點的對邊或對邊所在的直線上.

      三角形的中線的理解:三角形的中線也是線段,它是一個頂點和對邊中點的連線,它的一個端點是三角形的頂點,另一個端點是這個頂點的對邊中點.

      三角形的角平分線的理解:三角形的角平分線也是一條線段,角的頂點是一個端點,另一個端點在對邊上.而角的平分線是一條射線,即就是說三角形的角平分線與通常的角平線有一定的聯系又有本質的區別.

    八年級數學教案11

      教學目標:

      1、知識目標:探索圖形之間的變換關系(軸對稱、平移、旋轉及其組合)。

      2、能力目標:

      ①經歷對具有旋轉特征的圖形進行觀察、分析、動手操作和畫圖等過程,掌握畫圖技能。

      ②能夠按要求作出簡單平面圖形旋轉后的圖形,并在此基礎上達到鞏固旋轉的有關性質。

      3、情感體驗點:培養學生的觀察能力和審美能力,激發學生學習數學的興趣。

      重點與難點:

      重點:圖形之間的變換關系(軸對稱、平移、旋轉及其組合);

      難點:綜合利用各種變換關系觀察圖形的形成。

      疑點:基本圖案不同,形成方式不同。

      教學方法:

      新授課在教師引導下,以學生的分組討論、合作交流為主展開教學。

      教學過程設計:

      1、情境導入

      播放自制圖形形成的影片,如圖351。

      2、充分利用本課時引入開放性的問題:圖351由四部分組成,每部分都包括兩個小十字,其中一部分能經過適當的旋轉得到其他三部分嗎?能經過平移嗎?能經過軸對稱嗎?還有其它方式嗎?

      問題本身為學生創設了一個探究圖形之間變化關系的情景,圖形雖十簡單,但變換方式綜合性強,可以讓學生自由發揮,各抒已見,后由教師進行適當歸納小結:

      (1)整個圖形可以看做是由一個十字組成部分通過連續七次平移前后的圖形共同組成;

      (2)整個圖形也可以看做是由左邊的兩個十字組成的部分通過三次放置形成的;

      (3)整個圖形不定期可以看做把左邊的兩個十字組成的部分先通過平移一次形成左右四個十字組成的圖形,然后繞圖形中心旋轉90度前后的圖形共同組成;

      (4)整個圖形還可以看做把左邊的兩個十字組成的部分通過二次軸對稱形成的。

      (學生可能還有其他不同描述,教師應予以肯定)

      3、通過上述問題的討論,我們看到圖形的平移、旋轉,軸對稱變換是圖形變換中最基本的三種變換方式,它們是今后設計圖案的主要手段。

      4、利用想一想你能將圖352的左圖,通過平移或旋轉得到右圖嗎?

      學生議論或動手操作會發現這是不可能的,教材意圖十分明確,要告訴學生并不是所有圖形都可以通過一次平移或旋轉而得到的,從而要求我們今后分析圖形之間的關系時,要充分利用它們各自的性質、特征正確判斷和識別。那么上述圖形能通過軸對稱變換從左圖變成右圖嗎?進一步讓學生思考,從而得到結論是可能的。

      5、例1、怎樣將圖353中的甲圖變成乙圖案?

      通過相對簡單活潑的'問題,讓學生能運用圖形變換的幾種不同方式解答問題(先旋轉再平移后等到或先平移后旋轉也可以)

      例2、怎樣將圖354中右邊的圖案變成左邊的圖案?

      留給學生充足的時間討論交流。

      (師):哪位同學有好好方法,請告訴大家!

      (生):以右圖案的中心為旋轉中心,將圖案按逆時針方向旋轉900 。

      (生):以右圖案的中心為旋轉中心,將圖案順逆時針方向旋轉2700 。

      明確可以通過不同的辦法達到同樣的效果,激勵學生動手動腦。

      5、學習小結

      (1)內容總結

      兩個圖案前后變化彩用了哪些方法?(平移、旋轉,軸對稱)

      (2)方法歸納

      ①了解并知道圖案變化的一般方法。

      ②圖案變化的方法很多,在生活中要養成多途徑觀察,思考問題的習慣。

      6、目標檢測

      圖355是由三個正三角形拼成的,它可以看做由其中一個三角形經過怎樣的變換而得到?

