1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>高中數學教案

    高中數學教案

    時間:2023-02-01 14:45:20 數學教案 我要投稿

    【熱門】高中數學教案

      作為一名老師,就有可能用到教案,教案是教學活動的總的組織綱領和行動方案。那么什么樣的教案才是好的呢?下面是小編為大家整理的高中數學教案,希望能夠幫助到大家。

    【熱門】高中數學教案

    高中數學教案1

      教學目標:

      1。通過生活中優化問題的學習,體會導數在解決實際問題中的作用,促進

      學生全面認識數學的科學價值、應用價值和文化價值。

      2。通過實際問題的研究,促進學生分析問題、解決問題以及數學建模能力的提高。

      教學重點:

      如何建立實際問題的目標函數是教學的重點與難點。

      教學過程:

      一、問題情境

      問題1把長為60cm的鐵絲圍成矩形,長寬各為多少時面積最大?

      問題2把長為100cm的鐵絲分成兩段,各圍成正方形,怎樣分法,能使兩個正方形面積之各最小?

      問題3做一個容積為256L的方底無蓋水箱,它的高為多少時材料最省?

      二、新課引入

      導數在實際生活中有著廣泛的應用,利用導數求最值的方法,可以求出實際生活中的某些最值問題。

      1。幾何方面的應用(面積和體積等的最值)。

      2。物理方面的應用(功和功率等最值)。

      3。經濟學方面的應用(利潤方面最值)。

      三、知識建構

      例1在邊長為60cm的正方形鐵片的四角切去相等的`正方形,再把它的邊沿虛線折起(如圖),做成一個無蓋的方底箱子,箱底的邊長是多少時,箱底的容積最大?最大容積是多少?

      說明1解應用題一般有四個要點步驟:設——列——解——答。

      說明2用導數法求函數的最值,與求函數極值方法類似,加一步與幾個極

      值及端點值比較即可。

      例2圓柱形金屬飲料罐的容積一定時,它的高與底與半徑應怎樣選取,才

      能使所用的材料最省?

      變式當圓柱形金屬飲料罐的表面積為定值S時,它的高與底面半徑應怎樣選取,才能使所用材料最省?

      說明1這種在定義域內僅有一個極值的函數稱單峰函數。

      說明2用導數法求單峰函數最值,可以對一般的求法加以簡化,其步驟為:

      S1列:列出函數關系式。

      S2求:求函數的導數。

      S3述:說明函數在定義域內僅有一個極大(小)值,從而斷定為函數的最大(小)值,必要時作答。

      例3在如圖所示的電路中,已知電源的內阻為,電動勢為。外電阻為

      多大時,才能使電功率最大?最大電功率是多少?

      說明求最值要注意驗證等號成立的條件,也就是說取得這樣的值時對應的自變量必須有解。

      例4強度分別為a,b的兩個光源A,B,它們間的距離為d,試問:在連接這兩個光源的線段AB上,何處照度最小?試就a=8,b=1,d=3時回答上述問題(照度與光的強度成正比,與光源的距離的平方成反比)。

      例5在經濟學中,生產單位產品的成本稱為成本函數,記為;出售單位產品的收益稱為收益函數,記為;稱為利潤函數,記為。

      (1)設,生產多少單位產品時,邊際成本最低?

      (2)設,產品的單價,怎樣的定價可使利潤最大?

      四、課堂練習

      1。將正數a分成兩部分,使其立方和為最小,這兩部分應分成____和___。

      2。在半徑為R的圓內,作內接等腰三角形,當底邊上高為 時,它的面積最大。

      3。有一邊長分別為8與5的長方形,在各角剪去相同的小正方形,把四邊折起做成一個無蓋小盒,要使紙盒的容積最大,問剪去的小正方形邊長應為多少?

      4。一條水渠,斷面為等腰梯形,如圖所示,在確定斷面尺寸時,希望在斷面ABCD的面積為定值S時,使得濕周l=AB+BC+CD最小,這樣可使水流阻力小,滲透少,求此時的高h和下底邊長b。

      五、回顧反思

      (1)解有關函數最大值、最小值的實際問題,需要分析問題中各個變量之間的關系,找出適當的函數關系式,并確定函數的定義區間;所得結果要符合問題的實際意義。

      (2)根據問題的實際意義來判斷函數最值時,如果函數在此區間上只有一個極值點,那么這個極值就是所求最值,不必再與端點值比較。

      (3)相當多有關最值的實際問題用導數方法解決較簡單。

      六、課外作業

      課本第38頁第1,2,3,4題。

    高中數學教案2

      整體設計

      教學分析

      我們在初中的學習過程中,已了解了整數指數冪的概念和運算性質。從本節開始我們將在回顧平方根和立方根的基礎上,類比出正數的n次方根的定義,從而把指數推廣到分數指數。進而推廣到有理數指數,再推廣到實數指數,并將冪的運算性質由整數指數冪推廣到實數指數冪。

      教材為了讓學生在學習之外就感受到指數函數的實際背景,先給出兩個具體例子:GDP的增長問題和碳14的衰減問題。前一個問題,既讓學生回顧了初中學過的整數指數冪,也讓學生感受到其中的函數模型,并且還有思想教育價值。后一個問題讓學生體會其中的函數模型的同時,激發學生探究分數指數冪、無理數指數冪的興趣與欲望,為新知識的學習作了鋪墊。

      本節安排的內容蘊涵了許多重要的數學思想方法,如推廣的思想(指數冪運算律的推廣)、類比的思想、逼近的思想(有理數指數冪逼近無理數指數冪)、數形結合的思想(用指數函數的圖象研究指數函數的性質)等,同時,充分關注與實際問題的結合,體現數學的應用價值。

      根據本節內容的特點,教學中要注意發揮信息技術的力量,盡量利用計算器和計算機創設教學情境,為學生的數學探究與數學思維提供支持。

      三維目標

      1、通過與初中所學的知識進行類比,理解分數指數冪的概念,進而學習指數冪的性質。掌握分數指數冪和根式之間的互化,掌握分數指數冪的運算性質。培養學生觀察分析、抽象類比的能力。

      2、掌握根式與分數指數冪的互化,滲透“轉化”的數學思想。通過運算訓練,養成學生嚴謹治學,一絲不茍的學習習慣,讓學生了解數學來自生活,數學又服務于生活的哲理。

      3、能熟練地運用有理指數冪運算性質進行化簡、求值,培養學生嚴謹的思維和科學正確的計算能力。

      4、通過訓練及點評,讓學生更能熟練掌握指數冪的運算性質。展示函數圖象,讓學生通過觀察,進而研究指數函數的性質,讓學生體驗數學的簡潔美和統一美。

      重點難點

      教學重點

      (1)分數指數冪和根式概念的理解。

      (2)掌握并運用分數指數冪的運算性質。

      (3)運用有理指數冪的性質進行化簡、求值。

      教學難點

      (1)分數指數冪及根式概念的理解。

      (2)有理指數冪性質的靈活應用。

      課時安排

      3課時

      教學過程

      第1課時

      作者:路致芳

      導入新課

      思路1.同學們在預習的過程中能否知道考古學家如何判斷生物的發展與進化,又怎樣判斷它們所處的年代?(考古學家是通過對生物化石的研究來判斷生物的發展與進化的,第二個問題我們不太清楚)考古學家是按照這樣一條規律推測生物所處的年代的。教師板書本節課題:指數函數——指數與指數冪的運算。

      思路2.同學們,我們在初中學習了平方根、立方根,那么有沒有四次方根、五次方根…n次方根呢?答案是肯定的,這就是我們本堂課研究的課題:指數函數——指數與指數冪的運算。

      推進新課

      新知探究

      提出問題

      (1)什么是平方根?什么是立方根?一個數的平方根有幾個,立方根呢?

      (2)如x4=a,x5=a,x6=a,根據上面的結論我們又能得到什么呢?

      (3)根據上面的結論我們能得到一般性的結論嗎?

      (4)可否用一個式子表達呢?

      活動:教師提示,引導學生回憶初中的時候已經學過的平方根、立方根是如何定義的,對照類比平方根、立方根的定義解釋上面的式子,對問題(2)的結論進行引申、推廣,相互交流討論后回答,教師及時啟發學生,具體問題一般化,歸納類比出n次方根的概念,評價學生的思維。

      討論結果:(1)若x2=a,則x叫做a的平方根,正實數的平方根有兩個,它們互為相反數,如:4的平方根為±2,負數沒有平方根,同理,若x3=a,則x叫做a的立方根,一個數的立方根只有一個,如:-8的立方根為-2.

      (2)類比平方根、立方根的定義,一個數的四次方等于a,則這個數叫a的四次方根。一個數的五次方等于a,則這個數叫a的五次方根。一個數的六次方等于a,則這個數叫a的六次方根。

      (3)類比(2)得到一個數的n次方等于a,則這個數叫a的n次方根。

      (4)用一個式子表達是,若xn=a,則x叫a的n次方根。

      教師板書n次方根的意義:

      一般地,如果xn=a,那么x叫做a的n次方根(n th root),其中n>1且n∈正整數集。

      可以看出數的平方根、立方根的概念是n次方根的概念的特例。

      提出問題

      (1)你能根據n次方根的意義求出下列數的n次方根嗎?(多媒體顯示以下題目)。

      ①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根。

      (2)平方根,立方根,4次方根,5次方根,7次方根,分別對應的方根的指數是什么數,有什么特點?4,±8,16,-32,32,0,a6分別對應什么性質的數,有什么特點?

