1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>

    高一數學教案

    時間:2024-05-25 12:21:58 高一數學教案 我要投稿

    高一數學教案【精華15篇】

      作為一位杰出的教職工,常常要根據教學需要編寫教案,編寫教案助于積累教學經驗,不斷提高教學質量。教案應該怎么寫呢?下面是小編為大家收集的高一數學教案,歡迎大家借鑒與參考,希望對大家有所幫助。

    高一數學教案【精華15篇】

    高一數學教案1

      教材分析:

      集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。

      課型:新授課

      教學目標:(1)通過實例,了解集合的含義,體會元素與集合的理解集合“屬于”關系;

      (2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體

      問題,感受集合語言的意義和作用;

      教學重點:集合的基本概念與表示方法;

      教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合;教學過程:

      一、引入課題

      軍訓前學校通知:8月15日8點,高一年段在體育館集合進行軍訓動員;試問這個通知的對象是全體的高一學生還是個別學生?

      在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學習一個新的概念——集合(宣布課題),即是一些研究對象的總體。

      二、新課教學

      (一)集合的有關概念

      1.集合理論創始人康托爾稱集合為一些確定的、不同的東西的全體,人們能意識到這

      些東西,并且能判斷一個給定的東西是否屬于這個總體。

      2.一般地,研究對象統稱為元素(element),一些元素組成的總體叫集合(set),也簡

      稱集。

      3.關于集合的元素的特征

      (1)確定性:設A是一個給定的集合,x是某一個具體對象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。

      (2)互異性:一個給定集合中的元素,指屬于這個集合的互不相同的個體(對象),因此,同一集合中不應重復出現同一元素。

      (3)集合相等:構成兩個集合的元素完全一樣

      4.元素與集合的關系;

      (1)如果a是集合A的元素,就說a屬于(belong to)A,記作a∈A(2)如果a不是集合A的元素,就說a不屬于(not belong to)A,記作a?A(或a A)

      5.常用數集及其記法

      非負整數集(或自然數集),記作N

      正整數集,記作N_或N+;

      整數集,記作Z

      有理數集,記作Q

      實數集,記作R

      (二)集合的表示方法

      我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。

      (1)列舉法:把集合中的元素一一列舉出來,寫在大括號內。

      如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;

      思考2,引入描述法

      說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的順序。

      (2)描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內。

      具體方法:在大括號內先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。

      如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;

      強調:描述法表示集合應注意集合的代表元素

      {(x,y)|y= x2+3x+2}與{y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數},即代表整數集Z。

      辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數}。下列寫法{實數集},{R}也是錯誤的。

      說明:列舉法與描述法各有優點,應該根據具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。

      三、歸納小結

      本節課從實例入手,非常自然貼切地引出集合與集合的概念,并且結合實例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。課題:§1.2集合間的基本關系

      教材分析:類比實數的大小關系引入集合的包含與相等關系

      了解空集的含義

      課型:新授課

      教學目的:(1)了解集合之間的包含、相等關系的含義;

      (2)理解子集、真子集的概念;

      (3)能利用Venn圖表達集合間的`關系;

      (4)了解與空集的含義。

      教學重點:子集與空集的概念;用Venn圖表達集合間的關系。教學難點:弄清元素與子集、屬于與包含之間的區別;

      教學過程:

      四、引入課題

      1、復習元素與集合的關系——屬于與不屬于的關系,填以下空白:(1)0 N;(2;(3)-1.5 R

      2、類比實數的大小關系,如5<7,2≤2,試想集合間是否有類似的“大小”關系呢?(宣

      布課題)

      五、新課教學

      A={1,2,3},B={1,2,3,4}

      集合A是集合B的部分元素構成的集合,我們說集合B包含集合A;

      如果集合A的任何一個元素都是集合B的元素,我們說這兩個集合有包含關系,稱集合A是集合B的子集(subset)。

      記作:A?B(或B?A)

      讀作:A包含于(is contained in)B,或B包含(contains)A (一)集合與集合之間的“包含”關系;

      當集合A不包含于集合B時,記作B

      用Venn圖表示兩個集合間的“包含”關系A?B(或B?A)

      (二)集合與集合之間的“相等”關系;

      A?B且B?A,則A=B中的元素是一樣的,因此A=B

      ?A?B即A=B?? B?A?

      結論:

      任何一個集合是它本身的子集

      (三)真子集的概念

      若集合A?B,存在元素x∈B且x?A,則稱集合A是集合B的真子集(proper subset)。

      記作:A B(或B A)

      讀作:A真包含于B(或B真包含A)

      (四)空集的概念

      (實例引入空集概念)

      不含有任何元素的集合稱為空集(empty set),記作:?規定:空集是任何集合的子集,是任何非空集合的真子集。

      (五)結論:1A?A ○2A?B,且B?C,則A?C ○

      (六)例題

      (1)寫出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。

      (2)化簡集合A={x|x-3>2},B={x|x≥5},并表示A、B的關系;

      (七)歸納小結,強化思想

      兩個集合之間的基本關系只有“包含”與“相等”兩種,可類比兩個實數間的大小關系,同時還要注意區別“屬于”與“包含”兩種關系及其表示方法;

      1已知集合A={x|a取值范圍。

      2設集合A={○四邊形},B={平行四邊形},C={矩形},

      D={正方形},試用Venn圖表示它們之間的關系。

      課題:§1.3集合的基本運算

      教學目的:(1)理解兩個集合的并集與交集的的含義,會求兩個簡單集合的并集與交集;

      (2)理解在給定集合中一個子集的補集的含義,會求給定子集的補集;(3)能用Venn圖表達集合的關系及運算,體會直觀圖示對理解抽象概念的作用。

      課型:新授課

      教學重點:集合的交集與并集、補集的概念;

      教學難點:集合的交集與并集、補集“是什么”,“為什么”,“怎樣做”;

      教學過程:

      六、引入課題

      我們兩個實數除了可以比較大小外,還可以進行加法運算,類比實數的加法運算,兩個集合是否也可以“相加”呢?