      延伸拓展:

      1、鏈接生活

      鏈接一:奧運會的五環旗圖案是大家熟悉的圖案,請你根據所學知識分析它的形成。(用課本知識解釋生活中的圖形變換)

      鏈接二:夏季是荷花盛開的季節,同學們都贊美過它出淤泥而不染的品質,很多同學曾畫過荷花,請你用所學知識再畫一朵荷花,看與以前有什么不同的感受(讓學生進一步體會數學與生活的密切聯系)

      實踐探索:

      ①實踐活動列舉實例歸納圖形之間的變換關系(平移、旋轉,軸對稱及其組合)

      ②鞏固練習課本74頁中的習題3.6。

      板書設計:

      3.5它們是怎樣變過來的。

      軸對稱、平移、旋轉的性質例題;

      圖形之間的變換關系;

    八年級數學教案12

      第二環節:探索發現勾股定理

      1、探究活動一

      內容:投影顯示如下地板磚示意圖,引導學生從面積角度觀察圖形:

      問:你能發現各圖中三個正方形的面積之間有何關系嗎?

      學生通過觀察,歸納發現:

      結論1以等腰直角三角形兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積。

      意圖:從觀察實際生活中常見的地板磚入手,讓學生感受到數學就在我們身邊。通過對特殊情形的探究得到結論1,為探究活動二作鋪墊。

      效果:1.探究活動一讓學生獨立觀察,自主探究,培養獨立思考的習慣和能力;

      2.通過探索發現,讓學生得到成功體驗,激發進一步探究的熱情和愿望。

      2、探究活動二

      內容:由結論1我們自然產生聯想:一般的直角三角形是否也具有該性質呢?

      (1)觀察下面兩幅圖:

      (2)填表:

      A的.面積

      (單位面積)B的面積

      (單位面積)C的面積

      (單位面積)

      左圖

      右圖

      (3)你是怎樣得到正方形C的面積的?與同伴交流(學生可能會做出多種方法,教師應給予充分肯定)。

      學生的方法可能有:

      方法一:

      如圖1,將正方形C分割為四個全等的直角三角形和一個小正方形。

      方法二:

      如圖2,在正方形C外補四個全等的直角三角形,形成大正方形,用大正方形的面積減去四個直角三角形的面積。

      方法三:

      如圖3,正方形C中除去中間5個小正方形外,將周圍部分適當拼接可成為正方形,如圖3中兩塊紅色(或兩塊綠色)部分可拼成一個小正方形,按此拼法。

      (4)分析填表的數據,你發現了什么?

      學生通過分析數據,歸納出:

      結論2以直角三角形兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積。

      意圖:探究活動二意在讓學生通過觀察、計算、探討、歸納進一步發現一般直角三角形的性質。由于正方形C的面積計算是一個難點,為此設計了一個交流環節。

      效果:學生通過充分討論探究,在突破正方形C的面積計算這一難點后得出結論2.

      3、議一議

      內容:(1)你能用直角三角形的邊長,來表示上圖中正方形的面積嗎?

      (2)你能發現直角三角形三邊長度之間存在什么關系嗎?

      (3)分別以5厘米、12厘米為直角邊作出一個直角三角形,并測量斜邊的長度。2中發現的規律對這個三角形仍然成立嗎?

      勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。如果用,分別表示直角三角形的兩直角邊和斜邊,那么。

      數學小史:勾股定理是我國最早發現的,中國古代把直角三角形中較短的直角邊稱為勾,較長的直角邊稱為股,斜邊稱為弦,“勾股定理”因此而得名(在西方文獻中又稱為畢達哥拉斯定理)。

      意圖:議一議意在讓學生在結論2的基礎上,進一步發現直角三角形三邊關系,得到勾股定理。

      效果:1.讓學生歸納表述結論,可培養學生的抽象概括能力及語言表達能力;

      2.通過作圖培養學生的動手實踐能力。

    八年級數學教案13

      分式方程

      教學目標

      1.經歷分式方程的概念,能將實際問題中的等量關系用分式方程 表示,體會分式方程的模型作用.

      2.經歷實際問題-分式方程方程模型的過程,發展學生分析問題、解決問題的能力,滲透數學的轉化思想人體,培養學生的應用意識。

      3.在活動中培養學生樂于探究、合作學習的習慣,培養學 生努力尋找 解決問題的進取心,體會數學的應用價值.

      教學重點:

      將實際問題中的等量 關系用分式方程表示

      教學難點:

      找實際問題中的等量關系

      教學過程:

      情境導入:

      有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產量。你能找出這一問題中的所有等量關系嗎?(分組交流)

      如果設第一塊試驗田 每公頃的產量為 kg,那么第二塊試驗田每公頃的'產量是________kg。

      根據題意,可得方程___________________

      二、講授新課

      從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。

      這 一問題中有哪些等量關系?

