1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現(xiàn)在位置:范文先生網>教案大全>數(shù)學教案>七年級數(shù)學教案>初一數(shù)學上冊教案

    初一數(shù)學上冊教案

    時間:2023-02-04 17:14:38 七年級數(shù)學教案 我要投稿

    初一數(shù)學上冊教案精選15篇

      作為一位無私奉獻的人民教師,可能需要進行教案編寫工作,教案是教學活動的依據(jù),有著重要的地位。那么你有了解過教案嗎?以下是小編為大家收集的初一數(shù)學上冊教案,歡迎大家分享。

    初一數(shù)學上冊教案精選15篇

    初一數(shù)學上冊教案1

      一:教材分析:

      1:教材所處的地位和作用:

      本課是在接一元一次方程的基礎上,講述一元一次方程的應用,讓學生通過審題,根據(jù)應用題的實際意義,找出相等關系,列出有關一元一次方程,是本節(jié)的重點和難點,同時也是本章節(jié)的重難點。本課講述一元一次方程的應用題,為學生初中階段學好必備的代數(shù),幾何的基礎知識與基本技能,解決實際問題起到啟蒙作用,以及對其他學科的學習的應用。在提高學生的能力,培養(yǎng)他們對數(shù)學的興趣

      以及對他們進行思想教育方面有獨特的意義,同時,對后續(xù)教學內容起到奠基作用。

      2:教育教學目標:

      (1)知識目標:

      (A)通過教學使學生了解應用題的一個重要步驟是根據(jù)題意找出相等關系,然后列出方程,關鍵在于分析已知未知量之間關系及尋找相等關系。

      (B)通過和;差;倍;分的量與量之間的分析以及公式中有一個字母表示未知數(shù),其余字母表示已知數(shù)的情況下,列出一元一次方程解簡單的應用題。

      (2)能力目標:通過教學初步培養(yǎng)學生分析問題,解決實際問題,綜合歸納整理的能力,以及理論聯(lián)系實際的能力。

      (3)思想目標:

      通過對一元一次方程應用題的教學,讓學生初步認識體會到代數(shù)方法的優(yōu)越性,同時滲透把未知轉化為已知的辯證思想,介紹我國古代數(shù)學家對一元一次方程的研究成果,激發(fā)學生熱愛中國共產黨,熱愛社會主義,決心為實現(xiàn)社會主義四個現(xiàn)代化而學好數(shù)學的思想;同時,通過理論聯(lián)系實際的方式,通過知識的應用,培養(yǎng)學生唯物主義的思想觀點。

      3:重點,難點以及確定的依據(jù):

      根據(jù)題意尋找和;差;倍;分問題的相等關系是本課的重點,根據(jù)題意列出一元一次方程是本課的難點,其理論依據(jù)是關鍵讓學生找出相等關系克服列出一元一次方程解應用題這一難點,但由于學生年齡小,解決實際問題能力弱,對理論聯(lián)系實際的問題的理解難度大。

      二:學情分析:(說學法)

      1:學生初學列方程解應用題時,往往弄不清解題步驟,不設未知數(shù)就直接進行列方程或在設未知數(shù)時,有單位卻忘記寫單位等。

      2:學生在列方程解應用題時,可能存在三個方面的困難:

      (1)抓不準相等關系;

      (2)找出相等關系后不會列方程;

      (3)習慣于用小學算術解法,得用代數(shù)方法分析應用題不適應,不知道要抓怎樣的相等關系。

      3:學生在列方程解應用題時可能還會存在分析問題時思路不同,列出方程也可能不同,這樣一來部分學生可能認為存在錯誤,實際不是,作為教師應鼓勵學生開拓思路,只要思路正確,所列方程合理,都是正確的,讓學生選擇合理的思路,使得方程盡可能簡單明了。

      4:學生在學習中可能習慣于用算術方法分析已知數(shù)與未知數(shù),未知數(shù)與已知數(shù)之間的關系,對于較為復雜的'應用題無法找出等量關系,隨便行事,亂列式子。

      5:學生在學習過程中可能不重視分析等量關系,而習慣于套題型,找解題模式。

      三:教學策略:(說教法)

      如何突出重點,突破難點,從而實現(xiàn)教學目標。我在教學過程中擬計劃進行如下操作:

      1:“讀(看)——議——講”結合法

      2:圖表分析法

      3:教學過程中堅持啟發(fā)式教學的原則

      教學的理論依據(jù)是:

      1:必須先明確根據(jù)應用題題意列方程是重點,同時也是難點的觀點,在教學過程中幫助學生抓住關鍵,克服難點,正確列方程弄清楚題意,找出能夠表示應用題全部含義的一個相等關系,并列出代數(shù)式表示這相等關系的左邊和右邊。為此,在教學過程中要讓學生明確知曉解題步驟,通過例1可以讓學生大致了解列出一元一次方程解應用題的方法。

      2:在教學過程中要求學生仔細審題,認真閱讀例題的內容提要,弄清題意,找出能夠表示應用題全部含義的一個相等關系,分析的過程可以讓學生只寫在草稿上,在寫解的過程中,要求學生先設未知數(shù),再根據(jù)相等關系列出需要的代數(shù)式,再把相等關系表示成方程形式,然后解這個方程,并寫出答案,在設未知數(shù)時,如有單位,必須讓學生寫在字母后,如例1中,不能把“設原來有X千克面粉”寫成“設原來有X”。另外,在列方程中,各代數(shù)式的單位應該是相同的,如例1中,代數(shù)式“X 字串7 ”“—15%X”“42500”的單位都是千克。在本例教學中,關鍵在于找出這個相等關系,將其中涉及待求的某個數(shù)設為未知數(shù),其余的數(shù)用已知數(shù)或含有已知數(shù)與未知數(shù)的代數(shù)式表示,從而列出方程。在例1中的相等關系比較簡單明顯,可通過啟發(fā)式讓學生自己找出來。在例1教學中同時讓學生鞏固解一元一次方程應用題的五個步驟,特別是第2步是關鍵步驟。

      3:針對學生在列方程解應用題中可能存在的三個方面的困難,在教學過程中有意識加以解決,特別是學生抓不準相等關系這方面,可以讓學生通過表格,圖表等形式幫助學生找出相等關系表示成方程。如例1在分析過程中通過表格讓學生明了清楚直觀解決列方程的難點。

      4:通過圖表對比使學生更直觀,理解更深刻,同時,降低了理論教學的難度和分量,提高課堂教學效益(教學手段)。

      5:在課后習題的安排上適當讓學生通過模仿例題的思想方法,加深學生解應用題的能力,這主要由于學生剛剛入門,多進行模仿,習慣以后,再做與例題不一樣的習題,可以提高運用知識能力,同時讓學生進行一題多解,找出共同點,區(qū)別或最佳列法,以開闊學生的思路。

      四:教學程序:

      (一):課堂結構:復習提問,導入講授新課,課堂練習,鞏固新課,布置作業(yè)五個部分。

      (二):教學簡要過程:

      1:復習提問:

      (1):什么叫做等式?

      (2):等式與方程之間有哪些關系?