      思考(P9思考題),引入并集概念。

      七、新課教學

      1.并集

      一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,稱為集合A與B的并集(Union)

      記作:A∪B

      Venn圖表示:讀作:“A并B”即:A∪B={x|x∈A,或x∈B}

    高一數學教案2

      學習目標 1.函數奇偶性的概念

      2.由函數圖象研究函數的奇偶性

      3.函數奇偶性的判斷

      重點:能運用函數奇偶性的定義判斷函數的奇偶性

      難點:理解函數的奇偶性

      知識梳理:

      1.軸對稱圖形:

      2中心對稱圖形:

      【概念探究】

      1、 畫出函數 ,與 的圖像;并觀察兩個函數圖像的對稱性。

      2、 求出 , 時的函數值,寫出 , 。

      結論: 。

      3、 奇函數:___________________________________________________

      4、 偶函數:______________________________________________________

      【概念深化】

      (1)、強調定義中任意二字,奇偶性是函數在定義域上的整體性質。

      (2)、奇函數偶函數的定義域關于原點對稱。

      5、奇函數與偶函數圖像的對稱性:

      如果一個函數是奇函數,則這個函數的圖像是以坐標原點為對稱中心的__________。反之,如果一個函數的圖像是以坐標原點為對稱中心的中心對稱圖形,則這個函數是___________。

      如果一個函數是偶函數,則這個函數的圖像是以 軸為對稱軸的__________。反之,如果一個函數的圖像是關于 軸對稱,則這個函數是___________。

      6. 根據函數的奇偶性,函數可以分為____________________________________.

      題型一:判定函數的奇偶性。

      例1、判斷下列函數的奇偶性:

      (1) (2) (3)

      (4) (5)

      練習:教材第49頁,練習A第1題

      總結:根據例題,你能給出用定義判斷函數奇偶性的步驟?

      題型二:利用奇偶性求函數解析式

      例2:若f(x)是定義在R上的奇函數,當x0時,f(x)=x(1-x),求當 時f(x)的解析式。

      練習:若f(x)是定義在R上的奇函數,當x0時,f(x)=x|x-2|,求當x0時f(x)的解析式。

      已知定義在實數集 上的奇函數 滿足:當x0時, ,求 的表達式

      題型三:利用奇偶性作函數圖像

      例3 研究函數 的性質并作出它的圖像

      練習:教材第49練習A第3,4,5題,練習B第1,2題

      當堂檢測

      1 已知 是定義在R上的奇函數,則( D )

      A. B. C. D.

      2 如果偶函數 在區間 上是減函數,且最大值為7,那么 在區間 上是( B )

      A. 增函數且最小值為-7 B. 增函數且最大值為7

      C. 減函數且最小值為-7 D. 減函數且最大值為7

      3 函數 是定義在區間 上的偶函數,且 ,則下列各式一定成立的是(C )

      A. B. C. D.

      4 已知函數 為奇函數,若 ,則 -1

      5 若 是偶函數,則 的.單調增區間是

      6 下列函數中不是偶函數的是(D )

      A B C D

      7 設f(x)是R上的偶函數,切在 上單調遞減,則f(-2),f(- ),f(3)的大小關系是( A )

      A B f(- )f(-2) f(3) C f(- )

      8 奇函數 的圖像必經過點( C )

      A (a,f(-a)) B (-a,f(a)) C (-a,-f(a)) D (a,f( ))

      9 已知函數 為偶函數,其圖像與x軸有四個交點,則方程f(x)=0的所有實根之和是( A )

      A 0 B 1 C 2 D 4

      10 設f(x)是定義在R上的奇函數,且x0時,f(x)= ,則f(-2)=_-5__

      11若f(x)在 上是奇函數,且f(3)_f(-1)

      12.解答題

      用定義判斷函數 的奇偶性。

      13定義證明函數的奇偶性

      已知函數 在區間D上是奇函數,函數 在區間D上是偶函數,求證: 是奇函數

      14利用函數的奇偶性求函數的解析式:

      已知分段函數 是奇函數,當 時的解析式為 ,求這個函數在區間 上的解析表達式。

    高一數學教案3

      (4),(5)。

      學生回答并說明理由,教師根據情況作點評,指出只有(1)和(3)是,其中(3)可以寫成,也是指數圖象。

      最后提醒學生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數的性質,此時研究的關鍵在于畫出它的圖象,再細致歸納性質。

      3。歸納性質

      作圖的用什么方法。用列表描點發現,教師準備明確性質,再由學生回答。

      函數

      1。定義域:

      2。值域:

      3。奇偶性:既不是奇函數也不是偶函數

      4。截距:在軸上沒有,在軸上為1。

      對于性質1和2可以兩條合在一起說,并追問起什么作用。(確定圖象存在的大致位置)對第3條還應會證明。對于單調性,我建議找一些特殊點。,先看一看,再下定論。對最后一條也是指導函數圖象畫圖的依據。(圖象位于軸上方,且與軸不相交。)

      在此基礎上,教師可指導學生列表,描點了。取點時還要提醒學生由于不具備對稱性,故的值應有正有負,且由于單調性不清,所取點的個數不能太少。

      此處教師可利用計算機列表描點,給出十組數據,而學生自己列表描點,至少六組數據。連點成線時,一定提醒學生圖象的變化趨勢(當越小,圖象越靠近軸,越大,圖象上升的越快),并連出光滑曲線。

      二。圖象與性質(板書)

      1。圖象的畫法:性質指導下的列表描點法。

      2。草圖:

      當畫完第一個圖象之后,可問學生是否需要再畫第二個?它是否具有代表性?(教師可提示底數的條件是且,取值可分為兩段)讓學生明白需再畫第二個,不妨取為例。

      此時畫它的圖象的方法應讓學生來選擇,應讓學生意識到列表描點不是唯一的方法,而圖象變換的.方法更為簡單。即=與圖象之間關于軸對稱,而此時的圖象已經有了,具備了變換的條件。讓學生自己做對稱,教師借助計算機畫圖,在同一坐標系下得到的圖象。

      最后問學生是否需要再畫。(可能有兩種可能性,若學生認為無需再畫,則追問其原因并要求其說出性質,若認為還需畫,則教師可利用計算機再畫出如的圖象一起比較,再找共性)

      由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個表,如下:

      以上內容學生說不齊的,教師可適當提出觀察角度讓學生去描述,然后再讓學生將幾何的特征,翻譯為函數的性質,即從代數角度的描述,將表中另一部分填滿。

      填好后,讓學生仿照此例再列一個的表,將相應的內容填好。為進一步整理性質,教師可提出從另一個角度來分類,整理函數的性質。

      3。性質。

      (1)無論為何值,都有定義域為,值域為,都過點。

      (2)時,在定義域內為增函數,時,為減函數。

      (3)時,,時,。

      總結之后,特別提醒學生記住函數的圖象,有了圖,從圖中就可以能讀出性質。

      三。簡單應用(板書)

      1。利用單調性比大小。(板書)

      一類函數研究完它的概念,圖象和性質后,最重要的是利用它解決一些簡單的問題。首先我們來看下面的問題。

      例1。比較下列各組數的大小

      (1)與;(2)與;

      (3)與1 。(板書)

      首先讓學生觀察兩個數的特點,有什么相同?由學生指出它們底數相同,指數不同。再追問根據這個特點,用什么方法來比較它們的大小呢?讓學生聯想,提出構造函數的方法,即把這兩個數看作某個函數的函數值,利用它的單調性比較大小。然后以第(1)題為例,給出解答過程。

      解:在上是增函數,且

      < 。(板書)

      教師最后再強調過程必須寫清三句話:

      (1)構造函數并指明函數的單調區間及相應的單調性。

      (2)自變量的大小比較。

      (3)函數值的大小比較。

      后兩個題的過程略。要求學生仿照第(1)題敘述過程。

      例2。比較下列各組數的大小

      (1)與;(2)與;

      (3)與。(板書)

      先讓學生觀察例2中各組數與例1中的區別,再思考解決的方法。引導學生發現對(1)來說可以寫成,這樣就可以轉化成同底的問題,再用例1的方法解決,對(2)來說可以寫成,也可轉化成同底的,而(3)前面的方法就不適用了,考慮新的轉化方法,由學生思考解決。(教師可提示學生的函數值與1有關,可以用1來起橋梁作用)

      最后由學生說出>1,<1,>。

      解決后由教師小結比較大小的方法

      (1)構造函數的方法:數的特征是同底不同指(包括可轉化為同底的)

      (2)搭橋比較法:用特殊的數1或0。

      三。鞏固練習

      練習:比較下列各組數的大小(板書)

      (1)與(2)與;

      (3)與;(4)與。解答過程略

      四。小結

      1。的概念

      2。的圖象和性質

      3。簡單應用

      五。板書設計

    高一數學教案4

      本文題目:高一數學教案:函數的奇偶性

      課題:1.3.2函數的奇偶性

      一、三維目標:

      知識與技能:使學生理解奇函數、偶函數的概念,學會運用定義判斷函數的奇偶性。

      過程與方法:通過設置問題情境培養學生判斷、推斷的能力。

      情感態度與價值觀:通過繪制和展示優美的函數圖象來陶冶學生的情操. 通過組織學生分組討論,培養學生主動交流的合作精神,使學生學會認識事物的特殊性和一般性之間的關系,培養學生善于探索的.思維品質。

      二、學習重、難點:

      重點:函數的奇偶性的概念。

      難點:函數奇偶性的判斷。

      三、學法指導:

      學生在獨立思考的基礎上進行合作交流,在思考、探索和交流的過程中獲得對函數奇偶性的全面的體驗和理解。對于奇偶性的應用采取講練結合的方式進行處理,使學生邊學邊練,及時鞏固。

      四、知識鏈接:

      1.復習在初中學習的軸對稱圖形和中心對稱圖形的定義:

      2.分別畫出函數f (x) =x3與g (x) = x2的圖象,并說出圖象的對稱性。

      五、學習過程:

      函數的奇偶性:

      (1)對于函數 ,其定義域關于原點對稱:

      如果______________________________________,那么函數 為奇函數;

      如果______________________________________,那么函數 為偶函數。

      (2)奇函數的圖象關于__________對稱,偶函數的圖象關于_________對稱。

      (3)奇函數在對稱區間的增減性 ;偶函數在對稱區間的增減性 。

      六、達標訓練:

      A1、判斷下列函數的奇偶性。

      (1)f(x)=x4;(2)f(x)=x5;

      (3)f(x)=x+ (4)f(x)=

      A2、二次函數 ( )是偶函數,則b=___________ .

      B3、已知 ,其中 為常數,若 ,則

      _______ .

      B4、若函數 是定義在R上的奇函數,則函數 的圖象關于 ( )

      (A) 軸對稱 (B) 軸對稱 (C)原點對稱 (D)以上均不對

      B5、如果定義在區間 上的函數 為奇函數,則 =_____ .

      C6、若函數 是定義在R上的奇函數,且當 時, ,那么當

      時, =_______ .

      D7、設 是 上的奇函數, ,當 時, ,則 等于 ( )

      (A)0.5 (B) (C)1.5 (D)

      D8、定義在 上的奇函數 ,則常數 ____ , _____ .