      (3)問題(2)中,既然方根有奇次的也有偶次的,數a有正有負,還有零,結論有一個的,也有兩個的,你能否總結一般規律呢?

      (4)任何一個數a的偶次方根是否存在呢?

      活動:教師提示學生切實緊扣n次方根的概念,求一個數a的n次方根,就是求出的那個數的n次方等于a,及時點撥學生,從數的分類考慮,可以把具體的數寫出來,觀察數的特點,對問題(2)中的結論,類比推廣引申,考慮要全面,對回答正確的學生及時表揚,對回答不準確的學生提示引導考慮問題的思路。

      討論結果:(1)因為±2的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分別是±2,±2,±2,2,-2,0,a2.

      (2)方根的指數是2,3,4,5,7…特點是有奇數和偶數。總的來看,這些數包括正數,負數和零。

      (3)一個數a的奇次方根只有一個,一個正數a的偶次方根有兩個,是互為相反數。0的任何次方根都是0.

      (4)任何一個數a的偶次方根不一定存在,如負數的偶次方根就不存在,因為沒有一個數的偶次方是一個負數。

      類比前面的平方根、立方根,結合剛才的討論,歸納出一般情形,得到n次方根的性質:

      ①當n為偶數時,正數a的n次方根有兩個,是互為相反數,正的n次方根用na表示,如果是負數,負的n次方根用-na表示,正的n次方根與負的n次方根合并寫成±na(a>0)。

      ②n為奇數時,正數的n次方根是一個正數,負數的n次方根是一個負數,這時a的n次方根用符號na表示。

      ③負數沒有偶次方根;0的任何次方根都是零。

      上面的文字語言可用下面的式子表示:

      a為正數:n為奇數,a的n次方根有一個為na,n為偶數,a的n次方根有兩個為±na.

      a為負數:n為奇數,a的n次方根只有一個為na,n為偶數,a的n次方根不存在。

      零的n次方根為零,記為n0=0.

      可以看出數的平方根、立方根的性質是n次方根的性質的特例。

      思考

      根據n次方根的性質能否舉例說明上述幾種情況?

      活動:教師提示學生對方根的性質要分類掌握,即正數的奇偶次方根,負數的奇次方根,零的任何次方根,這樣才不重不漏,同時巡視學生,隨機給出一個數,我們寫出它的平方根,立方根,四次方根等,看是否有意義,注意觀察方根的形式,及時糾正學生在舉例過程中的問題。

      解:答案不,比如,64的立方根是4,16的`四次方根為±2,-27的5次方根為5-27,而-27的4次方根不存在等。其中5-27也表示方根,它類似于na的形式,現在我們給式子na一個名稱——根式。

      根式的概念:

      式子na叫做根式,其中a叫做被開方數,n叫做根指數。

      如3-27中,3叫根指數,-27叫被開方數。

      思考

      nan表示an的n次方根,式子nan=a一定成立嗎?如果不一定成立,那么nan等于什么?

      活動:教師讓學生注意討論n為奇偶數和a的符號,充分讓學生多舉實例,分組討論。教師點撥,注意歸納整理。

      〔如3(-3)3=3-27=-3,4(-8)4=|-8|=8〕。

      解答:根據n次方根的意義,可得:(na)n=a.

      通過探究得到:n為奇數,nan=a.

      n為偶數,nan=|a|=a,-a,a≥0,a<0.

      因此我們得到n次方根的運算性質:

      ①(na)n=a.先開方,再乘方(同次),結果為被開方數。

      ②n為奇數,nan=a.先奇次乘方,再開方(同次),結果為被開方數。

      n為偶數,nan=|a|=a,-a,a≥0,a<0.先偶次乘方,再開方(同次),結果為被開方數的絕對值。

      應用示例

      思路1

      例求下列各式的值:

      (1)3(-8)3;(2)(-10)2;(3)4(3-π)4;(4)(a-b)2(a>b)。

      活動:求某些式子的值,首先考慮的應是什么,明確題目的要求是什么,都用到哪些知識,關鍵是啥,搞清這些之后,再針對每一個題目仔細分析。觀察學生的解題情況,讓學生展示結果,抓住學生在解題過程中出現的問題并對癥下藥。求下列各式的值實際上是求數的方根,可按方根的運算性質來解,首先要搞清楚運算順序,目的是把被開方數的符號定準,然后看根指數是奇數還是偶數,如果是奇數,無需考慮符號,如果是偶數,開方的結果必須是非負數。

      解:(1)3(-8)3=-8;

      (2)(-10)2=10;

      (3)4(3-π)4=π-3;

      (4)(a-b)2=a-b(a>b)。

      點評:不注意n的奇偶性對式子nan的值的影響,是導致問題出現的一個重要原因,要在理解的基礎上,記準,記熟,會用,活用。

      變式訓練

      求出下列各式的值:

      (1)7(-2)7;

      (2)3(3a-3)3(a≤1);

      (3)4(3a-3)4.

      解:(1)7(-2)7=-2,

      (2)3(3a-3)3(a≤1)=3a-3,

      (3)4(3a-3)4=

      點評:本題易錯的是第(3)題,往往忽視a與1大小的討論,造成錯解。

      思路2

      例1下列各式中正確的是()

      A.4a4=a

      B.6(-2)2=3-2

      C.a0=1

      D.10(2-1)5=2-1

      活動:教師提示,這是一道選擇題,本題考查n次方根的運算性質,應首先考慮根據方根的意義和運算性質來解,既要考慮被開方數,又要考慮根指數,嚴格按求方根的步驟,體會方根運算的實質,學生先思考哪些地方容易出錯,再回答。

      解析:(1)4a4=a,考查n次方根的運算性質,當n為偶數時,應先寫nan=|a|,故A項錯。

      (2)6(-2)2=3-2,本質上與上題相同,是一個正數的偶次方根,根據運算順序也應如此,結論為6(-2)2=32,故B項錯。

      (3)a0=1是有條件的,即a≠0,故C項也錯。

      (4)D項是一個正數的偶次方根,根據運算順序也應如此,故D項正確。所以答案選D.

      答案:D

      點評:本題由于考查n次方根的運算性質與運算順序,有時極易選錯,選四個答案的情況都會有,因此解題時千萬要細心。

      例2 3+22+3-22=__________.

      活動:讓同學們積極思考,交流討論,本題乍一看內容與本節無關,但仔細一想,我們學習的內容是方根,這里是帶有雙重根號的式子,去掉一層根號,根據方根的運算求出結果是解題的關鍵,因此將根號下面的式子化成一個完全平方式就更為關鍵了,從何處入手?需利用和的平方公式與差的平方公式化為完全平方式。正確分析題意是關鍵,教師提示,引導學生解題的思路。

      解析:因為3+22=1+22+(2)2=(1+2)2=2+1,

      3-22=(2)2-22+1=(2-1)2=2-1,

      所以3+22+3-22=22.

      答案:22

      點評:不難看出3-22與3+22形式上有些特點,即是對稱根式,是A±2B形式的式子,我們總能找到辦法把其化成一個完全平方式。

      思考

      上面的例2還有別的解法嗎?

      活動:教師引導,去根號常常利用完全平方公式,有時平方差公式也可,同學們觀察兩個式子的特點,具有對稱性,再考慮并交流討論,一個是“+”,一個是“-”,去掉一層根號后,相加正好抵消。同時借助平方差,又可去掉根號,因此把兩個式子的和看成一個整體,兩邊平方即可,探討得另一種解法。

      另解:利用整體思想,x=3+22+3-22,

      兩邊平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.

      點評:對雙重二次根式,特別是A±2B形式的式子,我們總能找到辦法將根號下面的式子化成一個完全平方式,問題迎刃而解,另外對A+2B±A-2B的式子,我們可以把它們看成一個整體利用完全平方公式和平方差公式去解。

      變式訓練

      若a2-2a+1=a-1,求a的取值范圍。

      解:因為a2-2a+1=a-1,而a2-2a+1=(a-1)2=|a-1|=a-1,

      即a-1≥0,

      所以a≥1.

      點評:利用方根的運算性質轉化為去絕對值符號,是解題的關鍵。

      知能訓練

      (教師用多媒體顯示在屏幕上)

      1、以下說法正確的是()

      A.正數的n次方根是一個正數

      B.負數的n次方根是一個負數

      C.0的n次方根是零

      D.a的n次方根用na表示(以上n>1且n∈正整數集)

      答案:C

      2、化簡下列各式:

      (1)664;(2)4(-3)2;(3)4x8;(4)6x6y3;(5)(x-y)2.

      答案:(1)2;(2)3;(3)x2;(4)|x|y;(5)|x-y|。

      3、計算7+40+7-40=__________.

      解析:7+40+7-40

      =(5)2+25?2+(2)2+(5)2-25?2+(2)2

      =(5+2)2+(5-2)2

      =5+2+5-2

      =25.