      (3):求X的15%的代數(shù)式。

      (4):敘述代數(shù)式與方程的區(qū)別。

      (理由是:通過復習加深學生對等式,方程,代數(shù)式之間關系的理解,有利于學生熟練正確根據(jù)題意列出一元一次方程,從而有利降低本節(jié)的難度。)

      2:導入講授新課:

      (1):教具:

      一塊小黑板,抄212例1題目及相對應的空表格。

      左邊右邊

      (2):新課引述:

      (3):講述課文212例1:

      (目的是:要求學生認真讀懂題目,尋找反映題目的全部含義的相等關系,必須根據(jù)題目關系,切勿盲目性)通過理解啟發(fā)學生尋找出以下關系:原來重量—運出重量=剩余重量(A)(在指導學生分析尋找題意相等關系時,可能存在學生分析問題思路不同,會找出如下關系:原來重量=運出重量+剩余重量,原來重量—剩余重量=運出重量的相等關系來,這主要由于學生思路不同,得出的關系表面不同,但思路是正確的,應加以鼓勵培養(yǎng)學生這種發(fā)散思維能力。)

      指導學生設原來重量為X千克。這里分析等式左邊:原來重量為X千克,運出重量為15%X千克,把以上填入表格左邊。 字串7 分析等式右邊:剩余重量為42500千克,填入表格右邊。

      (目的是:通過分析使學生易看出,先弄懂題意,找出相等關系,再按照相等關系來設未知數(shù)和列代數(shù)式,有利于降低列方程解應用題的難度)

      把以上左邊和右邊的代數(shù)式分別代入(A)中,同時要求學生注意方程的左邊和右邊的單位要一致,就可以列出方程。

      同時要求學生在解答過程中勿漏寫“答”和“設”,且都不要漏寫單位。

      結合解題過程向學生介紹一元一次應用題解法的一般步驟:

      課本215黑體字

      3:課堂練習:

      課文216練習1,2題

      (目的是:讓學生通過適當?shù)哪7吕}的解題思想方法從而加深對本課的內容的理解掌握。)

      4:新課鞏固:

      學生對本節(jié)內容進行要小結:

      列方程解應用題著重于分析,抓住尋找相等關系。解一元一次應用題的一般步驟及注意事項。

      (目的:讓學生加深對應用題的解法的認識和該注意事項的重視。)

      5:作業(yè)布置:

      課文221習題4-4(1)A組1,2,3題

      (目的:在于檢驗學生對本節(jié)內容的理解和運用程度,以及實際接受情況,并促使學生進一步鞏固和掌握所學的內容。)

      五:板書設計:

      4*4一元一次方程的應用:

      例題:小黑板出示例1題目解:設原來有X千克面粉,那么運

      相等關系:原來重量—運出重量=剩余重量出了15%X千克,依題意,得

      等式左邊:等式右邊:X—15%X=42500

      原來重量為X千克,剩余重量為42500千克。解這個方程:

      運出重量為15%X千克。85/100*X=42500

      解一元一次方程的一般步驟:X=50000(千克)

      小黑板出示課文215黑體字內容提要答:原來有50000千克面粉。

    初一數(shù)學上冊教案2

      教學目標:

      1、明白生活中存在著無數(shù)表示相反意義的量,能舉例說明;

      2、能體會引進負數(shù)的必要性和意義,建立正數(shù)和負數(shù)的數(shù)感。

      重點:通過列舉現(xiàn)實世界中的“相反意義的量”的例子來引進正數(shù)和負數(shù),要求學生理解正數(shù)和負數(shù)的意義,為以后通過實例引進有理數(shù)的大小比較、加法和乘法法則打基礎。

      難點:對負數(shù)的意義的理解。

      教學過程:

      一、知識導向:本節(jié)課是一個從小學過渡的知識點,主要是要抓緊在數(shù)范圍上擴充,對引進“負數(shù)”這一概念的必要性及意義的理解。

      二、新課拆析:1、回顧小學中有關數(shù)的范圍及數(shù)的分類,指出小學中的“數(shù)”是為了滿足生產和生活的需要而產生發(fā)展起來的。如:0,1,2,3,…,,

      2、能讓學生舉例出更多的'有關生活中表示相反意義的量,能發(fā)現(xiàn)事物之間存在的對立面。

      如:汽車向東行駛3千米和向西行駛2千米

      溫度是零上10°C和零下5°C;收入500元和支出237元;水位升高1.2米和下降0.7米; 3、上面所列舉的表示相反意義量,我們也許就會發(fā)現(xiàn):如果只用原來所學過的數(shù)很難區(qū)分具有相反意義的量。

      一般地,對于具有相反意義的量,我們可把其中一種意義的量規(guī)定為正的,用過去學過的數(shù)表示;把與它意義相反的量規(guī)定為負的,用過去學過的數(shù)(零除外)前面放上一個“—”號來表示。

      如:在表示溫度時,通常規(guī)定零上為“正”,零下為“負”即零上10°C表示為10°C,零下5°C表示為-5°C概括:我們把這一種新數(shù),叫做負數(shù),如:-3,-45,…過去學過的那些數(shù)(零除外)叫做正數(shù),如:1,2.2…零既不是正數(shù),也不是負數(shù)例:下面各數(shù)中,哪些數(shù)是正數(shù),哪些數(shù)是負數(shù),1,2.3,-5.5,68,-,0,-11,+123,…

      三、階梯訓練:P18練習:1,2,3,4。

      四、知識小結:

      從本節(jié)課所學的內容中,應能從數(shù)的角度來區(qū)分小學與初中的異同點,通過運用發(fā)現(xiàn)相反意義量,能理解引進“負數(shù)”的必要性及其意義。

      五、作業(yè)鞏固:

      1、每個同學分別舉出5個生活中表示相反意義量的的例子;并用正、負數(shù)來表示; 2、分別舉出幾個正數(shù)與負數(shù)(最少6個)。 3、P20習題2.1:1題。

    初一數(shù)學上冊教案3

      (一)知識點目標:

      1.了解正數(shù)和負數(shù)是怎樣產生的。 2.知道什么是正數(shù)和負數(shù)。 3.理解數(shù)0表示的量的意義。

      (二)能力訓練目標:

      1.體會數(shù)學符號與對應的思想,用正、負數(shù)表示具有相反意義的量的符號化方法。

      2.會用正、負數(shù)表示具有相反意義的.量。

      (三)情感與價值觀要求: 通過師生合作,聯(lián)系實際,激發(fā)學生學好數(shù)學的熱情。

      教學重點:

      知道什么是正數(shù)和負數(shù),理解數(shù)0表示的量的意義。

      教學難點:

      理解負數(shù),數(shù)0表示的量的意義。

      教學方法:

      師生互動與教師講解相結合。

      教具準備:

      地圖冊(中國地形圖)。

      教學過程

      引入新課:

      1.活動:由兩組各派兩名同學進行如下活動:一名按老師的指令表演,另一名在黑板上速記,看哪一組記得最快、最好? 內容:老師說出指令: 向前兩步,向后兩步;

      向前一步,向后三步; 向前兩步,向后一步; 向前四步,向后兩步。 如果學生不能引入符號表示,教師可和一個小組合作,用符號表示出+2、-2、+1、-3、+2、-1、+4、-2等。

      [師]其實,在我們的生活中,運用這樣的符號的地方很多,這節(jié)課,我們就來學習這種帶有特殊符號、表示具有實際意義的數(shù)-----正數(shù)和負數(shù)。

      講授新課:

      1.自然數(shù)的產生、分數(shù)的產生。 2.章頭圖。問題見教材。讓學生思考-3~3℃、凈勝球數(shù)與排名順序、±、-9的意義。

      3、正數(shù)、負數(shù)的定義:我們把以前學過的0以外的數(shù)叫做正數(shù),在這些數(shù)的前面帶有“一”時叫做負數(shù)。根據(jù)需要有時在正數(shù)前面也加上“十”(正號)表示正數(shù)。

      舉例說明:3、2、

      3 1 等是正數(shù)(也可加上“十”) -3、-2、

      -3 1等是負數(shù)。 4、數(shù)0既不是正,也不是負數(shù),0是正數(shù)和負數(shù)的分界。 0℃是一個確定的溫度,海拔為0的高度是海平面的平均高度,0的意義已不僅表示“沒有”。 5、讓學生舉例說明正、負數(shù)在實際中的應用。展示圖片(又見教材P5圖)讓學生觀察地形圖上的標注和記錄支出、存入信息的

      鞏固提高:練習:課本P5練習 課時小結:這節(jié)課我們學習了哪些知識?你能說一說嗎?