      七、學習小結:

      本節主要學習了函數的奇偶性,判斷函數的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數的奇偶性時,必須注意首先判斷函數的定義域是否關于原點對稱。單調性與奇偶性的綜合應用是本節的一個難點,需要學生結合函數的圖象充分理解好單調性和奇偶性這兩個性質。

      八、課后反思:

    高一數學教案5

      經典例題

      已知關于 的方程 的實數解在區間 ,求 的取值范圍。

      反思提煉:1.常見的四種指數方程的一般解法

      (1)方程 的解法:

      (2)方程 的解法:

      (3)方程 的解法:

      (4)方程 的解法:

      2.常見的三種對數方程的`一般解法

      (1)方程 的解法:

      (2)方程 的解法:

      (3)方程 的解法:

      3.方程與函數之間的轉化。

      4.通過數形結合解決方程有無根的問題。

      課后作業:

      1.對正整數n,設曲線 在x=2處的切線與軸交點的縱坐標為 ,則數列 的前n項和的公式是

      [答案] 2n+1-2

      [解析] ∵=xn(1-x),∴′=(xn)′(1-x)+(1-x)′xn=nxn-1(1-x)-xn.

      f ′(2)=-n2n-1-2n=(-n-2)2n-1.

      在點x=2處點的縱坐標為=-2n.

      ∴切線方程為+2n=(-n-2)2n-1(x-2).

      令x=0得,=(n+1)2n,

      ∴an=(n+1)2n,

      ∴數列ann+1的前n項和為2(2n-1)2-1=2n+1-2.

      2.在平面直角坐標系 中,已知點P是函數 的圖象上的動點,該圖象在P處的切線 交軸于點M,過點P作 的垂線交軸于點N,設線段MN的中點的縱坐標為t,則t的最大值是_____________

      解析:設 則 ,過點P作 的垂線

      ,所以,t在 上單調增,在 單調減, 。

    高一數學教案6

      [教學重、難點]

      認識直角三角形、銳角三角形、鈍角三角形、等腰三角形和等邊三角形,體會每一類三角形的特點。

      [教學準備]

      學生、老師剪下附頁2中的圖2。

      [教學過程]

      一、畫一畫,說一說

      1、學生各自借助三角板或直尺分別畫一個銳角、直角、鈍角。

      2、教師巡查練習情況。

      3、學生展示練習,說一說為什么是銳角、直角、鈍角?

      二、分一分

      1、小組活動;把附頁2中的圖2中的三角形進行分類,動手前先觀察這些三角形的特點,然后小組討論怎樣分?

      2、匯報:分類的標準和方法。可以按角來分,可以按邊來分。

      二、按角分類:

      1、觀察第一類三角形有什么共同的特點,從而歸納出三個角都是銳角的'三角形是銳角三角形。

      2、觀察第二類三角形有什么共同的特點,從而歸納出有一個角是直角的三角形是直角三角形

      3、觀察第三類三角形有什么共同的特點,從而歸納出有一個角是鈍角的`三角形是鈍角三角形。

      三、按邊分類:

      1、觀察這類三角形的邊有什么共同的特點,引導學生發現每個三角形中都有兩條邊相等,這樣的三角形叫等腰三角形,并介紹各部分的名稱。

      2、引導學生發現有的三角形三條邊都相等,這樣的三角形是等邊三角形。討論等邊三角形是等腰三角形嗎?

      四、填一填:

      24、25頁讓學生辨認各種三角形。

      五、練一練:

      第1題:通過“猜三角形游戲”讓學生體會到看到一個銳角,不能決定是一個銳角三角形,必須三個角都是銳角才是銳角三角形。

      第2題:在點子圖上畫三角形第3題:剪一剪。

      六、完成26頁實踐活動。

    高一數學教案7

      教學目標

      1、應用正弦余弦定理解斜三角形應用題的一般步驟及基本思路

      (1)分析,(2)建模,(3)求解,(4)檢驗;

      2、實際問題中的有關術語、名稱:

      (1)仰角與俯角:均是指視線與水平線所成的角;

      (2)方位角:是指從正北方向順時針轉到目標方向線的夾角;

      (3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;

      3、用正弦余弦定理解實際問題的常見題型有:

      測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;

      教學重難點

      1、應用正弦余弦定理解斜三角形應用題的一般步驟及基本思路

      (1)分析,(2)建模,(3)求解,(4)檢驗;

      2、實際問題中的有關術語、名稱:

      (1)仰角與俯角:均是指視線與水平線所成的.角;

      (2)方位角:是指從正北方向順時針轉到目標方向線的夾角;

      (3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;

      3、用正弦余弦定理解實際問題的常見題型有:

      測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;

      教學過程

      一、知識歸納

      1、應用正弦余弦定理解斜三角形應用題的一般步驟及基本思路

      (1)分析,(2)建模,(3)求解,(4)檢驗;

      2、實際問題中的有關術語、名稱:

      (1)仰角與俯角:均是指視線與水平線所成的角;

      (2)方位角:是指從正北方向順時針轉到目標方向線的夾角;

      (3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;

      3、用正弦余弦定理解實際問題的常見題型有:

      測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;

      二、例題討論

      一)利用方向角構造三角形

      四)測量角度問題

      例4、在一個特定時段內,以點E為中心的7海里以內海域被設為警戒水域.點E正北55海里處有一個雷達觀測站A.某時刻測得一艘勻速直線行駛的船只位于點A北偏東。

    高一數學教案8

      教學目標:

      (1)了解集合的表示方法;

      (2)能正確選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;

      教學重點:掌握集合的表示方法;

      教學難點:選擇恰當的表示方法;

      教學過程:

      一、復習回顧:

      1.集合和元素的定義;元素的三個特性;元素與集合的關系;常用的數集及表示。

      2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分別是什么?有何關系

      二、新課教學

      (一).集合的表示方法

      我們可以用自然語言和圖形語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。

      (1) 列舉法:把集合中的元素一一列舉出來,并用花括號“ ”括起來表示集合的'方法叫列舉法。

      如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;

      說明:1.集合中的元素具有無序性,所以用列舉法表示集合時不必考

      慮元素的順序。

      2.各個元素之間要用逗號隔開;

      3.元素不能重復;

      4.集合中的元素可以數,點,代數式等;

      5.對于含有較多元素的集合,用列舉法表示時,必須把元素間的規律顯示清楚后方能用省略號,象自然數集N用列舉法表示為

      例1.(課本例1)用列舉法表示下列集合:

      (1)小于10的所有自然數組成的集合;

      (2)方程x2=x的所有實數根組成的集合;

      (3)由1到20以內的所有質數組成的集合;

      (4)方程組 的解組成的集合。

      思考2:(課本P4的思考題)得出描述法的定義:

      (2)描述法:把集合中的元素的公共屬性描述出來,寫在花括號{ }內。

      具體方法:在花括號內先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。

      一般格式:

      如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…;

      說明:

      1.課本P5最后一段話;

      2.描述法表示集合應注意集合的代表元素,如{(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}是不同的兩個集合,只要不引起誤解,集合的代表元素也可省略,例如:{x|整數},即代表整數集Z。

      辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數}。下列寫法{實數集},{R}也是錯誤的。

      例2.(課本例2)試分別用列舉法和描述法表示下列集合:

      (1)方程x2—2=0的所有實數根組成的集合;

      (2)由大于10小于20的所有整數組成的集合;

      (3)方程組 的解。

      思考3:(課本P6思考)

      說明:列舉法與描述法各有優點,應該根據具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。

      (二).課堂練習:

      1.課本P6練習2;

      2.用適當的方法表示集合:大于0的所有奇數

      3.集合A={x| ∈Z,x∈N},則它的元素是 。

      4.已知集合A={x|-3

      歸納小結:

      本節課從實例入手,介紹了集合的常用表示方法,包括列舉法、描述法。

      作業布置:

      1. 習題1.1,第3.4題;

      2. 課后預習集合間的基本關系.

    高一數學教案9

      [三維目標]

      一、知識與技能:

      1、鞏固集合、子、交、并、補的概念、性質和記號及它們之間的關系

      2、了解集合的運算包含了集合表示法之間的轉化及數學解題的一般思想

      3、了解集合元素個數問題的討論說明

      二、過程與方法

      通過提問匯總練習提煉的形式來發掘學生學習方法

      三、情感態度與價值觀

      培養學生系統化及創造性的思維

      [教學重點、難點]:會正確應用其概念和性質做題 [教 具]:多媒體、實物投影儀

      [教學方法]:講練結合法

      [授課類型]:復習課

      [課時安排]:1課時

      [教學過程]:集合部分匯總

      本單元主要介紹了以下三個問題:

      1,集合的含義與特征

      2,集合的`表示與轉化

      3,集合的基本運算

      一,集合的含義與表示(含分類)

      1,具有共同特征的對象的全體,稱一個集合

      2,集合按元素的個數分為:有限集和無窮集兩類

    高一數學教案10

      教學目標:

      1.進一步理解對數函數的性質,能運用對數函數的相關性質解決對數型函數的常見問題.

      2.培養學生數形結合的思想,以及分析推理的能力.

      教學重點:

      對數函數性質的應用.

      教學難點:

      對數函數的性質向對數型函數的演變延伸.

      教學過程:

      一、問題情境

      1.復習對數函數的性質.

      2.回答下列問題.

      (1)函數y=log2x的值域是 ;

      (2)函數y=log2x(x≥1)的值域是 ;

      (3)函數y=log2x(0

      3.情境問題.

      函數y=log2(x2+2x+2)的定義域和值域分別如何求呢?

      二、學生活動

      探究完成情境問題.

      三、數學運用

      例1 求函數y=log2(x2+2x+2)的定義域和值域.

      練習:

      (1)已知函數y=log2x的值域是[-2,3],則x的范圍是________________.

      (2)函數 ,x(0,8]的值域是 .

      (3)函數y=log (x2-6x+17)的值域 .

      (4)函數 的值域是_______________.

      例2 判斷下列函數的奇偶性:

      (1)f (x)=lg (2)f (x)=ln( -x)

      例3 已知loga 0.75>1,試求實數a 取值范圍.

      例4 已知函數y=loga(1-ax)(a>0,a≠1).

      (1)求函數的`定義域與值域;

      (2)求函數的單調區間.

      練習:

      1.下列函數(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域為R的有 (請寫出所有正確結論的序號).

      2.函數y=lg( -1)的圖象關于 對稱.

      3.已知函數 (a>0,a≠1)的圖象關于原點對稱,那么實數m= .

      4.求函數 ,其中x [ ,9]的值域.

      四、要點歸納與方法小結

      (1)借助于對數函數的性質研究對數型函數的定義域與值域;

      (2)換元法;

      (3)能畫出較復雜函數的圖象,根據圖象研究函數的性質(數形結合).

      五、作業

      課本P70~71-4,5,10,11.

    高一數學教案11

      教學目標:

      1、理解對數的概念,能夠進行對數式與指數式的互化;

      2、滲透應用意識,培養歸納思維能力和邏輯推理能力,提高數學發現能力。

      教學重點:

      對數的概念

      教學過程:

      一、問題情境:

      1、(1)莊子:一尺之棰,日取其半,萬世不竭、①取5次,還有多長?②取多少次,還有0、125尺?

      (2)假設20xx年我國國民生產總值為a億元,如果每年平均增長8%,那么經過多少年國民生產總值是20xx年的2倍?

