- 相關推薦
八年級下冊數學教案優秀
作為一位優秀的人民教師,很有必要精心設計一份教案,編寫教案有利于我們弄通教材內容,進而選擇科學、恰當的教學方法。那么應當如何寫教案呢?以下是小編整理的八年級下冊數學教案優秀,歡迎大家分享。
八年級下冊數學教案優秀1
教學目標:
1、掌握平均數、中位數、眾數的概念,會求一組數據的平均數、中位數、眾數。
2、在加權平均數中,知道權的差異對平均數的影響,并能用加權平均數解釋現實生活中一些簡單的現象。
3、了解平均數、中位數、眾數的差別,初步體會它們在不同情境中的應用。
4、能利和計算器求一組數據的算術平均數。
教學重點:
體會平均數、中位數、眾數在具體情境中的意義和應用。
教學難點:
對于平均數、中位數、眾數在不同情境中的應用。
教學方法:
歸納教學法。
教學過程:
一、知識回顧與思考
1、平均數、中位數、眾數的概念及舉例。
一般地對于n個數X1……Xn把(X1+X2+…Xn)叫做這n個數的算術平均數,簡稱平均數。
如某公司要招工,測試內容為數學、語文、外語三門文化課的綜合成績,滿分都為100分,且這三門課分別按25%、25%、50%的比例計入總成績,這樣計算出的成績為數學,語文、外語成績的加權平均數,25%、25%、50%分別是數學、語文、外語三項測試成績的權。
中位數就是把一組數據按大小順序排列,處在最中間位置的數(或最中間兩個數據的平均數)叫這組數據的.中位數。
眾數就是一組數據中出現次數最多的那個數據。
如3,2,3,5,3,4中3是眾數。
2、平均數、中位數和眾數的特征:
(1)平均數、中位數、眾數都是表示一組數據“平均水平”的平均數。
(2)平均數能充分利用數據提供的信息,在生活中較為常用,但它容易受極端數字的影響,且計算較繁。
(3)中位數的優點是計算簡單,受極端數字影響較小,但不能充分利用所有數字的信息。
(4)眾數的可靠性較差,它不受極端數據的影響,求法簡便,當一組數據中個別數據變動較大時,適宜選擇眾數來表示這組數據的“集中趨勢”。
3、算術平均數和加權平均數有什么區別和聯系:
算術平均數是加權平均數的一種特殊情況,加權平均數包含算術平均數,當加權平均數中的權相等時,就是算術平均數。
4、利用計算器求一組數據的平均數。
利用科學計算器求平均數的方法計算平均數。
二、例題講解:
某校規定:學生的平時作業、期中練習、期末考試三項成績分別按40%、20%、40%的比例計入學期總評成績,小亮的平時作業、期中練習、期末考試的數學成績依次為90分,92分,85分,小亮這學期的數學總評成績是多少?
三、課堂練習:復習題A組
四、小結:
1、掌握平均數、中位數與眾數的概念及計算。
2、理解算術平均數與加權平均數的聯系與區別。
五、作業:
復習題B組、C組(選做)
八年級下冊數學教案優秀2
一、學習目標:
1、經歷探索平方差公式的過程。
2、會推導平方差公式,并能運用公式進行簡單的運算。
二、重點難點
重點:平方差公式的推導和應用;
難點:理解平方差公式的結構特征,靈活應用平方差公式。
三、合作學習
你能用簡便方法計算下列各題嗎?
(1)20xx×1999
(2)998×1002
導入新課:計算下列多項式的積。
(1)(x+1)(x-1);
(2)(m+2)(m-2)
(3)(2x+1)(2x-1);
(4)(x+5y)(x-5y)。
結論:兩個數的`和與這兩個數的差的積,等于這兩個數的平方差。
即:(a+b)(a-b)=a2-b2
四、精講精練
例1:運用平方差公式計算:
(1)(3x+2)(3x-2);
(2)(b+2a)(2a-b);
(3)(-x+2y)(-x-2y)。
例2:計算:
(1)102×98;
(2)(y+2)(y-2)-(y-1)(y+5)。
隨堂練習
計算:
(1)(a+b)(-b+a);
(2)(-a-b)(a-b);
(3)(3a+2b)(3a—2b);
(4)(a5-b2)(a5+b2);
(5)(a+2b+2c)(a+2b-2c);
(6)(a-b)(a+b)(a2+b2)。
五、小結
(a+b)(a-b)=a2-b2
八年級下冊數學教案優秀3
一、學習目標
1、多項式除以單項式的運算法則及其應用。
2、多項式除以單項式的運算算理。
二、重點難點
重點:多項式除以單項式的運算法則及其應用。
難點:探索多項式與單項式相除的運算法則的過程。
三、合作學習
(一)回顧單項式除以單項式法則
(二)學生動手,探究新課
1、計算下列各式:
(1)(am+bm)÷m;
(2)(a2+ab)÷a;
(3)(4x2y+2xy2)÷2xy。
2、提問:
①說說你是怎樣計算的;
②還有什么發現嗎?
(三)總結法則
1、多項式除以單項式:
2、本質:
四、精講精練
(1)(12a3—6a2+3a)÷3a;
(2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);
(3)[(x+y)2—y(2x+y)—8x]÷2x;
(4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。
隨堂練習:教科書練習。
五、小結
1、單項式的除法法則
2、應用單項式除法法則應注意:
A、系數先相除,把所得的結果作為商的系數,運算過程中注意單項式的系數飽含它前面的符號;
B、把同底數冪相除,所得結果作為商的因式,由于目前只研究整除的情況,所以被除式中某一字母的指數不小于除式中同一字母的指數;
C、被除式單獨有的.字母及其指數,作為商的一個因式,不要遺漏;
D、要注意運算順序,有乘方要先做乘方,有括號先算括號里的,同級運算從左到右的順序進行;
E、多項式除以單項式法則。
【八年級下冊數學教案優秀】相關文章:
八年級下冊數學教案01-01
八年級下冊數學教案3篇01-01
語文八年級下冊優秀教案01-21
五年級下冊數學教案優秀02-23
八年級下冊英語教案優秀11-21
八年級下冊感悟母愛優秀作文08-12
中班下冊數學教案01-17
五年級下冊數學教案優秀【必備】08-30
四年級下冊數學教案優秀10-25