      課后作業(yè):課本P7習題的第1、2、4、5題。 活動與探究:在一次數(shù)學測驗中,某班的平均分為85分,把高于平均分的高出部分記為正數(shù)。

      (1)美美得95分,應記為多少?

      (2)多多被記作一12分,他實際得分是多少?

      課后反思:

    初一數(shù)學上冊教案4

      教學目標

      1、會進行簡單的整式加、減運算、

      2、能說明整式加、減中每一步運算的算理,逐步發(fā)展有條理的思考和表述的能力、

      重、難點

      會進行簡單的整式加、減運算、

      教學過程

      一、情境創(chuàng)設

      1、操作:

      (1)準備三張如下圖所示的卡片

      (2)思考:

      用它們拼成各種形狀不同的四邊形,并計算拼成的四邊形的周長、

      二、探索活動

      活動一:

      1、整式的加減運算要進行哪些步驟?

      進行整式的加減運算時,____________________________________________

      《3、6整式的加減》同步測試

      1、三個小隊植樹,第一隊種x棵,第二隊種的樹比第一隊種的樹的.2倍還多8棵,第三隊種的樹比第二隊種的樹的一半少6棵,三隊共種樹________棵、

      2、甲倉庫有煤1500噸,乙倉庫有煤800噸,從甲倉庫每天運出煤5噸,從乙倉庫每天運出煤2噸,求m天后,甲、乙兩倉庫一共還有多少噸煤,并求出當m=30時,甲、乙兩倉庫一共存煤的數(shù)量?

      3、6整式的加減:測試

      1、已知三角形的第一邊長為2a+b,第二邊比第一邊長a-b,第三邊比第二邊短a,求這個三角形的周長?

      2、某同學做了一道數(shù)學題:“已知兩個多項式為A,B,B=3x﹣2y,求A﹣B的值、”他誤將“A﹣B”看成了“A+B”,結果求出的答案是x﹣y,那么原來的A﹣B的值應該是( )

      A、4x﹣3y B、﹣5x+3y C、﹣2x+y D、2x﹣y

    初一數(shù)學上冊教案5

      教學目的:

      1.了解計算器的性能,并會操作和使用;

      2.會用計算器求數(shù)的平方根;

      重點:用計算器進行數(shù)的加、減、乘、除、乘方和開方的計算;

      難點:乘方和開方運算;

      教學過程:

      1.計算器的`使用介紹(科學計算器)

      2.用計算器進行加、減、乘、除、乘方、開方運算

      例1用計算器求下列各式的值.

      (1)(-3.75)+(-22.5) (2)51.7(-7.2)

      解(1)

      (-3.75)+(-22.5)=-26.25

      (2)

      51.7(-7.2)=-372.24

      說明輸入數(shù)據(jù)時,按鍵順序與寫這個數(shù)據(jù)的順序完全相同,但輸入負數(shù)時,符號轉換鍵要放在數(shù)據(jù)之后鍵入.

      隨堂練習

      用計算器求值

      1.9.23+10.2 2.(-2.35)×(-0.46)

      答案1.37.8 2.1.081

    初一數(shù)學上冊教案6

      教學目標:

      知識能力:理解有理數(shù)的概念,掌握有理數(shù)的兩種分類方法,能夠按要求對給定的有理數(shù)進行分類。

      過程與方法:通過本節(jié)的學習,培養(yǎng)學生正確的分類討論觀點和分類能力。

      情感、態(tài)度、價值觀:通過本節(jié)課的學習,體驗成功的喜悅,保持學好數(shù)學的信心。

      教學重點:掌握有理數(shù)的兩種分類方法

      教學難點:給定的數(shù)字將被填入它所屬的集合中

      教學方法:問題導向法

      學習方法:自主探究法

      一、形勢歸納

      小學我們學了整數(shù)和分數(shù),上節(jié)課我們學了正數(shù)和負數(shù)。誰能快速提出以下問題?

      1.有以下數(shù)字:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33

      (1)將以上數(shù)字填入以下兩組:正整數(shù)集{}和負整數(shù)集{}。你填完了嗎?

      (2)將以上數(shù)字填入以下兩個集合:整數(shù)集合{}和分數(shù)集合{}。你填完了嗎?

      稱整數(shù)和分數(shù)為有理數(shù)。(指點題,板書)

      二、自學指導

      學生自學課本,根據(jù)課本尋找自學的機會

      提綱中問題的答案;老師先做必要的板書準備,再到學生中巡視指導,并了解掌握學生自學情況,為展示歸納作準備。

      附:自學提綱:

      1.___________、____、_______統(tǒng)稱為整數(shù),

      2._______和_________統(tǒng)稱為分數(shù)

      3.____ ______統(tǒng)稱為有理數(shù),

      4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整數(shù): 、分數(shù):;正整數(shù):、負整數(shù): 、正分數(shù): 、負分數(shù):.

      三、展示歸納

      1、找有問題的學生逐題展示自學提綱中的問題答案,學生說,老師板書;

      2、發(fā)動學生進行評價、補充、完善,教師根據(jù)每個題目的展示情況進行必要的講解和強調;

      3、全部展示完畢后,老師對本段知識做系統(tǒng)梳理,關鍵點予以強調。

      四、變式練習

      逐題出示,先讓學生獨立完成,再請有問題的'學生匯報結果,老師板書,并發(fā)動其他學生評價、補充并完善,最后老師根據(jù)需要進行重點強調。

      1.整數(shù)可分為:_____、______和_______,分數(shù)可分為:_______和_________.有理數(shù)按符號不同可分為正有理數(shù),_______和________.

      2.判斷下列說法是否正確,并說明理由。

      (1)有理數(shù)包括有整數(shù)和分數(shù).

      (2)0.3不是有理數(shù).

      (3)0不是有理數(shù).

      (4)一個有理數(shù)不是正數(shù)就是負數(shù).

      (5)一個有理數(shù)不是整數(shù)就是分數(shù)

      3.所有的正整數(shù)組成正整數(shù)集合,所有負整數(shù)組成負整數(shù)集合,依次類推有正數(shù)集合、負數(shù)集合、整數(shù)集合、分數(shù)集合等,把下面的有理數(shù)填入它屬于的集合中(大括號內,將各數(shù)用逗號分開):

      楊桂花:1.2.1有理數(shù)教學設計

      正數(shù)集合:{ …}負數(shù)集合:{ …}

      正整數(shù)集合:{ …}負分數(shù)集合:{ …}

      4.下列說法正確的是( )

      A.0是最小的正整數(shù)

      B.0是最小的有理數(shù)

      C.0既不是整數(shù)也不是分數(shù)

      D. 0既不是正數(shù)也不是負數(shù)

      5、下列說法正確的有( )

      (1)整數(shù)就是正整數(shù)和負整數(shù)(2)零是整數(shù),但不是自然數(shù)(3)分數(shù)包括正分數(shù)和負分數(shù)(4)正數(shù)和負數(shù)統(tǒng)稱為有理數(shù)(5)一個有理數(shù),它不是整數(shù)就是分數(shù)

      五、總結與反思:通過本節(jié)課的學習,你有什么收獲?