      抽象出:1、=?,=0、125x=?2、=2x=?

      2、問題:已知底數和冪的.值,如何求指數?你能看得出來嗎?

      二、學生活動:

      1、討論問題,探究求法、

      2、概括內容,總結對數概念、

      3、研究指數與對數的關系、

      三、建構數學:

      1)引導學生自己總結并給出對數的概念、

      2)介紹對數的表示方法,底數、真數的含義、

      3)指數式與對數式的關系、

      4)常用對數與自然對數、

      探究:

      ⑴負數與零沒有對數、

      ⑵,、

      ⑶對數恒等式(教材P58練習6)

      ①;②、

      ⑷兩種對數:

      ①常用對數:;

      ②自然對數:、

      (5)底數的取值范圍為;真數的取值范圍為、

      四、數學運用:

      1、例題:

      例1、(教材P57例1)將下列指數式改寫成對數式:

      (1)=16;(2)=;(3)=20;(4)=0、45、

      例2、(教材P57例2)將下列對數式改寫成指數式:

      (1);(2)3=—2;(3);(4)(補充)ln10=2、303

      例3、(教材P57例3)求下列各式的值:

      ⑴;⑵;⑶(補充)、

      2、練習:

      P58(練習)1,2,3,4,5、

      五、回顧小結:

      本節課學習了以下內容:

      ⑴對數的定義;

    ⑵指數式與對數式互換;

    ⑶求對數式的值(利用計算器求對數值)、

      六、課外作業:P63習題1,2,3,4、

    高一數學教案12

      本文題目:高一數學教案:對數函數及其性質

      2.2.2 對數函數及其性質(二)

      內容與解析

      (一) 內容:對數函數及其性質(二)。

      (二) 解析:從近幾年高考試題看,主要考查對數函數的性質,一般綜合在對數函數中考查.題型主要是選擇題和填空題,命題靈活.學習本部分時,要重點掌握對數的運算性質和技巧,并熟練應用.

      一、 目標及其解析:

      (一) 教學目標

      (1) 了解對數函數在生產實際中的簡單應用.進一步理解對數函數的圖象和性質;

      (2) 學習反函數的概念,理解對數函數和指數函數互為反函數,能夠在同一坐標上看出互為反函數的兩個函數的圖象性質..

      (二) 解析

      (1)在對數函數 中,底數 且 ,自變量 ,函數值 .作為對數函數的三個要點,要做到道理明白、記憶牢固、運用準確.

      (2)反函數求法:①確定原函數的值域即新函數的定義域.②把原函數y=f(x)視為方程,用y表示出x.③把x、y互換,同時標明反函數的定義域.

      二、 問題診斷分析

      在本節課的教學中,學生可能遇到的問題是不易理解反函數,熟練掌握其轉化關系是學好對數函數與反函數的`基礎。

      三、 教學支持條件分析

      在本節課一次遞推的教學中,準備使用PowerPoint 20xx。因為使用PowerPoint 20xx,有利于提供準確、最核心的文字信息,有利于幫助學生順利抓住老師上課思路,節省老師板書時間,讓學生盡快地進入對問題的分析當中。

      四、 教學過程

      問題一. 對數函數模型思想及應用:

      ① 出示例題:溶液酸堿度的測量問題:溶液酸堿度pH的計算公式 ,其中 表示溶液中氫離子的濃度,單位是摩爾/升.

      (Ⅰ)分析溶液酸堿讀與溶液中氫離子濃度之間的關系?

      (Ⅱ)純凈水 摩爾/升,計算純凈水的酸堿度.

      ②討論:抽象出的函數模型? 如何應用函數模型解決問題? 強調數學應用思想

      問題二.反函數:

      ① 引言:當一個函數是一一映射時, 可以把這個函數的因變量作為一個新函數的自變量, 而把這個函數的自變量新的函數的因變量. 我們稱這兩個函數為反函數(inverse function)

      ② 探究:如何由 求出x?

      ③ 分析:函數 由 解出,是把指數函數 中的自變量與因變量對調位置而得出的. 習慣上我們通常用x表示自變量,y表示函數,即寫為 .

      那么我們就說指數函數 與對數函數 互為反函數

      ④ 在同一平面直角坐標系中,畫出指數函數 及其反函數 圖象,發現什么性質?

      ⑤ 分析:取 圖象上的幾個點,說出它們關于直線 的對稱點的坐標,并判斷它們是否在 的圖象上,為什么?

      ⑥ 探究:如果 在函數 的圖象上,那么P0關于直線 的對稱點在函數 的圖象上嗎,為什么?

      由上述過程可以得到什么結論?(互為反函數的兩個函數的圖象關于直線 對稱)

      ⑦練習:求下列函數的反函數: ;

      (師生共練 小結步驟:解x ;習慣表示;定義域)

      (二)小結:函數模型應用思想;反函數概念;閱讀P84材料

      五、 目標檢測

      1.(20xx全國卷Ⅱ文)函數y= (x 0)的反函數是

      A. (x 0) B. (x 0) C. (x 0) D. (x 0)

      1.B 解析:本題考查反函數概念及求法,由原函數x 0可知A、C錯,原函數y 0可知D錯,選B.

      2. (20xx廣東卷理)若函數 是函數 的反函數,其圖像經過點 ,則 ( )

      A. B. C. D.

      2. B 解析: ,代入 ,解得 ,所以 ,選B.

      3. 求函數 的反函數

      3.解析:顯然y0,反解 可得, ,將x,y互換可得 .可得原函數的反函數為 .

      【總結】20xx年已經到來,新的一年數學網會為您整理更多更好的文章,希望本文高一數學教案:對數函數及其性質能給您帶來幫助!