      答案:25

      拓展提升

      問題:nan=a與(na)n=a(n>1,n∈N)哪一個是恒等式,為什么?請舉例說明。

      活動:組織學生結合前面的例題及其解答,進行分析討論,解決這一問題要緊扣n次方根的定義。

      通過歸納,得出問題結果,對a是正數和零,n為偶數時,n為奇數時討論一下。再對a是負數,n為偶數時,n為奇數時討論一下,就可得到相應的結論。

      解:(1)(na)n=a(n>1,n∈N)。

      如果xn=a(n>1,且n∈N)有意義,則無論n是奇數或偶數,x=na一定是它的一個n次方根,所以(na)n=a恒成立。

      例如:(43)4=3,(3-5)3=-5.

      (2)nan=a,|a|,當n為奇數,當n為偶數。

      當n為奇數時,a∈R,nan=a恒成立。

      例如:525=2,5(-2)5=-2.

      當n為偶數時,a∈R,an≥0,nan表示正的n次方根或0,所以如果a≥0,那么nan=a.例如434=3,40=0;如果a<0,那么nan=|a|=-a,如(-3)2=32=3,

      即(na)n=a(n>1,n∈N)是恒等式,nan=a(n>1,n∈N)是有條件的。

      點評:實質上是對n次方根的概念、性質以及運算性質的深刻理解。

      課堂小結

      學生仔細交流討論后,在筆記上寫出本節課的學習收獲,教師用多媒體顯示在屏幕上。

      1、如果xn=a,那么x叫a的n次方根,其中n>1且n∈正整數集。用式子na表示,式子na叫根式,其中a叫被開方數,n叫根指數。

      (1)當n為偶數時,a的n次方根有兩個,是互為相反數,正的n次方根用na表示,如果是負數,負的n次方根用-na表示,正的n次方根與負的n次方根合并寫成±na(a>0)。

      (2)n為奇數時,正數的n次方根是一個正數,負數的n次方根是一個負數,這時a的n次方根用符號na表示。

      (3)負數沒有偶次方根。0的任何次方根都是零。

      2、掌握兩個公式:n為奇數時,(na)n=a,n為偶數時,nan=|a|=a,-a,a≥0,a<0.

      作業

      課本習題2.1A組1.

      補充作業:

      1、化簡下列各式:

      (1)681;(2)15-32;(3)6a2b4.

      解:(1)681=634=332=39;

      (2)15-32=-1525=-32;

      (3)6a2b4=6(|a|?b2)2=3|a|?b2.

      2、若5

      解析:因為5

      答案:2a-13

      3.5+26+5-26=__________.

      解析:對雙重二次根式,我們覺得難以下筆,我們考慮只有在開方的前提下才可能解出,由此提示我們想辦法去掉一層根式,

      不難看出5+26=(3+2)2=3+2.

      同理5-26=(3-2)2=3-2.

      所以5+26+5-26=23.

      答案:23

      設計感想

      學生已經學習了數的平方根和立方根,根式的內容是這些內容的推廣,本節課由于方根和根式的概念和性質難以理解,在引入根式的概念時,要結合已學內容,列舉具體實例,根式na的講解要分n是奇數和偶數兩種情況來進行,每種情況又分a>0,a<0,a=0三種情況,并結合具體例子講解,因此設計了大量的類比和練習題目,要靈活處理這些題目,幫助學生加以理解,所以需要用多媒體信息技術服務教學。

      第2課時

      作者:郝云靜

      導入新課

      思路1.碳14測年法。原來宇宙射線在大氣層中能夠產生放射性碳14,并與氧結合成二氧化碳后進入所有活組織,先為植物吸收,再為動物吸收,只要植物和動物生存著,它們就會不斷地吸收碳14在機體內保持一定的水平。而當有機體死亡后,即會停止吸收碳14,其組織內的碳14便以約5 730年的半衰期開始衰變并消失。對于任何含碳物質只要測定剩下的放射性碳14的含量,便可推斷其年代(半衰期:經過一定的時間,變為原來的一半)。引出本節課題:指數與指數冪的運算之分數指數冪。

      思路2.同學們,我們在初中學習了整數指數冪及其運算性質,那么整數指數冪是否可以推廣呢?答案是肯定的。這就是本節的主講內容,教師板書本節課題——指數與指數冪的運算之分數指數冪。

      推進新課

      新知探究

      提出問題

      (1)整數指數冪的運算性質是什么?

      (2)觀察以下式子,并總結出規律:a>0,

      ①;

      ②a8=(a4)2=a4=,;

      ③4a12=4(a3)4=a3=;

      ④2a10=2(a5)2=a5= 。

      (3)利用(2)的規律,你能表示下列式子嗎?

      ,,,(x>0,m,n∈正整數集,且n>1)。

      (4)你能用方根的意義來解釋(3)的式子嗎?

      (5)你能推廣到一般的情形嗎?

      活動:學生回顧初中學習的整數指數冪及運算性質,仔細觀察,特別是每題的開始和最后兩步的指數之間的關系,教師引導學生體會方根的意義,用方根的意義加以解釋,指點啟發學生類比(2)的規律表示,借鑒(2)(3),我們把具體推廣到一般,對寫正確的同學及時表揚,其他學生鼓勵提示。

      討論結果:(1)整數指數冪的運算性質:an=a?a?a?…?a,a0=1(a≠0);00無意義;

      a-n=1an(a≠0);am?an=am+n;(am)n=amn;(an)m=amn;(ab)n=anbn.

      (2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根。實質上①5a10=,②a8=,③4a12=,④2a10=結果的a的指數是2,4,3,5分別寫成了105,82,124,105,形式上變了,本質沒變。

      根據4個式子的最后結果可以總結:當根式的被開方數的指數能被根指數整除時,根式可以寫成分數作為指數的形式(分數指數冪形式)。

      (3)利用(2)的規律,453=,375=,5a7=,nxm= 。

      (4)53的四次方根是,75的三次方根是,a7的五次方根是,xm的n次方根是。

      結果表明方根的結果和分數指數冪是相通的。

      (5)如果a>0,那么am的n次方根可表示為nam=,即=nam(a>0,m,n∈正整數集,n>1)。

      綜上所述,我們得到正數的正分數指數冪的意義,教師板書:

      規定:正數的正分數指數冪的意義是=nam(a>0,m,n∈正整數集,n>1)。

      提出問題

      (1)負整數指數冪的意義是怎樣規定的?

      (2)你能得出負分數指數冪的意義嗎?

      (3)你認為應怎樣規定零的分數指數冪的意義?

      (4)綜合上述,如何規定分數指數冪的意義?

      (5)分數指數冪的意義中,為什么規定a>0,去掉這個規定會產生什么樣的后果?

      (6)既然指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質是否也適用于有理數指數冪呢?

      活動:學生回想初中學習的情形,結合自己的學習體會回答,根據零的整數指數冪的意義和負整數指數冪的意義來類比,把正分數指數冪的意義與負分數指數冪的意義融合起來,與整數指數冪的運算性質類比可得有理數指數冪的運算性質,教師在黑板上板書,學生合作交流,以具體的實例說明a>0的必要性,教師及時作出評價。

      討論結果:(1)負整數指數冪的意義是:a-n=1an(a≠0),n∈N+。

      (2)既然負整數指數冪的意義是這樣規定的,類比正數的正分數指數冪的意義可得正數的負分數指數冪的意義。

      規定:正數的負分數指數冪的意義是= =1nam(a>0,m,n∈=N+,n>1)。

      (3)規定:零的分數指數冪的意義是:零的正分數次冪等于零,零的負分數指數冪沒有意義。

      (4)教師板書分數指數冪的意義。分數指數冪的意義就是:

      正數的正分數指數冪的意義是=nam(a>0,m,n∈正整數集,n>1),正數的負分數指數冪的意義是= =1nam(a>0,m,n∈正整數集,n>1),零的正分數次冪等于零,零的負分數指數冪沒有意義。

      (5)若沒有a>0這個條件會怎樣呢?

      如=3-1=-1,=6(-1)2=1具有同樣意義的兩個式子出現了截然不同的結果,這只說明分數指數冪在底數小于零時是無意義的。因此在把根式化成分數指數時,切記要使底數大于零,如無a>0的條件,比如式子3a2=,同時負數開奇次方是有意義的,負數開奇次方時,應把負號移到根式的外邊,然后再按規定化成分數指數冪,也就是說,負分數指數冪在有意義的情況下總表示正數,而不是負數,負數只是出現在指數上。

      (6)規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數。

      有理數指數冪的運算性質:對任意的有理數r,s,均有下面的運算性質:

      ①ar?as=ar+s(a>0,r,s∈Q),

      ②(ar)s=ars(a>0,r,s∈Q),

      ③(a?b)r=arbr(a>0,b>0,r∈Q)。

      我們利用分數指數冪的意義和有理數指數冪的運算性質可以解決一些問題,來看下面的例題。

      應用示例

      例1求值:(1);(2);(3)12-5;(4) 。

      活動:教師引導學生考慮解題的方法,利用冪的運算性質計算出數值或化成最簡根式,根據題目要求,把底數寫成冪的形式,8寫成23,25寫成52,12寫成2-1,1681寫成234,利用有理數冪的運算性質可以解答,完成后,把自己的答案用投影儀展示出來。

      解:(1) =22=4;

      (2)=5-1=15;

      (3)12-5=(2-1)-5=2-1×(-5)=32;

      (4)=23-3=278.