      六、作業(yè):必做題:課本14頁:1、9題

    初一數(shù)學上冊教案7

      《1.2有理數(shù)》教學設計

      【學習目標】:

      1、掌握有理數(shù)的 概念,會對有理數(shù)按一定標準進行分類,培養(yǎng)分類能力;

      2、了解分類的標準 與集合的含義;

      3、體驗分類是數(shù)學上常用的處理問題方法;

      【學習重點】:正確理解有理數(shù)的`概念

      【學習難點】:正確理解分類的標準和按照一定標準分類

      《1.2.1有理數(shù)》同步練習含答案

      5.對-3.14,下面說法正確的是(B)

      A.是負數(shù),不是分數(shù)

      B.是負數(shù),也是分數(shù)

      C.是分數(shù),不是有理數(shù)

      D.不是分數(shù),是有理數(shù)

      《1.2有理數(shù)》同步練習含答案解析

      8.如果a與1互為相反數(shù),則|a|=( )

      A.2 B.﹣2 C.1 D.﹣1

      【考點】絕對值;相反數(shù).

      【分析】根據(jù)互為相反數(shù)的定義,知a=﹣1,從而求解.

      互為相反數(shù)的定義:只有符號不同的兩個數(shù)叫互為相反數(shù).

      【解答】解:根據(jù)a與1互為相反數(shù),得

      a=﹣1.

      所以|a|=1.

      故選C.

      【點評】此題主要是考查了相反數(shù)的概念和絕對值的性質.

      9.若|1﹣a|=a﹣1,則a的取值范圍是( )

      A.a>1 B.a≥1 C.a<1 D.a≤1

      【考點】絕對值.

      【分析】根據(jù)|1﹣a|=a﹣1得到1﹣a≤0,從而求得答案.

      【解答】解:∵|1﹣a|=a﹣1,

      ∴1﹣a≤0,

      ∴a≥1,

      故選B.

      【點評】本題考查了絕對值的求法,解題的關鍵是了解非正數(shù)的絕對值是它的相反數(shù),難度不大.

    初一數(shù)學上冊教案8

      【學習目標】

      1.掌握有理數(shù)的混合運算法則,并能熟練地進行有理數(shù)的加、減、乘、除、乘方的混合運算;

      2.通過計算過程的反思,獲得解決問題的經驗,體會在解決問題的過程中與他人合作的重要性;

      【學習方法】

      自主探究與合作交流相結合。

      【學習重難點】

      重點:能熟練地按照有理數(shù)的運算順序進行混合運算

      難點:在正確運算的基礎上,適當?shù)貞眠\算律簡化運算

      【學習過程】

      模塊一預習反饋

      一、學習準備

      1.四則(加減乘除)混合運算的`順序:先算_______,再算_______,如有括號,就先算__________.同級運算按照從___往___的順序依次計算。

      2.有理數(shù)的運算定律:__________________________________________________.

      3.請同學們閱讀教材p65—p66,預習過程中請注意:⑴不懂的地方要用紅筆標記符號;⑵完成你力所能及的習題和課后作業(yè)。

      《2.11有理數(shù)的混合運算》課后作業(yè)

      9.用符號“>”“<”“=”填空.

      42+32________2×4×3;

      (-3)2+12________2×ok3w_ads("s002");

      《2.11有理數(shù)的混合運算》同步練習

      5、小亮的爸爸在一家合資企業(yè)工作,月工資2500元,按規(guī)定:其中800元是免稅的,其余部分要繳納個人所得稅,應納稅部分又要分為兩部分,并按不同稅率納稅,即不超過500元的部分按5%的稅率;超過500元不超過20xx元的部分則按10%的稅率,你能算出小亮的爸爸每月要繳納個人所得稅多少元?

    初一數(shù)學上冊教案9

      一、教學目標:

      1.知識目標:

      使學生理解同類項的概念和合并同類項的意義,學會合并同類項。

      2.能力目標:

      培養(yǎng)學生觀察、分析、歸納和動手解決問題的能力,初步使學生了解數(shù)學的分類思想。

      3.情感目標:

      借助情感因素,營造親切和諧活潑的課堂氣氛,激勵全體學生積極參與教學活動。培養(yǎng)他們團結協(xié)作,嚴謹求實的學習作風和鍥而不舍,勇于創(chuàng)新的精神。

      二、教學重點、難點:

      重點:同類項的概念和合并同類項的法則

      難點:合并同類項

      三、教學過程:

      (一)情景導入:

      1、觀察下面的圖片,并將這些圖片分類:

      你是依據(jù)什么來進行分類的呢?

      生活中,我們常常為了需要把具有相同特征的'事物歸為一類。

      2、對下列水果進行分類:

      (二)新知探究1:

      1、對下列八個單項式進行分類:

      a,6x2,5,cd,-1,2x2,4a,-2cd

      這些被歸為同一類的項有什么相同的特征?

      2、揭示同類項的概念。

      同類項:所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項。另外,所有的常數(shù)項都是同類項。

      《3.4合并同類項》同步練習

      1.已知代數(shù)式2a3bn+1與-3am-2b2是同類項,則2m+3n=________.

      2.若-4xay+x2yb=-3x2y,則a+b=_______.

      3.下面運算正確的是( )

      A.3a+2b=5ab B.3a2b-3ba2=0

      C.3x2+2x3=5x5 D.3y2-2y2=1

      4.已知一個多項式與3x2+9x的和等于3x2+4x-1,則這個多項式是( )

      A.-5x-1 B.5x+1

      C.-13x-1 D.13x+1

      《3.4合并同類項》測試

      1.下列說法中,正確的是( )

      A.字母相同的項是同類項

      B.指數(shù)相同的項是同類項

      C.次數(shù)相同的項是同類項

      D.只有系數(shù)不同的項是同類項

    初一數(shù)學上冊教案10

      教學目標

      1、知道有理數(shù)混合運算的運算順序,能正確進行有理數(shù)的混合運算;

      2、會用計算器進行較繁雜的有理數(shù)混合運算。

      教學重點

      1、有理數(shù)的混合運算;

      2、運用運算律進行有理數(shù)的混合運算的簡便計算。

      教學難點

      運用運算律進行有理數(shù)的混合運算的簡便計算。

      有理數(shù)的混合運算的運算順序

      也就是說,在進行含有加、減、乘、除的混合運算時,應按照運算級別從高到低進行,因為乘方是比乘除高一級的運算,所以像這樣的有理數(shù)的混合運算,有以下運算順序:

      先乘方,再乘除,最后加減。如果有括號,先進行括號內的運算。

      你會根據(jù)有理數(shù)的運算順序計算上面的算式嗎?

      2、8有理數(shù)的`混合運算:同步練習

      1、有依次排列的3個數(shù):2,9,7,對任意相鄰的兩個數(shù),都用右邊的數(shù)減去左邊的數(shù),所得之差寫在這兩個數(shù)之間,可產生一個新數(shù)串:2,7,9,—2,7,這稱為第一次操作。做第二次同樣的操作后也可產生一個新數(shù)串:2,5,7,2,9,—11,—2,9,7,繼續(xù)依次操作下去,問:從數(shù)串2,9,7開始操作第一百次以后所產生的那個新數(shù)串的所有數(shù)之和是。

      《2、8有理數(shù)的混合運算》課后訓練

      1、興旺肉聯(lián)廠的冷藏庫能使冷藏食品每小時降溫3 ℃,每開庫一次,庫內溫度上升4 ℃,現(xiàn)有12 ℃的肉放入冷藏庫,2小時后開了一次庫,再過3小時后又開了一次庫,再關上庫門4小時后,肉的溫度是多少攝氏度?

    初一數(shù)學上冊教案11

      (1)常見的幾何體;

      (2)構成圖形的基本元素——點、線、面及點、線與平面

      圖形的一些簡單性質;點動成線,線動成面,面動成體

      (3)棱柱的特征;并注意棱柱和圓柱的聯(lián)系與區(qū)別

      (4)長方體、正方體的表面沿某些棱展開的平面圖形及圓

      柱、圓錐的側面展開圖;

      (5)用一個平面去截一個幾何體,截面的形狀;

      (6)物體的三視圖,立方體及其簡單組合的三視圖;

      (7)生活中的平面圖形.