      如果設客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。

      根據題意,可得方程_ _____________________。

      學生分組探討、交流,列出方程.

      三.做一做:

      為了幫助遭受自然災害的地區重建家園,某學校號召同學們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數比第一次多20人,而且兩次人均捐款額恰好相等。如果設第一次捐款人數為 人,那么 滿足怎樣的方程?

      四.議一議:

      上面所得到的方程有什么共同特點?

      分母中含有未知數的方程叫做分式方程

      分式方程與整式方程有什么區別?

      五、 隨堂練習

      (1)據聯合國《20xx年全球投資 報告》指出,中國20xx年吸收外國投資額 達530億美元,比上一年增加了13%。設20xx年我國吸收外國投資額為 億美元,請你寫出 滿足的方程。你能寫出幾個方程?其中哪一個是分式方程?

      (2)輪船在順水中航行20千米與逆水航行10千米所用時間相同,水流速度為2. 5千米/小時,求輪船的靜水速度

      (3)根據分式方程 編一道應用題,然后同組交流,看誰編得好

      六、學 習小結

      本節課你學到了哪些知識?有什么感想?

      七.作業布置

    八年級數學教案14

      一、教學目標

      知識目標

      1.了解并掌握分式乘除法運算法則。

      2.會運用分式乘除法法則進行分式乘除法運算。

      能力目標

      1.會通過類比的方法來理解和掌握分式的乘除法法則。

      2.熟練運用分式乘除法法則,將分式乘除法全部化歸為分式乘法進行計算。

      情感目標

      1.繼續熟悉“數、式通性”的數學思想方法。

      2.會通過類比的方法來理解和掌握分式的乘除法法則。

      二、重點難點和關鍵

      重點

      會用分式乘除法法則進行分式乘除法的運算。

      難點

      會將多項式因式分解。

      關鍵

      將除法轉化為乘法進行計算。

      三、教學方法和輔助手段

      教學方法

      講練結合、以練為主

      輔助手段

      幻燈投影演示

      四、教學過程

      復習

      1.計算:

      2.分數的乘除法法則是什么?

      新課講解

      1.分式的乘除法法則

      提問:由分數的乘除法法則猜想分式的乘除法法則是什么?(討論、交流、集中評講)

      分式乘除法法則:(略)

      式子表示:

      2.例題講解

      例2計算:(解略)

      注意:

      1.計算過程要對照分式乘除法法則,將乘除法全部化為乘法進行。

      2.第三題中的(-8xyz)應看成分母是“1”的式子。

      3.計算結果要化為最簡分式或整式。

      4.運算過程中要注意符號的變化。

      練習:P67 T1(板演)

      例3計算:(解略)

      注意:分式乘除法運算時,分子分母中的多項式要先因式分解,再約分。

      練習:P67 T2(1)—(4)(板演)

      例4計算:

      解:=

      注意:

      1.分子分母中的`多項式一般要先按某一字母降冪或升冪排列。

      2.同級運算中,如沒有附加條件(如括號),則應按從左到右的順序進行計算。

      練習:P67 T(5)(板演)

      小結

      這節課學習了運用“分式乘除法法則”進行分式乘除法的方法,主要借助分式約分、因式分解等知識來進行,計算的結果應是最簡分式或整式。

      作業

      P73 A組T4 T5 T6

      五、板書設計(略)

      六、教學后記

    八年級數學教案15

      教學目標:

      1、知識目標:

      (1)掌握已知三邊畫三角形的方法;

      (2)掌握邊邊邊公理,能用邊邊邊公理證明兩個三角形全等;

      (3)會添加較明顯的輔助線.

      2、能力目標:

      (1)通過尺規作圖使學生得到技能的訓練;

      (2)通過公理的初步應用,初步培養學生的邏輯推理能力.

      3、情感目標:

      (1)在公理的形成過程中滲透:實驗、觀察、歸納;

      (2)通過變式訓練,培養學生“舉一反三”的學習習慣.