      點評:本例主要考查冪值運算,要按規定來解。在進行冪值運算時,要首先考慮轉化為指數運算,而不是首先轉化為熟悉的根式運算,如=382=364=4.

      例2用分數指數冪的形式表示下列各式。

      a3?a;a2?3a2;a3a(a>0)。

      活動:學生觀察、思考,根據解題的順序,把根式化為分數指數冪,再由冪的運算性質來運算,根式化為分數指數冪時,要由里往外依次進行,把握好運算性質和順序,學生討論交流自己的解題步驟,教師評價學生的解題情況,鼓勵學生注意總結。

      解:a3?a=a3? =;

      a2?3a2=a2? =;

      a3a= 。

      點評:利用分數指數冪的意義和有理數指數冪的運算性質進行根式運算時,其順序是先把根式化為分數指數冪,再由冪的運算性質來運算。對于計算的結果,不強求統一用什么形式來表示,沒有特別要求,就用分數指數冪的形式來表示,但結果不能既有分數指數又有根式,也不能既有分母又有負指數。

      例3計算下列各式(式中字母都是正數)。

      (1);

      (2)。

      活動:先由學生觀察以上兩個式子的特征,然后分析,四則運算的順序是先算乘方,再算乘除,最后算加減,有括號的先算括號內的,整數冪的運算性質及運算規律擴充到分數指數冪后,其運算順序仍符合我們以前的四則運算順序,再解答,把自己的答案用投影儀展示出來,相互交流,其中要注意到(1)小題是單項式的乘除運算,可以用單項式的乘除法運算順序進行,要注意符號,第(2)小題是乘方運算,可先按積的乘方計算,再按冪的乘方進行計算,熟悉后可以簡化步驟。

      解:(1)原式=[2×(-6)÷(-3)] =4ab0=4a;

      (2)=m2n-3=m2n3.

      點評:分數指數冪不表示相同因式的積,而是根式的另一種寫法。有了分數指數冪,就可把根式轉化成分數指數冪的形式,用分數指數冪的運算法則進行運算了。

      本例主要是指數冪的運算法則的綜合考查和應用。

      變式訓練

      求值:(1)33?33?63;

      (2)627m3125n64.

      解:(1)33?33?63= =32=9;

      (2)627m3125n64= =9m225n4=925m2n-4.

      例4計算下列各式:

      (1)(325-125)÷425;

      (2)a2a?3a2(a>0)。

      活動:先由學生觀察以上兩個式子的特征,然后分析,化為同底。利用分數指數冪計算,在第(1)小題中,只含有根式,且不是同次根式,比較難計算,但把根式先化為分數指數冪再計算,這樣就簡便多了,第(2)小題也是先把根式轉化為分數指數冪后再由運算法則計算,最后寫出解答。

      解:(1)原式=

      = =65-5;

      (2)a2a?3a2= =6a5.

      知能訓練

      課本本節練習1,2,3

      【補充練習】

      教師用實物投影儀把題目投射到屏幕上讓學生解答,教師巡視,啟發,對做得好的同學給予表揚鼓勵。

      1、(1)下列運算中,正確的是()

      A.a2?a3=a6 B.(-a2)3=(-a3)2

      C.(a-1)0=0 D.(-a2)3=-a6

      (2)下列各式①4(-4)2n,②4(-4)2n+1,③5a4,④4a5(各式的n∈N,a∈R)中,有意義的是()

      A.①② B.①③ C.①②③④ D.①③④

      (3)(34a6)2?(43a6)2等于()

      A.a B.a2 C.a3 D.a4

      (4)把根式-25(a-b)-2改寫成分數指數冪的形式為()

      A. B.

      C. D.

      (5)化簡的結果是()

      A.6a B.-a C.-9a D.9a

      2、計算:(1) --17-2+ -3-1+(2-1)0=__________.

      (2)設5x=4,5y=2,則52x-y=__________.

      3、已知x+y=12,xy=9且x

      答案:1.(1)D (2)B (3)B (4)A (5)C 2.(1)19 (2)8

      3、解:。

      因為x+y=12,xy=9,所以(x-y)2=(x+y)2-4xy=144-36=108=4×27.

      又因為x

      所以原式= =12-6-63=-33.

      拓展提升

      1、化簡:。

      活動:學生觀察式子特點,考慮x的指數之間的關系可以得到解題思路,應對原式進行因式分解,根據本題的特點,注意到:

      x-1= -13=;

      x+1= +13=;

      。

      構建解題思路教師適時啟發提示。

      解:

      =

      =

      =

      = 。

      點撥:解這類題目,要注意運用以下公式,

      =a-b,

      =a± +b,

      =a±b.

      2、已知,探究下列各式的值的求法。

      (1)a+a-1;(2)a2+a-2;(3) 。

      解:(1)將,兩邊平方,得a+a-1+2=9,即a+a-1=7;

      (2)將a+a-1=7兩邊平方,得a2+a-2+2=49,即a2+ a-2=47;

      (3)由于,

      所以有=a+a-1+1=8.

      點撥:對“條件求值”問題,一定要弄清已知與未知的聯系,然后采取“整體代換”或“求值后代換”兩種方法求值。

      課堂小結

      活動:教師,本節課同學們有哪些收獲?請把你的學習收獲記錄在你的筆記本上,同學們之間相互交流。同時教師用投影儀顯示本堂課的知識要點:

      (1)分數指數冪的意義就是:正數的正分數指數冪的意義是=nam(a>0,m,n∈正整數集,n>1),正數的負分數指數冪的意義是= =1nam(a>0,m,n∈正整數集,n>1),零的正分數次冪等于零,零的負分數指數冪沒有意義。

      (2)規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數。

      (3)有理數指數冪的運算性質:對任意的有理數r,s,均有下面的運算性質:

      ①ar?as=ar+s(a>0,r,s∈Q),

      ②(ar)s=ars(a>0,r,s∈Q),

      ③(a?b)r=arbr(a>0,b>0,r∈Q)。

      (4)說明兩點:

      ①分數指數冪的意義是一種規定,我們前面所舉的例子只表明這種規定的合理性,其中沒有推出關系。

      ②整數指數冪的運算性質對任意的有理數指數冪也同樣適用。因而分數指數冪與根式可以互化,也可以利用=am來計算。

      作業

      課本習題2.1A組2,4.

      設計感想

      本節課是分數指數冪的意義的引出及應用,分數指數是指數概念的又一次擴充,要讓學生反復理解分數指數冪的意義,教學中可以通過根式與分數指數冪的互化來鞏固加深對這一概念的理解,用觀察、歸納和類比的方法完成,由于是硬性的規定,沒有合理的解釋,因此多安排一些練習,強化訓練,鞏固知識,要輔助以信息技術的手段來完成大容量的課堂教學任務。

      第3課時

      作者:鄭芳鳴

      導入新課

      思路1.同學們,既然我們把指數從正整數推廣到整數,又從整數推廣到正分數到負分數,這樣指數就推廣到有理數,那么它是否也和數的推廣一樣,到底有沒有無理數指數冪呢?回顧數的擴充過程,自然數到整數,整數到分數(有理數),有理數到實數。并且知道,在有理數到實數的擴充過程中,增添的數是無理數。對無理數指數冪,也是這樣擴充而來。既然如此,我們這節課的主要內容是:教師板書本堂課的課題〔指數與指數冪的運算(3)〕之無理數指數冪。

      思路2.同學們,在初中我們學習了函數的知識,對函數有了一個初步的了解,到了高中,我們又對函數的概念進行了進一步的學習,有了更深的理解,我們僅僅學了幾種簡單的函數,如一次函數、二次函數、正比例函數、反比例函數、三角函數等,這些遠遠不能滿足我們的需要,隨著科學的發展,社會的進步,我們還要學習許多函數,其中就有指數函數,為了學習指數函數的知識,我們必須學習實數指數冪的運算性質,為此,我們必須把指數冪從有理數指數冪擴充到實數指數冪,因此我們本節課學習:指數與指數冪的運算(3)之無理數指數冪,教師板書本節課的課題。

      推進新課

      新知探究

      提出問題

      (1)我們知道2=1.414 213 56…,那么1.41,1.414,1.414 2,1.414 21,…,是2的什么近似值?而1.42,1.415,1.414 3,1.414 22,…,是2的什么近似值?

      (2)多媒體顯示以下圖表:同學們從上面的兩個表中,能發現什么樣的規律?

      2的過剩近似值

      的近似值

      1.5 11.180 339 89

      1.42 9.829 635 328

      1.415 9.750 851 808

      1.414 3 9.739 872 62

      1.414 22 9.738 618 643

      1.414 214 9.738 524 602

      1.414 213 6 9.738 518 332

      1.414 213 57 9.738 517 862

      1.414 213 563 9.738 517 752

      … …

      的近似值

      2的不足近似值

      9.518 269 694 1.4

      9.672 669 973 1.41

      9.735 171 039 1.414

      9.738 305 174 1.414 2

      9.738 461 907 1.414 21

      9.738 508 928 1.414 213

      9.738 516 765 1.414 213 5

      9.738 517 705 1.414 213 56

      9.738 517 736 1.414 213 562

      … …

      (3)你能給上述思想起個名字嗎?