      一.填空:

      1.這個幾何體的名稱是______;它有_____個面組成;它有____個頂點;經過每個頂點有____條邊。

      2.正方體或長方體是一個立體圖形,它是由______個面,______條棱,_____個頂點組成的.

      3.在①長方體、②球、③圓錐、④圓柱、⑤三棱柱這五種幾何體中,其主視圖、左視圖、俯視圖都完全相同的是(填上序號即可)

      4.一個棱柱有十個頂點,且所有側棱的和為30cm,則每條側棱長為cm.

      5.將下面4個圖用紙復制下來,然后沿所畫線折起來,把折成的立體圖形名稱寫在圖的下邊橫線上:

      6.如圖是一些相同的正方塊構成的立體圖形的三視圖,則構成這個立體圖形的`小方塊數(shù)為.

      7.如圖所示,木工師傅把一個長為1.6米的長方體木料鋸成3段后,表面積比原來增加了

      80,那么這根木料本來的體積是

      8.要把一個長方體的表面剪開展成平面圖形,至少需要剪開________條棱.

      9.如圖,截去正方體一角變成一個多面體,這個多面體有____個面,____條棱.

      10.若要使圖中平面展開圖按虛線折疊成正方體后,相對面上兩個數(shù)之和為6,x=____,y=____.

      11.四棱柱按如圖粗線剪開一些棱,展成平面圖形,請畫出平面圖來:

      12.薄薄的硬幣在桌面上轉動時,看上去象球,這說明了_____________.

      13.右圖中,三角形共有個。

      14.如圖是用邊長為1的小正方體擺放成的一個幾何體的三視圖,這個幾何體的表面積為。

      第13題主視圖俯視圖左視圖

      二:選擇題(每題4分,共24分).

      15.桌上擺滿了朋友們送來的禮物,小狗貝貝好奇地想看個究竟.

      Pqmn

      ①小狗先是站在地面上看,②然后抬起了前腿看,③唉,還是站到凳子上看吧,④最后,

      它終于爬上了桌子………按小狗四次看禮物的順序,四個畫面的順序為()

      A.mnpqB.qnmpC.pqmnD.mnqp

      16.以下四個平面圖形中,不是正方體的展開圖的是()

      ABCD

      17.只有蓋的盒子長、寬、高分別為5、5、3cm,如圖所示,有一只螞蟻從A點出

      發(fā),沿棱爬行,爬行的路徑不許重復,則螞蟻回到A點時,最多爬行()

      A.24cmB.32cmC.34cmD.48cm

      18.一個幾何體是由若干個相同的正方體組成的,其主視圖和左視圖

      如圖所示,則這個幾何體最多可由多少個這樣的正方體組成()

      A.12個B.13個C.14個D.18個

      19.把一個正方體截去一個角,剩下的幾何體最多有幾個面()

      A.5個面B.6個面C.7個面D.8個面

      20.從多邊形一條邊上的一點(不是頂點)發(fā)出發(fā),連接各個頂點得

      到20xx個三角形,則這個多邊形的邊數(shù)為().

      A.20xxB.20xxC.20xxD.20xx

      21.下列四個圖形折疊后與所得的正方體的各個面上所標數(shù)字一致的是()

      22.如圖(1)是正方體表面積展開圖,如果將其折回原來的

      正方體圖(2)時,與點P重合的兩點應該是()

      A.S和ZB.T和Y

      C.U和YD.T和V

      23.用一個平面去截①圓錐;②圓柱;③球;④五棱柱,能得到截面是圓的圖形是()

      A.①②④ B.①②③ C.②③④ D.①③④

      24.如圖是正方體的表面展開圖,折疊成正方體后,其中哪兩個完全相同()

      A.(1)(2)B.(2)(3)C.(3)(4)D.(2)(4)

      25.從多邊形一個頂點處出發(fā),連接各個頂點得到20xx個三角形,

      則這個多邊形的邊數(shù)為()

      A.20xxB.20xxC.20xxD.20xx

    初一數(shù)學上冊教案12

      教材分析

      方程是應用廣泛的數(shù)學工具,是代數(shù)學的核心內容,在義務教育階段的數(shù)學課程中占有重要地位。本節(jié)課選自人教版數(shù)學七年級上冊第三章第一節(jié)的內容,是一節(jié)引入課,對于激發(fā)學生學習方程的興趣,獲得解決實際問題的基本方法具有十分重要的作用。本節(jié)課是結合學生已有學習經驗,從算式到方程,繼而對一元一次方程及方程的解進行了探究,讓學生體驗未知數(shù)參與運算的好處,用方程分析問題、解決問題(即培養(yǎng)學生建模的思想),體會學習方程的意義和作用。本節(jié)課是在承接小學學習的簡易方程和剛剛學習的整式的加減的基礎上進行學習的,同時又是后續(xù)學習二元一次方程、一元二次方程的重要基礎。因此,這節(jié)課在教材中起到了承上啟下的作用。

      學情分析

      學生前面已經學習了簡單的方程及整式的內容,為本節(jié)課的學習做好了鋪墊。

      七年級的學生思維活躍,求知欲強,有比較強烈的自我意識,對觀察、猜想、探索性的問題充滿好奇,因而在教學素材的選取與呈現(xiàn)方式以及學習活動的安排上力求設置學生感興趣的并且具有挑戰(zhàn)性的`內容,讓學生感受到數(shù)學來源于生活又回歸生活實際,無形中產生濃厚的學習興趣和探索熱情。

      七年級學生對于方程已經具備了一定的知識基礎,但是對方程的理解還比較膚淺、模糊,還處于感性層面,缺乏理性的認識和把握,而且學生正處于感性認識向理性認識過渡的時期,抽象思維能力有待提高,對于一元一次方程的概念教學要選取具體的問題情境,逐步抽象。

      七年級的學生很想利用所學的知識解決問題,通過對幾個問題的分析、探討、相互交流,逐步培養(yǎng)學生的觀察、探索、歸納等能力,提高對課本知識的運用能力,從而認識歸納一元一次方程的相關概念,在練習中鞏固和熟悉一元一次方程。

      教學目標

      1.知識與技能目標

      (1)掌握方程、一元一次方程的定義,知道什么是方程的解。

      (2)體會字母表示數(shù)的好處,會根據(jù)實際問題的條件列方程,能檢驗出一個數(shù)值是否是方程的解。

      2.過程與方法目標

      (1)通過將實際問題抽象成數(shù)學問題,分析實際問題中的數(shù)量關系,利用其中的相等關系列出方程,滲透數(shù)學建模的思想,認識到從算式到方程是數(shù)學的一種進步。

      (2)通過具體情境貼近學生生活,在生活中挖掘數(shù)學問題,解決數(shù)學問題,使數(shù)學生活化,生活數(shù)學化,會利用一元一次方程的知識解決一些實際問題。

      3.情感態(tài)度與價值觀目標

      (1)通過具體情境的探索、交流等數(shù)學活動培養(yǎng)學生的團體合作精神和積極參與、勤于思考的意識。

      (2)激發(fā)學生的求知欲和學習數(shù)學的熱情,培養(yǎng)獨立思考和合作交流的能力,讓他們享受成功的喜悅。

      (3)經歷從生活中發(fā)現(xiàn)數(shù)學和應用數(shù)學解決實際問題的過程,樹立多種方法解決問題的創(chuàng)新意識,增強用數(shù)學的意識,體會數(shù)學的應用價值。