    高一數學教案13

      一、學習目標:

      知識與技能:理解直線與平面、平面與平面平行的性質定理的含義, 并會應用性質解決問題

      過程與方法:能應用文字語言、符號語言、圖形語言準確地描述直線與平面、平面與平面的性質定理

      情感態度與價值觀:通過自主學習、主動參與、積極探究的學習過程,激發學生學習數學的自信心和積極性,培養學生良好的思維習慣,滲透化歸與轉化的數學思想,體會事物之間相互轉化和理論聯系實際的辯證唯物主義思想方法

      二、學習重、難點

      學習重點: 直線與平面、平面與平面平行的性質及其應用

      學習難點: 將空間問題轉化為平面問題的方法,

      三、學法指導及要求:

      1、限定45分鐘完成,注意逐字逐句仔細審題,認真思考、獨立規范作答,不會的先繞過,做好記號。

      2、把學案中自己易忘、易出錯的知識點和疑難問題以及解題方法規律,及時整理在解題本,多復習記憶。3、A:自主學習;B:合作探究;C:能力提升4、小班、重點班完成全部,平行班完成A.B類題

      四、知識鏈接:

      1.空間直線與直線的位置關系

      2.直線與平面的位置關系

      3.平面與平面的位置關系

      4.直線與平面平行的判定定理的符號表示

      5.平面與平面平行的判定定理的符號表示

      五、學習過程:

      A問題1:

      1)如果一條直線與一個平面平行,那么這條直線與這個平面內的直線有哪些位置關系?

      (觀察長方體)

      2)如果一條直線和一個平面平行,如何在這個平面內做一條直線與已知直線平行?

      (可觀察教室內燈管和地面)

      A問題2: 一條直線與平面平行,這條直線和這個平面內直線的位置關系有幾種可能?

      A問題3:如果一條直線 與平面平行,在什么條件下直線 與平面內的直線平行呢?

      由于直線 與平面內的任何直線無公共點,所以過直線 的某一平面,若與平面相交,則直線 就平行于這條交線

      B自主探究1:已知: ∥, ,=b。求證: ∥b。

      直線與平面平行的性質定理:一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行

      符號語言:

      線面平行性質定理作用:證明兩直線平行

      思想:線面平行 線線平行

      例1:有一塊木料如圖,已知棱BC平行于面AC(1)要經過木料表面ABCD 內的一點P和棱BC將木料鋸開,應怎樣畫線?(2)所畫的線和面AC有什么關系?

      例2:已知平面外的兩條平行直線中的一條平行于這個平面,求證:另一條也平行于這個平面。

      問題5:兩個平面平行,那么其中一個平面內的直線與另一平面有什么樣的關系?兩個平面平行,那么其中一個平面內的直線與另一平面內的直線有何關系?

      自主探究2:如圖,平面,,滿足∥,=a,=b,求證:a∥b

      平面與平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那么它們的交線平行

      符號語言:

      面面平行性質定理作用:證明兩直線平行

      思想:面面平行 線線平行

      例3 求證:夾在兩個平行平面間的平行線段相等

      六、達標檢測:

      A1.61頁練習

      A2.下列判斷正確的是( )

      A. ∥, ,則 ∥b B. =P,b ,則 與b不平行

      C. ,則a∥ D. ∥,b∥,則 ∥b

      B3.直線 ∥平面,P,過點P平行于 的.直線( )

      A.只有一條,不在平面內 B.有無數條,不一定在內

      C.只有一條,且在平面內 D.有無數條,一定在內

      B4.下列命題錯誤的是 ( )

      A. 平行于同一條直線的兩個平面平行或相交

      B. 平行于同一個平面的兩個平面平行

      C. 平行于同一條直線的兩條直線平行

      D. 平行于同一個平面的兩條直線平行或相交

      B5. 平行四邊形EFGH的四個頂點E、F、G、H、分別在空間四邊形ABCD的四條邊AB、BC、CD、AD、上,又EF∥BD,則 ( )

      A. EH∥BD,BD不平行與FG

      B. FG∥BD,EH不平行于BD

      C. EH∥BD,FG∥BD

      D. 以上都不對

      B6.若直線 ∥b, ∥平面,則直線b與平面的位置關系是

      B7一個平面上有兩點到另一個平面的距離相等,則這兩個平面

      七、小結與反思:

    高一數學教案14

      重點

      理解角與角的相關概念;掌握角的度量單位以及單位之間的換算.

      難點

      理解角與角的相關概念;掌握角的度量單位以及單位之間的換算.

      一、創設情境,導入新知

      展示實物:時鐘,圓規,折扇等.

      (1)觀察實物與圖片,你發現其中有什么相同圖形嗎?學生回答,教師點評,注意鼓勵學生.

      (2)你能把觀察得到的圖形畫在本子上或黑板上嗎?這是一些什么圖形?思考,動手畫一畫.

      (3)從黑板上這些不同的圖形中,你能歸納出它們的共同特點嗎?

      學生相互交流并回答,挖掘和利用現實生活中與角相關的背景,讓學生在現實背景中認識角,培養學生的動手能力.引導學生觀察并歸納角的共同點,進而引入課題.

      二、自主合作,感受新知

      回顧以前學的知識、閱讀課文并結合生活實際,完成“預習導學”部分.

      三、師生互動,理解新知

      探究點一:角的概念及表示方法

      活動一:從生活中認識角

      我們看物體時,有視角,鐘表的指針轉動也形成角.請同學們看課本后回答下面問題.

      (1)角是一個幾何圖形,請大家說說,角是由什么圖形構成的?(學生回答,教師點評,注意鼓勵學生)

      (2)如果我們把角看作是一條射線繞它的端點旋轉圍成的圖形,那么始邊和終邊又指什么?

      教師總結:角有兩個定義,一個是靜態的定義,把角看作由一點出發的兩條射線組成的圖形;另一個定義是動態的,把角看作一條射線繞端點旋轉所形成的圖形,把開始位置的射線叫做始邊,把終止位置的射線叫做終邊.