      (4)一個正數的無理數次冪到底是一個什么性質的數呢?如,根據你學過的知識,能作出判斷并合理地解釋嗎?

      (5)借助上面的結論你能說出一般性的結論嗎?

      活動:教師引導,學生回憶,教師提問,學生回答,積極交流,及時評價學生,學生有困惑時加以解釋,可用多媒體顯示輔助內容:

      問題(1)從近似值的分類來考慮,一方面從大于2的方向,另一方面從小于2的方向。

      問題(2)對圖表的觀察一方面從上往下看,再一方面從左向右看,注意其關聯。

      問題(3)上述方法實際上是無限接近,最后是逼近。

      問題(4)對問題給予大膽猜測,從數軸的觀點加以解釋。

      問題(5)在(3)(4)的基礎上,推廣到一般的情形,即由特殊到一般。

      討論結果:(1)1.41,1.414,1.414 2,1.414 21,…這些數都小于2,稱2的不足近似值,而1.42,1.415,1.414 3,1.414 22,…,這些數都大于2,稱2的過剩近似值。

      (2)第一個表:從大于2的方向逼近2時,就從51.5,51.42,51.415,51.414 3,51.414 22,…,即大于的方向逼近。

      第二個表:從小于2的方向逼近2時,就從51.4,51.41,51.414,51.414 2,51.414 21,…,即小于的方向逼近。

      從另一角度來看這個問題,在數軸上近似地表示這些點,數軸上的數字表明一方面從51.4,51.41,51.414,51.414 2,51.414 21,…,即小于的方向接近,而另一方面從51.5,51.42,51.415,51.414 3,51.414 22,…,即大于的方向接近,可以說從兩個方向無限地接近,即逼近,所以是一串有理數指數冪51.4,51.41,51.414,51.414 2,51.414 21,…,和另一串有理數指數冪51.5,51.42,51.415,51.414 3,51.414 22,…,按上述變化規律變化的結果,事實上表示這些數的點從兩個方向向表示的點靠近,但這個點一定在數軸上,由此我們可得到的結論是一定是一個實數,即51.4<51.41<51.414<51.414 2<51.414 21<…< <…<51.414 22<51.414 3<51.415<51.42<51.5.

      充分表明是一個實數。

      (3)逼近思想,事實上里面含有極限的思想,這是以后要學的知識。

      (4)根據(2)(3)我們可以推斷是一個實數,猜測一個正數的無理數次冪是一個實數。

      (5)無理數指數冪的意義:

      一般地,無理數指數冪aα(a>0,α是無理數)是一個確定的實數。

      也就是說無理數可以作為指數,并且它的結果是一個實數,這樣指數概念又一次得到推廣,在數的擴充過程中,我們知道有理數和無理數統稱為實數。我們規定了無理數指數冪的意義,知道它是一個確定的實數,結合前面的有理數指數冪,那么,指數冪就從有理數指數冪擴充到實數指數冪。

      提出問題

      (1)為什么在規定無理數指數冪的意義時,必須規定底數是正數?

      (2)無理數指數冪的運算法則是怎樣的?是否與有理數指數冪的運算法則相通呢?

      (3)你能給出實數指數冪的運算法則嗎?

      活動:教師組織學生互助合作,交流探討,引導他們用反例說明問題,注意類比,歸納。

      對問題(1)回顧我們學習分數指數冪的意義時對底數的規定,舉例說明。

      對問題(2)結合有理數指數冪的運算法則,既然無理數指數冪aα(a>0,α是無理數)是一個確定的實數,那么無理數指數冪的運算法則應當與有理數指數冪的運算法則類似,并且相通。

      對問題(3)有了有理數指數冪的運算法則和無理數指數冪的運算法則,實數的運算法則自然就得到了。

      討論結果:(1)底數大于零的必要性,若a=-1,那么aα是+1還是-1就無法確定了,這樣就造成混亂,規定了底數是正數后,無理數指數冪aα是一個確定的實數,就不會再造成混亂。

      (2)因為無理數指數冪是一個確定的實數,所以能進行指數的運算,也能進行冪的運算,有理數指數冪的運算性質,同樣也適用于無理數指數冪。類比有理數指數冪的運算性質可以得到無理數指數冪的運算法則:

      ①ar?as=ar+s(a>0,r,s都是無理數)。

      ②(ar)s=ars(a>0,r,s都是無理數)。

      ③(a?b)r=arbr(a>0,b>0,r是無理數)。

      (3)指數冪擴充到實數后,指數冪的運算性質也就推廣到了實數指數冪。

      實數指數冪的運算性質:

      對任意的實數r,s,均有下面的運算性質:

      ①ar?as=ar+s(a>0,r,s∈R)。

      ②(ar)s=ars(a>0,r,s∈R)。

      ③(a?b)r=arbr(a>0,b>0,r∈R)。

      應用示例

      例1利用函數計算器計算。(精確到0.001)

      (1)0.32.1;(2)3.14-3;(3);(4) 。

      活動:教師教會學生利用函數計算器計算,熟悉計算器的各鍵的功能,正確輸入各類數,算出數值,對于(1),可先按底數0.3,再按xy鍵,再按冪指數2.1,最后按=,即可求得它的值;

      對于(2),先按底數3.14,再按xy鍵,再按負號-鍵,再按3,最后按=即可;

      對于(3),先按底數3.1,再按xy鍵,再按3÷4,最后按=即可;

      對于(4),這種無理指數冪,可先按底數3,其次按xy鍵,再按鍵,再按3,最后按=鍵。有時也可按2ndf或shift鍵,使用鍵上面的功能去運算。

      學生可以相互交流,挖掘計算器的用途。

      解:(1)0.32.1≈0.080;(2)3.14-3≈0.032;(3) ≈2.336;(4) ≈6.705.

      點評:熟練掌握用計算器計算冪的值的方法與步驟,感受現代技術的威力,逐步把自己融入現代信息社會;用四舍五入法求近似值,若保留小數點后n位,只需看第(n+1)位能否進位即可。

      例2求值或化簡。

      (1)a-4b23ab2(a>0,b>0);

      (2)(a>0,b>0);

      (3)5-26+7-43-6-42.

      活動:學生觀察,思考,所謂化簡,即若能化為常數則化為常數,若不能化為常數則應使所化式子達到最簡,對既有分數指數冪又有根式的式子,應該把根式統一化為分數指數冪的形式,便于運算,教師有針對性地提示引導,對(1)由里向外把根式化成分數指數冪,要緊扣分數指數冪的意義和運算性質,對(2)既有分數指數冪又有根式,應當統一起來,化為分數指數冪,對(3)有多重根號的式子,應先去根號,這里是二次根式,被開方數應湊完全平方,這樣,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并對學生作及時的評價,注意總結解題的方法和規律。

      解:(1)a-4b23ab2= =3b46a11 。

      點評:根式的運算常常化成冪的運算進行,計算結果如沒有特殊要求,就用根式的形式來表示。

    高中數學教案3

      內容分析:

      1、 集合是中學數學的一個重要的基本概念

      在小學數學中,就滲透了集合的初步概念,到了初中,更進一步應用集合的語言表述一些問題。例如,在代數中用到的有數集、解集等;在幾何中用到的有點集。至于邏輯,可以說,從開始學習數學就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學習、工作中,也是認識問題、研究問題不可缺少的工具。這些可以幫助學生認識學習本章的意義,也是本章學習的基礎。

      把集合的初步知識與簡易邏輯知識安排在高中數學的最開始,是因為在高中數學中,這些知識與其他內容有著密切聯系,它們是學習、掌握和使用數學語言的基礎

      例如,下一章講函數的概念與性質,就離不開集合與邏輯。

      本節首先從初中代數與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明

      然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子。

      這節課主要學習全章的引言和集合的基本概念

      學習引言是引發學生的學習興趣,使學生認識學習本章的意義

      本節課的教學重點是集合的基本概念。

      集合是集合論中的原始的、不定義的概念

      在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識

      教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集

      ”這句話,只是對集合概念的`描述性說明。

      教學過程:

      一、復習引入:

      1.簡介數集的發展,復習最大公約數和最小公倍數,質數與和數;

      2.教材中的章頭引言;

      3.集合論的創始人——康托爾(德國數學家)(見附錄);

      4.“物以類聚”,“人以群分”;

      5.教材中例子(P4)。

      二、講解新課:

      閱讀教材第一部分,問題如下:

      (1)有那些概念?是如何定義的?

      (2)有那些符號?是如何表示的?

      (3)集合中元素的特性是什么?

      (一)集合的有關概念:由一些數、一些點、一些圖形、一些整式、一些物體、一些人組成的.我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集.集合中的每個對象叫做這個集合的元素.

      定義:一般地,某些指定的對象集在一起就成為一個集合.