      教學重點、難點

      教學重點:1.方程、一元一次方程、方程的解的概念。

      2.根據(jù)實際問題的條件列出方程。

      教學難點:分析實際問題中的數(shù)量關系,利用其中的相等關系列出方程。

      教學過程

      一、創(chuàng)設情境 導入新課

      二、探究新知 形成概念

      三、應用新知 鞏固提高

      四、感悟反思

      五、名題欣賞

      六、布置作業(yè)

      板書設計

    初一數(shù)學上冊教案13

      一、知識要點

      本章的主要內容可以概括為有理數(shù)的概念與有理數(shù)的運算兩部分。有理數(shù)的概念可以利用數(shù)軸來認識、理解,同時,利用數(shù)軸又可以把這些概念串在一起。有理數(shù)的運算是全章的重點。在具體運算時,要注意四個方面,一是運算法則,二是運算律,三是運算順序,四是近似計算。

      基礎知識:

      1、大于0的數(shù)叫做正數(shù)。

      2、在正數(shù)前面加上負號“-”的數(shù)叫做負數(shù)。

      3、0既不是正數(shù)也不是負數(shù)。

      4、有理數(shù)(rationalnumber):正整數(shù)、負整數(shù)、0、正分數(shù)、負分數(shù)都可以寫成分數(shù)的形式,這樣的數(shù)稱為有理數(shù)。

      5、數(shù)軸(numberaxis):通常,用一條直線上的點表示數(shù),這條直線叫做數(shù)軸。

      數(shù)軸滿足以下要求:

      (1)在直線上任取一個點表示數(shù)0,這個點叫做原點(origin);

      (2)通常規(guī)定直線上從原點向右(或上)為正方向,從原點向左(或下)為負方向;

      (3)選取適當?shù)拈L度為單位長度。

      6、相反數(shù)(oppositenumber):絕對值相等,只有負號不同的兩個數(shù)叫做互為相反數(shù)。

      7、絕對值(absolutevalue)一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值。記做|a|。

      由絕對值的定義可得:|a-b|表示數(shù)軸上a點到b點的距離。

      一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);0的絕對值是0.

      正數(shù)大于0,0大于負數(shù),正數(shù)大于負數(shù);兩個負數(shù),絕對值大的反而小。

      8、有理數(shù)加法法則

      (1)同號兩數(shù)相加,取相同的符號,并把絕對值相加。

      (2)絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。互為相反數(shù)的兩個數(shù)相加得0.

      (3)一個數(shù)同0相加,仍得這個數(shù)。

      加法交換律:有理數(shù)的加法中,兩個數(shù)相加,交換加數(shù)的'位置,和不變。表達式:a+b=b+a。

      加法結合律:有理數(shù)的加法中,三個數(shù)相加,先把前兩個數(shù)相加或者先把后兩個數(shù)相加,和不變。

      表達式:(a+b)+c=a+(b+c)

      9、有理數(shù)減法法則

      減去一個數(shù),等于加這個數(shù)的相反數(shù)。表達式:a-b=a+(-b)

      10、有理數(shù)乘法法則

      兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘。

      任何數(shù)同0相乘,都得0.

      乘法交換律:一般地,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等。表達式:ab=ba

      乘法結合律:三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。表達式:(ab)c=a(bc)

      乘法分配律:一般地,一個數(shù)同兩個的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,再把積相加。

      表達式:a(b+c)=ab+ac

      11、倒數(shù)

      1除以一個數(shù)(零除外)的商,叫做這個數(shù)的倒數(shù)。如果兩個數(shù)互為倒數(shù),那么這兩個數(shù)的積等于1。

      12、有理數(shù)除法法則:兩數(shù)相除,同號得負,異號得正,并把絕對值相除。0除以任何一個不等于0的數(shù),都得0.

      13、有理數(shù)的乘方:求n個相同因數(shù)的積的運算,叫做乘方,乘方的結果叫做冪(power)。an中,a叫做底數(shù)(basenumber),n叫做指數(shù)(exponent)。

      根據(jù)有理數(shù)的乘法法則可以得出:負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都是0。

      14、有理數(shù)的混合運算順序

      (1)“先乘方,再乘除,最后加減”的順序進行;

      (2)同級運算,從左到右進行;

      (3)如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行。

      15、科學技術法:把一個大于10的數(shù)表示成a﹡10n的形式(其中a是整數(shù)數(shù)位只有一位的數(shù)(即0

      16、近似數(shù)(approximatenumber):

      17、有理數(shù)可以寫成m/n(m、n是整數(shù),n≠0)的形式。另一方面,形如m/n(m、n是整數(shù),n≠0)的數(shù)都是有理數(shù)。所以有理數(shù)可以用m/n(m、n是整數(shù),n≠0)表示。

      拓展知識:

      1、數(shù)集:把一些數(shù)放在一起,就組成一個數(shù)的集合,簡稱數(shù)集。

      一、(1)所有有理數(shù)組成的數(shù)集叫做有理數(shù)集;

      二、(2)所有的整數(shù)組成的數(shù)集叫做整數(shù)集。

      2、任何有理數(shù)都可以用數(shù)軸上的一個點來表示,體現(xiàn)了數(shù)形結合的數(shù)學思想。

      3、根據(jù)絕對值的幾何意義知道:|a|≥0,即對任何有理數(shù)a,它的絕對值是非負數(shù)。

      4、比較兩個有理數(shù)大小的方法有:

      (1)根據(jù)有理數(shù)在數(shù)軸上對應的點的位置直接比較;

      (2)根據(jù)規(guī)定進行比較:兩個正數(shù);正數(shù)與零;負數(shù)與零;正數(shù)與負數(shù);兩個負數(shù),體現(xiàn)了分類討論的數(shù)學思想;

      (3)做差法:a-b>0a>b;

      (4)做商法:a/b>1,b>0a>b.

      二、基礎訓練

      選擇題

      1、下列運算中正確的是().

      A.a2a3=a6 B.=2 C.|(3-π)|=-π-3 D.32=-9

      2、下列各判斷句中錯誤的是()

      A.數(shù)軸上原點的位置可以任意選定

      B.數(shù)軸上與原點的距離等于個單位的點有兩個

      C.與原點距離等于-2的點應當用原點左邊第2個單位的點來表示

      D.數(shù)軸上無論怎樣靠近的兩個表示有理數(shù)的點之間,一定還存在著表示有理數(shù)的點。

      3、、是有理數(shù),若>且,下列說法正確的是()

      A.一定是正數(shù)B.一定是負數(shù)C.一定是正數(shù)D.一定是負數(shù)

      4、兩數(shù)相加,如果比每個加數(shù)都小,那么這兩個數(shù)是()

      A.同為正數(shù)B.同為負數(shù)C.一個正數(shù),一個負數(shù)D.0和一個負數(shù)

      5、兩個非零有理數(shù)的和為零,則它們的商是()

      A.0B.-1C.+1D.不能確定

      6、一個數(shù)和它的倒數(shù)相等,則這個數(shù)是()

      A.1B.-1C.±1D.±1和0

      7、如果|a|=-a,下列成立的是()

      A.a>0B.a<0c.a>0或a=0D.a<0或a=0

      8、(-2)11+(-2)10的值是()

      A.-2B.(-2)21C.0D.-210

      9、已知4個礦泉水空瓶可以換礦泉水一瓶,現(xiàn)有16個礦泉水空瓶,若不交錢,最多可以喝礦泉水()

      A.3瓶B.4瓶C.5瓶D.6瓶

      10、在下列說法中,正確的個數(shù)是()

      ⑴任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示

      ⑵數(shù)軸上的每一個點都表示一個有理數(shù)

      ⑶任何有理數(shù)的絕對值都不可能是負數(shù)