      教學重點:SSS公理、靈活地應用學過的各種判定方法判定三角形全等。

      教學難點:如何根據題目條件和求證的結論,靈活地選擇四種判定方法中最適當的`方法判定兩個三角形全等。

      教學用具:直尺,微機

      教學方法:自學輔導

      教學過程:

      1、新課引入

      投影顯示

      問題:有一塊三角形玻璃窗戶破碎了,要去配一塊新的,你最少要對窗框測量哪幾個數據?如果你手頭沒有測量角度的儀器,只有尺子,你能保證新配的玻璃恰好不大不小嗎?

      這個問題讓學生議論后回答,他們的答案或許只是一種感覺。于是教師要引導學生,抓住問題的本質:三角形的三個元素――三條邊。

      2、公理的獲得

      問:通過上面問題的分析,滿足什么條件的兩個三角形全等?

      讓學生粗略地概括出邊邊邊的公理。然后和學生一起畫圖做實驗,根據三角形全等定義對公理進行驗證。(這里用尺規畫圖法)

      公理:有三邊對應相等的兩個三角形全等。

      應用格式: (略)

      強調說明:

      (1)、格式要求:先指出在哪兩個三角形中證全等;再按公理順序列出三個條件,并用括號把它們括在一起;寫出結論。

      (2)、在應用時,怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時圖形中隱含的(如公共邊)

      (3)、此公理與前面學過的公理區別與聯系

      (4)、三角形的穩定性:演示三角形的穩定性與四邊形的不穩定性。在演示中,其實可以去掉組成三角形的一根小木條,以顯示三角形條件不可減少,這也為下面總結“三角形全等需要有3全獨立的條件”做好了準備,進行了溝通。

      (5)說明AAA與SSA不能判定三角形全等。

      3、公理的應用

      (1) 講解例1。學生分析完成,教師注重完成后的點評。

      例1 如圖△ABC是一個鋼架,AB=ACAD是連接點A與BC中點D的支架

      求證:AD⊥BC

      分析:(設問程序)

      (1)要證AD⊥BC只要證什么?

      (2)要證∠1= 只要證什么?

      (3)要證∠1=∠2只要證什么?

      (4)△ABD和△ACD全等的條件具備嗎?依據是什么?

      證明:(略)

      (2)講解例2(投影例2 )

      例2已知:如圖AB=DC,AD=BC

      求證:∠A=∠C

      (1)學生思考、分析、討論,教師巡視,適當參與討論。

      (2)找學生代表口述證明思路。

      思路1:連接BD(如圖)

      證△ABD≌△CDB(SSS)先得∠A=∠C

      思路2:連接AC證△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD

      (3)教師共同討論后,說明思路1較優,讓學生用思路1在練習本上寫出證明,一名學生板書,教師強調解題格式:在“證明”二字的后面,先將所作的輔助線寫出,再證明。

      例3如圖,已知AB=AC,DB=DC

      (1)若E、F、G、H分別是各邊的中點,求證:EH=FG

      (2)若AD、BC連接交于點P,問AD、BC有何關系?證明你的結論。

      學生思考、分析,適當點撥,找學生代表口述證明思路

      讓學生在練習本上寫出證明,然后選擇投影顯示。

      證明:(略)

      說明:證直線垂直可證兩直線夾角等于 ,而由兩鄰補角相等證兩直線的夾角等于 ,又是很重要的一種方法。

      例4 如圖,已知:△ABC中,BC=2AB,AD、AE分別是△ABC、△ABD的中線,

      求證:AC=2AE.

      證明:(略)

      學生口述證明思路,教師強調說明:“中線”條件下的常規作輔助線法。

      5、課堂小結:

      (1)判定三角形全等的方法:3個公理1個推論(SAS、ASA、AAS、SSS)

      在這些方法中,每一個都需要3個條件,3個條件中都至少包含條邊。

      (2)三種方法的綜合運用

      讓學生自由表述,其它學生補充,自己將知識系統化,以自己的方式進行建構。

      6、布置作業:

      a、書面作業P70#11、12

      b、上交作業P70#14 P71B組3

    【八年級數學教案】相關文章:

    八年級的數學教案12-14

    八年級數學教案12-09

    八年級《函數》數學教案08-17

    八年級數學教案【熱門】05-29

    八年級數學教案(合集)05-29

    八年級數學教案[精品]05-29

    (合集)八年級數學教案06-21

    八年級數學教案【精品】06-22

    八年級數學教案[通用]06-21

    (熱門)八年級數學教案06-21

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      中文字幕亚洲第一 | 五月天婷婷亚洲综合 | 日本精品高清一二区一本到 | 亚洲国产综合91 | 最新国产国语对白 | 亚洲午夜福利网在线网站 |