      1、集合的概念

      (1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)

      (2)元素:集合中每個對象叫做這個集合的元素

      2、常用數集及記法

      (1)非負整數集(自然數集):全體非負整數的集合,記作N,N={0,1,2,…}

      (2)正整數集:非負整數集內排除0的集,記作N*或N+,N*={1,2,3,…}

      (3)整數集:全體整數的集合,記作Z ,Z={0,±1,±2,…}

      (4)有理數集:全體有理數的集合,記作Q,Q={整數與分數}

      (5)實數集:全體實數的集合,記作R,R={數軸上所有點所對應的數}

      注:(1)自然數集與非負整數集是相同的,也就是說,自然數集包括數0

      (2)非負整數集內排除0的集,記作N*或N+

      Q、Z、R等其它數集內排除0的集,也是這樣表示,例如,整數集內排除0的集,表示成Z*

      3、元素對于集合的隸屬關系

      (1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A

      (2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作aA

      4、集合中元素的特性

      (1)確定性:按照明確的判斷標準給定一個元素或者在這個集合里,或者不在,不能模棱兩可

      (2)互異性:集合中的元素沒有重復

      (3)無序性:集合中的元素沒有一定的順序(通常用正常的順序寫出)

      5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……

      元素通常用小寫的拉丁字母表示,如a、b、c、p、q……

      ⑵“∈”的開口方向,不能把a∈A顛倒過來寫。

    高中數學教案4

      一、教材的地位和作用

      本節課是“空間幾何體的三視圖和直觀圖”的第一課時,主要內容是投影和三視圖,這部分知識是立體幾何的基礎之一,一方面它是對上一節空間幾何體結構特征的再一次強化,畫出空間幾何體的三視圖并能將三視圖還原為直觀圖,是建立空間概念的基礎和訓練學生幾何直觀能力的有效手段。另外,三視圖部分也是新課程高考的重要內容之一,常常結合給出的三視圖求給定幾何體的表面積或體積設置在選擇或填空中。同時,三視圖在工程建設、機械制造中有著廣泛應用,同時也為學生進入高一層學府學習有很大的幫助。所以在人們的日常生活中有著重要意義。

      二、教學目標

      (1)知識與技能:能畫出簡單空間圖形(長方體,球,圓柱,圓錐,棱柱等的.簡易組合)的三視圖,能識別上述三視圖表示的立體模型,從而進一步熟悉簡單幾何體的結構特征。

      (2)過程與方法:通過直觀感知,操作確認,提高學生的空間想象能力、幾何直觀能力,培養學生的應用意識。

      (3)情感、態度與價值觀:讓感受數學就在身邊,提高學生學習立體幾何的興趣,培養學生相互交流、相互合作的精神。

      三、設計思路

      本節課的主要任務是引導學生完成由立體圖形到三視圖,再由三視圖想象立體圖形的復雜過程。直觀感知操作確認是新課程幾何課堂的一個突出特點,也是這節課的設計思路。通過大量的多媒體直觀,實物直觀使學生獲得了對三視圖的感性認識,通過學生的觀察思考,動手實踐,操作練習,實現認知從感性認識上升為理性認識。培養學生的空間想象能力,幾何直觀能力為學習立體幾何打下基礎。

      教學的重點、難點

      (一)重點:畫出空間幾何體及簡單組合體的三視圖,體會在作三視圖時應遵循的“長對正、高平齊、寬相等”的原則。

      (二)難點:識別三視圖所表示的空間幾何體,即:將三視圖還原為直觀圖。

      四、學生現實分析

      本節首先簡單介紹了中心投影和平行投影,中心投影和平行投影是日常生活中最常見的兩種投影形式,學生具有這方面的直接經驗和基礎。投影和三視圖雖為高中新增內容,但學生在初中有一定基礎,在七年級上冊“從不同方向看”的基礎上給出了三視圖的概念。到了九年級下冊則是在介紹了投影后,用投影的方法給出了三視圖的概念,這一概念已基本接近了高中的三視圖定義,只是在名字上略有差異。初中叫做主視圖、左視圖、俯視圖。進入高中后特別是再次學習和認識了柱、錐、臺等幾何體的概念后,學生在空間想象能力方面有了一定的提高,所以,給出了正視圖、側視圖、俯視圖的概念。這些概念的變化也說明了學生年齡特點和思維差異。

      五、教學方法

      (1)教學方法及教學手段

      針對本節課知識是由抽象到具體再到抽象、空間思維難度較大的特點,我采用的教法是直觀教學法、啟導發現法。

      在教學中,通過創設問題情境,充分調動學生學習的積極性和主動性,并引導啟發學生動眼、動腦、動手、同時采用多媒體的教學手段,加強直觀性和啟發性,解決了教師“口說無憑”的尷尬境地,增大了課堂容量,提高了課堂效率。

      (2)學法指導

      力爭在新課程要求的大背景下組織教學,為學生創設良好的問題情境,留給學生充分的思考空間,在學生的辯證和討論前提下,發揮教師的概括和引領的作用。

    高中數學教案5

      高中數學趣味競賽題(共10題)

      1 、撒謊的有幾人

      5個高中生有,她們面對學校的新聞采訪說了如下的話:

      愛:“我還沒有談過戀愛。” 靜香:“愛撒謊了。”

      瑪麗:“我曾經去過昆明。” 惠美:“瑪麗在撒謊。”

      千葉子:“瑪麗和惠美都在撒謊。” 那么,這5個人之中到底有幾個人在撒謊呢?

      2、她們到底是誰

      有天使、惡魔、人三者,天使時刻都說真話,惡魔時時刻刻都說假話,人呢,有時候說真話,有時候說假話。

      穿黑色衣服的女子說:“我不是天使。” 穿藍色衣服的女子說:“我不是人。” 穿白色衣服的女子說:“我不是惡魔。”那么,這三人到底分別是誰呢?

      3、半只小貓

      聽說祖父家的波斯貓生了好多小貓,喜歡貓的我興高采烈地來到祖父家。可是,只剩下1只小貓了。

      “一共生了幾只小貓呀?” “猜猜看,要是猜中了,就把剩下的這只小貓給你。附近的寵物店聽說以后,馬上來買走了所有小貓的一半和半只。” “半只?”“是啊,然后,鄰居家的老奶奶無論如何都要,所以就把剩下的一半和另外半只給了她。這就是只剩下1只小貓的'原因。那么你想想看,一共生了幾只小貓呢?

      4、被蟲子吃掉的算式

      一只愛吃墨水的蟲子把下圖的算式中的數字全部吃掉了。當然,沒有數字的部分它沒有吃(因為沒有墨水)。

      那么,請問原來的算式是什么樣子的呢?

      5、巧動火柴

      用16根火柴擺成5個正方形。請移動2根火柴,

      使

      正形變成4。

      6、折過來的角

      把正三角形的紙如圖那樣折過來時,角?的度數是多少度?

      7、星形角之和

      求星形尖端的角度之和。

      8、啊!雙胞胎?

      丈夫臨死前,給有身孕的妻子留下遺言說,生的是男孩就給他財產的 2/3 、如果生的是女孩就給他財產的 2/5 、剩下的給妻子。

      結果,生出來的是孿生兄妹——雙胞胎。這可難壞了妻子,3個人怎么分財產好呢?

      9、贈送和降價哪個更好?

      1罐100元的咖啡,“買5罐送1罐”和“買5罐便宜20%”這兩種促銷方法哪一種好呢?還是兩種方法一樣好?

      10、折成15度

      用折紙做成45度很簡單是吧。那么,請折成15度,你會嗎?

    高中數學教案6

      教學目的:

      掌握圓的標準方程,并能解決與之有關的問題

      教學重點:

      圓的標準方程及有關運用

      教學難點:

      標準方程的靈活運用

      教學過程:

      一、導入新課,探究標準方程

      二、掌握知識,鞏固練習

      練習:

      1、說出下列圓的'方程

      ⑴圓心(3,—2)半徑為5

      ⑵圓心(0,3)半徑為3

      2、指出下列圓的圓心和半徑

      ⑴(x—2)2+(y+3)2=3

      ⑵x2+y2=2

      ⑶x2+y2—6x+4y+12=0

      3、判斷3x—4y—10=0和x2+y2=4的位置關系

      4、圓心為(1,3),并與3x—4y—7=0相切,求這個圓的方程

      三、引伸提高,講解例題

      例1、圓心在y=—2x上,過p(2,—1)且與x—y=1相切求圓的方程(突出待定系數的數學方法)

      練習:1、某圓過(—2,1)、(2,3),圓心在x軸上,求其方程。

      2、某圓過A(—10,0)、B(10,0)、C(0,4),求圓的方程。

      例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。

      例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓練思維)

      四、小結練習P771,2,3,4

      五、作業P811,2,3,4

    高中數學教案7

      1.課題

      填寫課題名稱(高中代數類課題)

      2.教學目標

      (1)知識與技能:

      通過本節課的學習,掌握......知識,提高學生解決實際問題的能力;

      (2)過程與方法:

      通過......(討論、發現、探究),提高......(分析、歸納、比較和概括)的能力;

      (3)情感態度與價值觀:

      通過本節課的學習,增強學生的學習興趣,將數學應用到實際生活中,增加學生數學學習的樂趣。

      3.教學重難點

      (1)教學重點:本節課的知識重點

      (2)教學難點:易錯點、難以理解的知識點

      4.教學方法(一般從中選擇3個就可以了)

      (1)討論法

      (2)情景教學法

      (3)問答法

      (4)發現法

      (5)講授法

      5.教學過程

      (1)導入

      簡單敘述導入課題的方式和方法(例:復習、類比、情境導出本節課的課題)

      (2)新授課程(一般分為三個小步驟)

      ①簡單講解本節課基礎知識點(例:奇函數的定義)。

      ②歸納總結該課題中的重點知識內容,尤其對該注意的一些情況設置易錯點,進行強調。可以設計分組討論環節(分組判斷幾組函數圖像是否為奇函數,并歸納奇函數圖像的特點。設置定義域不關于原點對稱的函數是否為奇函數的易錯點)。

      ③拓展延伸,將所學知識拓展延伸到實際題目中,去解決實際生活中的問題。

      (在新授課里面一定要表下出講課的大體流程,但是不必太過詳細。)

      (3)課堂小結

      教師提問,學生回答本節課的收獲。

      (4)作業提高

      布置作業(盡量與實際生活相聯系,有所創新)。

      6.教學板書

      2.高中數學教案格式

      一.課題(說明本課名稱)

      二.教學目的(或稱教學要求,或稱教學目標,說明本課所要完成的教學任務)

      三.課型(說明屬新授課,還是復習課)

      四.課時(說明屬第幾課時)

      五.教學重點(說明本課所必須解決的關鍵性問題)

      六.教學難點(說明本課的學習時易產生困難和障礙的知識傳授與能力培養點)

      七.教學方法要根據學生實際,注重引導自學,注重啟發思維

      八.教學過程(或稱課堂結構,說明教學進行的內容、方法步驟)

      九.作業處理(說明如何布置書面或口頭作業)

      十.板書設計(說明上課時準備寫在黑板上的內容)

      十一.教具(或稱教具準備,說明輔助教學手段使用的工具)

      十二.教學反思:(教者對該堂課教后的感受及學生的收獲、改進方法)

      3.高中數學教案范文

      【教學目標】

      1.知識與技能

      (1)理解等差數列的定義,會應用定義判斷一個數列是否是等差數列:

      (2)賬務等差數列的通項公式及其推導過程:

      (3)會應用等差數列通項公式解決簡單問題。

      2.過程與方法

      在定義的理解和通項公式的推導、應用過程中,培養學生的觀察、分析、歸納能力和嚴密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認知規律,提高熟悉猜想和歸納的能力,滲透函數與方程的思想。

      3.情感、態度與價值觀

      通過教師指導下學生的自主學習、相互交流和探索活動,培養學生主動探索、用于發現的求知精神,激發學生的學習興趣,讓學生感受到成功的喜悅。在解決問題的過程中,使學生養成細心觀察、認真分析、善于總結的良好習慣。

      【教學重點】

      ①等差數列的概念;

      ②等差數列的通項公式

      【教學難點】

      ①理解等差數列“等差”的特點及通項公式的含義;

      ②等差數列的通項公式的推導過程.

      【學情分析】

      我所教學的學生是我校高一(7)班的學生(平行班學生),經過一年的高中數學學習,大部分學生知識經驗已較為豐富,他們的智力發展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學生的基礎較弱,學習數學的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發,注重引導、啟發、研究和探討以符合這類學生的心理發展特點,從而促進思維能力的進一步發展。

      【設計思路】

      1、教法

      ①啟發引導法:這種方法有利于學生對知識進行主動建構;有利于突出重點,突破難點;有利于調動學生的主動性和積極性,發揮其創造性.

      ②分組討論法:有利于學生進行交流,及時發現問題,解決問題,調動學生的積極性.

      ③講練結合法:可以及時鞏固所學內容,抓住重點,突破難點.

      2、學法

      引導學生首先從三個現實問題(數數問題、水庫水位問題、儲蓄問題)概括出數組特點并抽象出等差數列的概念;接著就等差數列概念的特點,推導出等差數列的通項公式;可以對各種能力的同學引導認識多元的推導思維方法.

      【教學過程】

      一、創設情境,引入新課

      1、從0開始,將5的倍數按從小到大的順序排列,得到的數列是什么?

      2、水庫管理人員為了保證優質魚類有良好的生活環境,用定期放水清庫的.辦法清理水庫中的雜魚.如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位(單位:m)組成一個什么數列?

      3、我國現行儲蓄制度規定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元錢,年利率是0.72%,那么按照單利,5年內各年末的本利和(單位:元)組成一個什么數列?

      教師:以上三個問題中的數蘊涵著三列數.

      學生:

      ①0,5,10,15,20,25,….

      ②18,15.5,13,10.5,8,5.5.

      ③10072,10144,10216,10288,10360.

      (設置意圖:從實例引入,實質是給出了等差數列的現實背景,目的是讓學生感受到等差數列是現實生活中大量存在的數學模型.通過分析,由特殊到一般,激發學生學習探究知識的自主性,培養學生的歸納能力.

      二、觀察歸納,形成定義

      ①0,5,10,15,20,25,….

      ②18,15.5,13,10.5,8,5.5.

      ③10072,10144,10216,10288,10360.

      思考1上述數列有什么共同特點?

      思考2根據上數列的共同特點,你能給出等差數列的一般定義嗎?

      思考3你能將上述的文字語言轉換成數學符號語言嗎?

      教師:引導學生思考這三列數具有的共同特征,然后讓學生抓住數列的特征,歸納得出等差數列概念.

      學生:分組討論,可能會有不同的答案:前數和后數的差符合一定規律;這些數都是按照一定順序排列的…只要合理教師就要給予肯定.

      教師引導歸納出:等差數列的定義;另外,教師引導學生從數學符號角度理解等差數列的定義.

      (設計意圖:通過對一定數量感性材料的觀察、分析,提煉出感性材料的本質屬性;使學生體會到等差數列的規律和共同特點;一開始抓住:“從第二項起,每一項與它的前一項的差為同一常數”,落實對等差數列概念的準確表達.)

      三、舉一反三,鞏固定義

      1、判定下列數列是否為等差數列?若是,指出公差d.

      (1)1,1,1,1,1;

      (2)1,0,1,0,1;

      (3)2,1,0,-1,-2;

      (4)4,7,10,13,16.

      教師出示題目,學生思考回答.教師訂正并強調求公差應注意的問題.

      注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數與減數弄顛倒,而且公差可以是正數,負數,也可以為0.

      (設計意圖:強化學生對等差數列“等差”特征的理解和應用).

      2、思考4:設數列{an}的通項公式為an=3n+1,該數列是等差數列嗎?為什么?

      (設計意圖:強化等差數列的證明定義法)

      四、利用定義,導出通項

      1、已知等差數列:8,5,2,…,求第200項?

      2、已知一個等差數列{an}的首項是a1,公差是d,如何求出它的任意項an呢?

      教師出示問題,放手讓學生探究,然后選擇列式具有代表性的上去板演或投影展示.根據學生在課堂上的具體情況進行具體評價、引導,總結推導方法,體會歸納思想以及累加求通項的方法;讓學生初步嘗試處理數列問題的常用方法.

      (設計意圖:引導學生觀察、歸納、猜想,培養學生合理的推理能力.學生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學生善于動腦、勇于創新的品質,激發學生的創造意識.鼓勵學生自主解答,培養學生運算能力)

      五、應用通項,解決問題

      1、判斷100是不是等差數列2,9,16,…的項?如果是,是第幾項?

      2、在等差數列{an}中,已知a5=10,a12=31,求a1,d和an.

      3、求等差數列3,7,11,…的第4項和第10項

      教師:給出問題,讓學生自己操練,教師巡視學生答題情況.

      學生:教師叫學生代表總結此類題型的解題思路,教師補充:已知等差數列的首項和公差就可以求出其通項公式

      (設計意圖:主要是熟悉公式,使學生從中體會公式與方程之間的聯系.初步認識“基本量法”求解等差數列問題.)

      六、反饋練習:教材13頁練習1

      七、歸納總結:

      1、一個定義:

      等差數列的定義及定義表達式

      2、一個公式:

      等差數列的通項公式

      3、二個應用:

      定義和通項公式的應用

      教師:讓學生思考整理,找幾個代表發言,最后教師給出補充

      (設計意圖:引導學生去聯想本節課所涉及到的各個方面,溝通它們之間的聯系,使學生能在新的高度上去重新認識和掌握基本概念,并靈活運用基本概念.)

      【設計反思】

      本設計從生活中的數列模型導入,有助于發揮學生學習的主動性,增強學生學習數列的興趣.在探索的過程中,學生通過分析、觀察,歸納出等差數列定義,然后由定義導出通項公式,強化了由具體到抽象,由特殊到一般的思維過程,有助于提高學生分析問題和解決問題的能力.本節課教學采用啟發方法,以教師提出問題、學生探討解決問題為途徑,以相互補充展開教學,總結科學合理的知識體系,形成師生之間的良性互動,提高課堂教學效率.