      ⑷每個有理數(shù)都有相反數(shù)

      A、1B、2C、3D、4

      11、如果一個數(shù)的相反數(shù)比它本身大,那么這個數(shù)為()

      A、正數(shù)B、負數(shù)

      C、整數(shù)D、不等于零的有理數(shù)

      12、下列說法正確的是()

      A、幾個有理數(shù)相乘,當因數(shù)有奇數(shù)個時,積為負;

      B、幾個有理數(shù)相乘,當正因數(shù)有奇數(shù)個時,積為負;

      C、幾個有理數(shù)相乘,當負因數(shù)有奇數(shù)個時,積為負;

      D、幾個有理數(shù)相乘,當積為負數(shù)時,負因數(shù)有奇數(shù)個;

      填空題

      1、在有理數(shù)-7,,-(-1.43),,0,,-1.7321中,是整數(shù)的有_____________是負分數(shù)的有_______________。

      2、一般地,設a是一個正數(shù),則數(shù)軸上表示數(shù)a的點在原點的____邊,與原點的距離是____個單位長度;表示數(shù)-a的點在原點的____邊,與原點的距離是____個單位長度。

      3、如果一個數(shù)是6位整數(shù),用科學記數(shù)法表示它時,10的指數(shù)是_____;用科學記數(shù)法表示一個n位整數(shù),其中10的指數(shù)是___________.

      4、實數(shù)a、b、c在數(shù)軸上的位置如圖:化簡|a-b|+|b-c|-|c-a|.

      5、絕對值大于1而小于4的整數(shù)有_____________________________________,其和為___________.

      6、若a、b互為相反數(shù),c、d互為倒數(shù),則(a+b)3-3(cd)4=________.

      7、1-2+3-4+5-6+……+20xx-2002的值是____________.

      8、若(a-1)2+|b+2|=0,那么a+b=_____________________.

      9、平方等于它本身的有理數(shù)是___________,立方等于它本身的有理數(shù)是_____________.

      10、用四舍五入法把3.1415926精確到千分位是,用科學記數(shù)法表示302400,應記為,近似數(shù)3.0×精確到位。

      11、正數(shù)–a的絕對值為__________;負數(shù)–b的絕對值為________

      12、甲乙兩數(shù)的和為-23.4,乙數(shù)為-8.1,甲比乙大

      13、在數(shù)軸上表示兩個數(shù),的數(shù)總比的大。(用“左邊”“右邊”填空)

      14、數(shù)軸上原點右邊4.8厘米處的點表示的有理數(shù)是32,那么,數(shù)軸左邊18厘米處的點表示的有理數(shù)是____________。

      三、強化訓練

      1、計算:1+2+3+…+20xx+2003=__________.

      2、已知:若(a,b均為整數(shù))則a+b=

      3、觀察下列等式,你會發(fā)現(xiàn)什么規(guī)律:,,,。。。請將你發(fā)現(xiàn)的規(guī)律用只含一個字母n(n為正整數(shù))的等式表示出來

      4、已知,則___________

      5、已知是整數(shù),是一個偶數(shù),則a是(奇,偶)

      6、已知1+2+3+…+31+32+33==17×33,求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值。

      7、在數(shù)1,2,3,…,50前添“+”或“-”,并求它們的和,所得結果的最小非負數(shù)是多少?請列出算式解答。

      8、如果有理數(shù)a,b滿足∣ab-2∣+(1-b)2=0,試求+…+的值。

      9、如果規(guī)定符號“*”的意義是a*b=ab/(a+b),求2*(-3)*4的值。

      10、已知|x+1|=4,(y+2)2=4,求x+y的值。

      11、投資股票是一種很重要的投資方式,但股市的風云變化又牽動了股民的心。

      例:某股民在上星期五買進某種股票500股,每股60元,下表是本周每日該股票的漲跌情況(單位:元):

      星期一二三四五

      每股漲跌+4+4.5-1-2.5-6

      第1章(1)星期三收盤時,每股是多少元?

      第2章(2)本周內最高價是每股多少元?最低價是多少元?

      第3章(3)已知買進股票是付了1.5‰的手續(xù)費,賣出時需付成交額1.5‰的手續(xù)費和1‰的交易費,如果在星期五收盤前將全部股票一次性地賣出,他的收益情況如何?

      第4章(4)以買進的股價為0點,用折線統(tǒng)計圖表示本周該股的股價情況。

      四、競賽訓練:

      1、最小的非負有理數(shù)與最大的非正有理數(shù)的和是

      2、乘積=

      3、比較大小:A=,B=,則A B

      4、滿足不等式104≤A≤105的整數(shù)A的個數(shù)是x×104+1,則x的值是( )

      A、9 B、8 C、7 D、6

      5、最小的一位數(shù)的質數(shù)與最小的兩位數(shù)的質數(shù)的積是( )

      A、11 B、22 C、26 D、33

      6、比較

      7、計算:

      8、計算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).xkb1.com

      9、計算:

      10、計算

      11、計算1+3+5+7+…+1997+1999的值

      12、計算1+5+52+53+…+599+5100的值.

      13、有理數(shù)均不為0,且設試求代數(shù)式20xx之值。

      14、已知a、b、c為實數(shù),且,求的值。

      15、已知:。

      16、解方程組。

      17、若a、b、c為整數(shù),且,求的值。

      1.2.1有理數(shù)

      七年級上(1.1正數(shù)和負數(shù),1.2有理數(shù))

      1.2有理數(shù)

    初一數(shù)學上冊教案14

      教學目標

      教學知識點:能運用勾股定理及直角三角形的判別條件(即勾股定理的逆定理)解決簡單的實際問題.

      能力訓練要求:1.學會觀察圖形,勇于探索圖形間的關系,培養(yǎng)學生的空間觀念.

      2.在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學建模的思想.

      情感與價值觀要求:1.通過有趣的問題提高學習數(shù)學的興趣.

      2.在解決實際問題的過程中,體驗數(shù)學學習的實用性,體現(xiàn)人人都學有用的數(shù)學.

      教學重點難點:

      重點:探索、發(fā)現(xiàn)給定事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題.

      難點:利用數(shù)學中的建模思想構造直角三角形,利用勾股定理及逆定理,解決實際問題.

      教學過程

      1、創(chuàng)設問題情境,引入新課:

      前幾節(jié)課我們學習了勾股定理,你還記得它有什么作用嗎?

      例如:欲登12米高的建筑物,為安全需要,需使梯子底端離建筑物5米,至少需多長的梯子?

      根據(jù)題意,(如圖)AC是建筑物,則AC=12米,BC=5米,AB是梯子的長度.所以在Rt△ABC中,AB2=AC2+BC2=122+52=132;AB=13米.

      所以至少需13米長的梯子.

      2、講授新課:①、螞蟻怎么走最近

      出示問題:有一個圓柱,它的高等于12厘米,底面半徑等于3厘米.在圓行柱的底面A點有一只螞蟻,它想吃到上底面上與A點相對的B點處的食物,需要爬行的的最短路程是多少?(π的值取3).

      (1)同學們可自己做一個圓柱,嘗試從A點到B點沿圓柱的側面畫出幾條路線,你覺得哪條路線最短呢?(小組討論)

      (2)如圖,將圓柱側面剪開展開成一個長方形,從A點到B點的最短路線是什么?你畫對了嗎?

      (3)螞蟻從A點出發(fā),想吃到B點上的食物,它沿圓柱側面爬行的最短路程是多少?(學生分組討論,公布結果)

      我們知道,圓柱的側面展開圖是一長方形.好了,現(xiàn)在咱們就用剪刀沿母線AA′將圓柱的側面展開(如下圖).