      (3)請同學們說一說,我們日常生活中,哪些地方有角.(學生舉例)

      活動二:角的表示方法

      我們怎樣表示角呢?請同學們看課本上說了幾種表示方法?(學生先看書,后回答)

      教師總結:(1)用三個大寫字母可以表示一個角,比如∠AOB.

      練習:誰能指出下列各角的頂點和兩條邊?

      注意:①三個字母的順序有規定,頂點的字母必須寫在中間.

      ②頂點的字母不一定用O,角的始邊與終邊的字母也可以隨意.

      (2)當一個頂點只有一個角時,也可以用頂點的字母表示.比如,下面的角可以表示為∠O.

      練習:判斷下列角可以用頂點的字母表示嗎?

      (3)用數字或小寫的希臘字母表示角.(注意:角中不能有角)

      練習:下面表示角的方法,哪個是正確的?哪個是錯誤的?

      探究點二:角的度量

      活動三:角的度量

      (1)請同學們借助量角器畫出下列各角:

      ①30° ②45° ③60° ④90° ⑤120° ⑥150° ⑦62° ⑧105°

      學生畫圖,教師指導.(根據需要教師可先做示范)

      (2)任意畫一個角,用量角器測量角的大小.提問:如果這個角的度數不是整數,應該怎樣表示這個角的度數呢?引出角的度量單位是度、分、秒.

      教師總結:它們之間的關系是:1°=60′,1′=60″ (強調度、分、秒是60進制,不是十進制).

      (3)還有什么單位是60進制?

      (4)讓學生畫一個1°角,感受1°角有多大.

      四、應用遷移,運用新知

      1.角的定義

      例1 下列說法中,正確的是( )

      A.兩條射線組成的圖形叫做角

      B.有公共端點的兩條線段組成的圖形叫做角

      C.角可以看作是由一條射線繞著它的端點旋轉而形成的圖形

      D.角可以看作是由一條線段繞著它的'端點旋轉而形成的圖形

      解析:A.有公共端點的兩條射線組成的圖形叫做角,故錯誤;B.根據A可得B錯誤;C.角可以看作是由一條射線繞著它的端點旋轉而形成的圖形,正確;D.據C可得D錯誤.

      方法總結:此題考查了角的定義,有公共端點的兩條不重合的射線組成的圖形叫做角.這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊.

      2.角的表示方法

      例2 下列四個圖形中,能用∠1、∠AOB、∠O三種方法表示同一個角的圖形是( )

      A B C D

      解析:在角的頂點處有多個角時,用一個字母表示這個角,這種方法是錯誤的.所以A、C、D錯誤.

      方法總結:角的兩個基本元素中,邊是兩條射線,

      頂點是這兩條射線的公共端點.

      3.判斷角的數量

      例3 如圖所示,在∠AOB的內部有3條射線,則圖中角的個數為( )

      A.10 B.15 C.5 D.20

      解析:可以根據圖形依次數出角的個數;或者根據公式求圖中角的個數是12×5×(5-1)=10.

      方法總結:若從一點發出n條射線,則構成12n(n-1)個角.

      4.角的度量

      例4 見課本P144例1.

      方法總結:用度、分、秒表示的角度和用度表示的角度的相互轉化的過程正好相反:大單位化小單位,乘以進率;而小單位化大單位要除以進率.

      五、嘗試練習,掌握新知

      課本P144練習第1、2題、P145練習第1、2題.

      “隨堂演練”部分.

      六、課堂小結,梳理新知

      通過本節課的學習,我們都學到了哪些數學知識和方法?

      本節課學習了角及角的有關概念,并會表示角;知道角的度量單位,并能進行單位的轉換;會把角的知識與現實生活相聯系,用角的知識解釋生活中的一些現象.

      七、深化練習,鞏固新知

      課本P145~146習題4.4第1~4題.

      “課時作業”部分.

    高一數學教案15

      教學目標:

      1、掌握平面向量的數量積及其幾何意義;

      2、掌握平面向量數量積的重要性質及運算律;

      3、了解用平面向量的數量積可以處理有關長度、角度和垂直的問題;

      4、掌握向量垂直的條件、

      教學重難點:

      教學重點:平面向量的數量積定義

      教學難點:平面向量數量積的定義及運算律的理解和平面向量數量積的應用

      教學工具:

      投影儀

      教學過程:

      一、復習引入:

      1、向量共線定理向量與非零向量共線的充要條件是:有且只有一個非零實數λ,使=λ

      五,課堂小結

      (1)請學生回顧本節課所學過的知識內容有哪些?所涉及到的主要數學思想方法有那些?

      (2)在本節課的.學習過程中,還有那些不太明白的地方,請向老師提出。

      (3)你在這節課中的表現怎樣?你的體會是什么?

      六、課后作業

      P107習題2、4A組2、7題

      課后小結

      (1)請學生回顧本節課所學過的知識內容有哪些?所涉及到的主要數學思想方法有那些?

      (2)在本節課的學習過程中,還有那些不太明白的地方,請向老師提出。

      (3)你在這節課中的表現怎樣?你的體會是什么?

      課后習題

    【高一數學教案】相關文章:

    高一數學教案11-05

    高一數學教案11-08

    高一優秀數學教案09-28

    人教版高一數學教案08-07

    【熱門】高一數學教案11-26

    【推薦】高一數學教案12-04

    高一數學教案【熱】12-03

    【熱】高一數學教案12-05

    高一數學教案【精】11-29

    高一數學教案【推薦】11-30

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      亚洲欧美天堂综合一区 | 天天影视色香欲综合久久 | 天天爽天天狠久久综合 | 中文字幕黑人在线免费 | 日本天堂免费a | 五月天婷婷丁香 |