      我們不難發(fā)現(xiàn),剛才幾位同學的走法:

      (1)A→A′→B;(2)A→B′→B;

      (3)A→D→B;(4)A—→B.

      哪條路線是最短呢?你畫對了嗎?

      第(4)條路線最短.因為“兩點之間的連線中線段最短”.

      ②、做一做:教材14頁。李叔叔隨身只帶卷尺檢測AD,BC是否與底邊AB垂直,也就是要檢測∠DAB=90°,∠CBA=90°.連結BD或AC,也就是要檢測△DAB和△CBA是否為直角三角形.很顯然,這是一個需用勾股定理的逆定理來解決的實際問題.

      ③、隨堂練習

      出示投影片

      1.甲、乙兩位探險者,到沙漠進行探險.某日早晨8∶00甲先出發(fā),他以6千米/時的速度向東行走.1時后乙出發(fā),他以5千米/時的速度向北行進.上午10∶00,甲、乙兩人相距多遠?

      2.如圖,有一個高1.5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分是0.5米,問這根鐵棒應有多長?

      1.分析:首先我們需要根據(jù)題意將實際問題轉化成數(shù)學模型.

      解:(如圖)根據(jù)題意,可知A是甲、乙的出發(fā)點,10∶00時甲到達B點,則AB=2×6=12(千米);乙到達C點,則AC=1×5=5(千米).

      在Rt△ABC中,BC2=AC2+AB2=52+122=169=132,所以BC=13千米.即甲、乙兩人相距13千米.

      2.分析:從題意可知,沒有告訴鐵棒是如何插入油桶中,因而鐵棒的長是一個取值范圍而不是固定的長度,所以鐵棒最長時,是插入至底部的A點處,鐵棒最短時是垂直于底面時.

      解:設伸入油桶中的長度為x米,則應求最長時和最短時的'值.

      (1)x2=1.52+22,x2=6.25,x=2.5

      所以最長是2.5+0.5=3(米).

      (2)x=1.5,最短是1.5+0.5=2(米).

      答:這根鐵棒的長應在2~3米之間(包含2米、3米).

      3.試一試(課本P15)

      在我國古代數(shù)學著作《九章算術》中記載了一道有趣的問題,這個問題的意思是:有一個水池,水面是一個邊長為10尺的正方形.在水池正中央有一根新生的蘆葦,它高出水面1尺.如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達岸邊的水面.請問這個水池的深度和這根蘆葦?shù)拈L度各為多少?

      我們可以將這個實際問題轉化成數(shù)學模型.

      解:如圖,設水深為x尺,則蘆葦長為(x+1)尺,由勾股定理可求得

      (x+1)2=x2+52,x2+2x+1=x2+25

      解得x=12

      則水池的深度為12尺,蘆葦長13尺.

      ④、課時小結

      這節(jié)課我們利用勾股定理和它的逆定理解決了生活中的幾個實際問題.我們從中可以發(fā)現(xiàn)用數(shù)學知識解決這些實際問題,更為重要的是將它們轉化成數(shù)學模型.

      ⑤、課后作業(yè)

      課本P25、習題1.52

    初一數(shù)學上冊教案15

      〖教學目的〗

      〖知識與技能目標:〗

      理解有理數(shù)減法的意義。

      〖過程與方法:〗

      會進行有理數(shù)減法運算

      〖情感態(tài)度與價值觀:〗

      有意識培養(yǎng)學生學習數(shù)學的信心和克服困難的勇氣,從中體味成功的快樂。

      〖教學重點、難點:〗

      重點:異號兩數(shù)相減。難點:異號兩數(shù)相減。

      〖教學方法:〗

      引導發(fā)現(xiàn)法

      〖教具準備:〗

      尺、小黑板。

      〖教學過程:〗

      Ⅰ.復習提問:

      1、敘述有理數(shù)加法法則。

      2、兩個有理數(shù)的和一定大于每一個加數(shù)嗎?

      3.10比3大多少?10比-3大多少?-10比3大多少?如何計算?

      4.3-10有意義嗎?它應當?shù)扔诙嗌伲?/p>

      注:問2是要向學生強調,兩數(shù)的和不一定大于每一個加數(shù),一個數(shù)加一個非零的有理數(shù),其和可能增加也可能減少。問3是向學生說明求一個數(shù)比另一個數(shù)大多少在有理數(shù)范圍內同樣要用減法運算。問2和問3都是為了引入新課而設計的。

      Ⅱ.新課講解:

      1、由問2、問3講解有理數(shù)減法的意義。

      在正有理數(shù)范圍內3-10是沒有意義的,因為3比10小,問3比10大多少,問題的`本身就有問題,但引入負數(shù)就不同了。如果你有3元錢向售貨員買了10元的物品,如果售貨員讓你先把物品拿走,那么你將欠售貨員7元。這件事實如用算式表達,即3-10=-7。

      由實際運算的例子歸納有理微減法法則。

      考察:3-10=3+(-10)=-7,3-(-10)=3+10=13,(-10)-(-3)=-10+3=-7,(-10)-7=-10+(-7)=-17。

      等式左邊的運算結果,用減法意義求出。3比10大-7,3比-10大13,-10比-3大-7,-10比7大-17,或畫數(shù)軸,讓學生觀察得出。考察以上計算后。提問:減法是否都可轉化為加法計算?啟發(fā)學生自己得出有理數(shù)減法法則:減去一個數(shù)等于加上這個數(shù)的相反數(shù)。

      3、講解例題:

      (l)補充例題:問15℃比5℃高多少度?15℃比-5℃呢?-5℃比15℃呢?

      解:∵15-5=10,∴15℃比5℃高10℃;

      ∵15-(-5)-15+5=20,∴15℃比-5℃高20℃;

      ∵-5-15=-5+(-15)=-20,∴-5℃比15℃高-20℃。即-5℃

      比15℃低20℃。

      (2)教科書例1、例2。

      Ⅲ.做一做

      課堂練習:教科書第82頁練習第1~3題。

      Ⅳ.課時小結

      有理數(shù)減法的意義。

      Ⅴ.課后作業(yè)

      1、習題2.6A組第1~9題,B組選做。

      《2.5有理數(shù)的減法》同步練習

      2、(題型一)李明的練習冊上有這樣一道題:計算|(-3)+_|,其中“_”是被墨水污染而看不到的一個數(shù),他翻看了后邊的答案得知該題的計算結果為6,那么“_”表示的數(shù)應該是。

      3、(考點一)計算:(1)-2-(+10);

      (2)0-(-3.6);

      (3)(-30)-(-6)-(+6)-(-15);

      《2.5有理數(shù)的減法》測試

      16、下表記錄了七年級(1)班一個組學生的體重與標準體重的差(正號表示比標準體重重,負號表示比標準體重輕),標準體重是50kg.

      姓名小明小丁小麗小文小天小樂

      體重與標準體重的差(kg)-5+3-7+4+60

      (1)誰最重?誰最輕?

      (2)最重的比最輕的重多少千克?

    【初一數(shù)學上冊教案】相關文章:

    初一的數(shù)學上冊教案11-09

    初一上冊的數(shù)學教案11-13

    初一數(shù)學上冊教案12-18

    初一數(shù)學上冊教案12-13

    初一數(shù)學上冊的教案12-23

    初一的數(shù)學上冊教案15篇11-10

    初一的數(shù)學上冊教案(15篇)11-11

    初一的數(shù)學上冊教案精選15篇11-11

    初一上冊數(shù)學教案01-04

    初一數(shù)學上冊教案(15篇)12-13

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      亚洲国产综合精品一区 | 亚洲欧洲中文日韩A乱码 | 亚洲伦中文字幕另类不卡 | 婷婷色五月综合激情六月导航 | 日本午夜福利在线观看 | 日本亚洲国产一区二区三区 |