    高中數學教案8

      一、教材分析

      本節課選自《普通高中課程標準數學教科書-必修1》(人教A版)《1.2.1函數的概念》共3課時,本節課是第1課時。

      生活中的許多現象如物體運動,氣溫升降,投資理財等都可以用函數的模型來刻畫,是我們更好地了解自己、認識世界和預測未來的重要工具。

      函數是數學的重要的基礎概念之一,是高等數學重多學科的基礎概念和重要的研究對象。同時函數也是物理學等其他學科的重要基礎知識和研究工具,教學內容中蘊涵著極其豐富的辯證思想。

      二、學生學習情況分析

      函數是中學數學的主體內容,學生在中學階段對函數的認識分三個階段:

      (一)初中從運動變化的角度來刻畫函數,初步認識正比例、反比例、一次和二次函數;

      (二)高中用集合與對應的觀點來刻畫函數,研究函數的性質,學習典型的對、指、冪和三解函數;

      (三)高中用導數工具研究函數的單調性和最值。

      1、有利條件

      現代教育心理學的研究認為,有效的概念教學是建立在學生已有知識結構的基礎上的,因此教師在設計教學的過程中必須注意在學生已有知識結構中尋找新概念的固著點,引導學生通過同化或順應,掌握新概念,進而完善知識結構。

      初中用運動變化的觀點對函數進行定義的,它反映了歷人們對它的一種認識,而且這個定義較為直觀,易于接受,因此按照由淺入深、力求符合學生認知規律的內容編排原則,函數概念在初中介紹到這個程度是合適的。也為我們用集合與對應的觀點研究函數打下了一定的基礎。

      2、不利條件

      用集合與對應的觀點來定義函數,形式和內容上都是比較抽象的,這對學生的理解能力是一個挑戰,是本節課教學的一個不利條件。

      三、教學目標分析

      課標要求:通過豐富實例,進一步體會函數是描述變量之間的依賴關系的重要數學模型,在此基礎上學習用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用;了解構成函數的要素,會求一些簡單函數的定義域和值域。

      1、知識與能力目標:

      ⑴能從集合與對應的角度理解函數的概念,更要理解函數的本質屬性;

      ⑵理解函數的三要素的.含義及其相互關系;

      ⑶會求簡單函數的定義域和值域

      2、過程與方法目標:

      ⑴通過豐富實例,使學生建立起函數概念的背景,體會函數是描述變量之間依賴關系的數學模型;

      ⑵在函數實例中,通過對關鍵詞的強調和引導使學發現它們的共同特征,在此基礎上再用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用。

      3、情感、態度與價值觀目標:

      感受生活中的數學,感悟事物之間聯系與變化的辯證唯物主義觀點。

      四、教學重點、難點分析

      1、教學重點:對函數概念的理解,用集合與對應的語言來刻畫函數;

      重點依據:初中是從變量的角度來定義函數,高中是用集合與對應的語言來刻畫函數。二者反映的本質是一致的,即“函數是一種對應關系”。但是,初中定義并未完全揭示出函數概念的本質,對y?1這樣的函數用運動變化的觀點也很難解釋。在以函數為重要內容的高中階段,課本應將函數定義為兩個數集之間的一種對應關系,按照這種觀點,使我們對函數概念有了更深一層的認識,也很容易說明y?1這函數表達式。因此,分析兩種函數概念的關系,讓學生融會貫通地理解函數的概念應為本節課的重點。

      突出重點:重點的突出依賴于對函數概念本質屬性的把握,使學生通過表面的語言描述抓住概念的精髓。

      2、教學難點:

      第一:從實際問題中提煉出抽象的概念;

      第二:符號“y=f(x)”的含義的理解。

      難點依據:數學語言的抽象概括難度較大,對符號y=f(x)的理解會受到以前知識的負遷移。

      突破難點:難點的突破要依托豐富的實例,從集合與對應的角度恰當地引導,而對抽象符號的理解則要結合函數的三要素和小例子進行說明。

      五、教法與學法分析

      1、教法分析

      本節課我主要采用教師導學法、知識遷移法和知識對比法,從學生熟悉的豐富實例出發,關注學生的原有的知識基礎,注重概念的形成過程,從初中的函數概念自然過度到函數的近代定我。

      2、學法分析

      在教學過程中我注意在教學中引導學生用模型法分析函數問題、通過自主學習法總結“區間”的知識。

    高中數學教案9

      各位評委、各位專家,大家好!今天,我說課的內容是人民教育出版社全日制普通高級中學教科書(必修)《數學》第一章第五節“一元二次不等式解法”。

      下面從教材分析、教學目標分析、教學重難點分析、教法與學法、課堂設計、效果評價六方面進行說課。

      一、教材分析

      (一)教材的地位和作用

      “一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發展,又是本章集合知識的運用與鞏固,也為下一章函數的定義域和值域教學作鋪墊,起著鏈條的作用。同時,這部分內容較好地反映了方程、不等式、函數知識的內在聯系和相互轉化,蘊含著歸納、轉化、數形結合等豐富的數學思想方法,能較好地培養學生的觀察能力、概括能力、探究能力及創新意識。

      (二)教學內容

      本節內容分2課時學習。本課時通過二次函數的圖象探索一元二次不等式的解集。通過復習“三個一次”的關系,即一次函數與一元一次方程、一元一次不等式的關系;以舊帶新尋找“三個二次”的關系,即二次函數與一元二次方程、一元二次不等式的關系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數學中的和諧美,體驗成功的樂趣。

      二、教學目標分析

      根據教學大綱的要求、本節教材的特點和高一學生的認知規律,本節課的教學目標確定為:

      知識目標——理解“三個二次”的關系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。

      能力目標——通過看圖象找解集,培養學生“從形到數”的轉化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。

      情感目標——創設問題情景,激發學生觀察、分析、探求的學習激情、強化學生參與意識及主體作用。

      三、重難點分析

      一元二次不等式是高中數學中最基本的不等式之一,是解決許多數學問題的重要工具。本節課的重點確定為:一元二次不等式的解法。

      要把握這個重點。關鍵在于理解并掌握利用二次函數的圖象確定一元二次不等式解集的方法——圖象法,其本質就是要能利用數形結合的思想方法認識方程的解,不等式的解集與函數圖象上對應點的橫坐標的內在聯系。由于初中沒有專門研究過這類問題,高一學生比較陌生,要真正掌握有一定的.難度。因此,本節課的難點確定為:“三個二次”的關系。要突破這個難點,讓學生歸納“三個一次”的關系作鋪墊。

      四、教法與學法分析

      (一)學法指導

      教學矛盾的主要方面是學生的學。學是中心,會學是目的。因此在教學中要不斷指導學生學會學習。本節課主要是教給學生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學習方法,這樣做增加了學生自主參與,合作交流的機會,教給了學生獲取知識的途徑、思考問題的方法,使學生真正成了教學的主體;只有這樣做,才能使學生“學”有新“思”,“思”有新“得”,“練”有新“獲”,學生也才會逐步感受到數學的美,會產生一種成功感,從而提高學生學習數學的興趣;也只有這樣做,課堂教學才富有時代特色,才能適應素質教育下培養“創新型”人才的需要。

      (二)教法分析

      本節課設計的指導思想是:現代認知心理學——建構主義學習理論。

      建構主義學習理論認為:應把學習看成是學生主動的建構活動,學生應與一定的知識背景即情景相聯系,在實際情景下進行學習,可以使學生利用已有知識與經驗同化和索引出當前要學習的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。

      本節課采用“誘思引探教學法”。把問題作為出發點,指導學生“畫、看、說、用”。較好地探求一元二次不等式的解法。

      五、課堂設計

      本節課的教學設計充分體現以學生發展為本,培養學生的觀察、概括和探究能力,遵循學生的認知規律,體現理論聯系實際、循序漸進和因材施教的教學原則,通過問題情境的創設,激發興趣,使學生在問題解決的探索過程中,由學會走向會學,由被動答題走向主動探究。

      (一)創設情景,引出“三個一次”的關系

      本節課開始,先讓學生解一元二次方程x2-x-6=0,如果我把“=”改成“”則變成一元二次不等式x2-x-60讓學生解,學生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構造懸念,激活學生的思維興趣。

      為此,我設計了以下幾個問題:

      1、請同學們解以下方程和不等式:

      ①2x-7=0;②2x-70;③2x-70

      學生回答,我板書。

      2、我指出:2x-70和2x-70的解實際上只需利用不等式基本性質就容易得到。

      3、接著我提出:我們能否利用不等式的基本性質來解一元二次不等式呢?學生可能感到很困惑。

      4、為此,我引入一次函數y=2x-7,借助動畫從圖象上直觀認識方程和不等式的解,得出以下三組重要關系:

      ①2x-7=0的解恰是函數y=2x-7的圖象與x軸

      交點的橫坐標。

      ②2x-70的解集正是函數y=2x-7的圖象

      在x軸的上方的點的橫坐標的集合。

      ③2x-70的解集正是函數y=2x-7的圖象

      在x軸的下方的點的橫坐標的集合。

      三組關系的得出,實際上讓學生找到了利用“一次函數的圖象”來解一元一次方程和一元一次不等式的方法。讓學生看到了解決一元二次不等式的希望,大大激發了學生解決新問題的興趣。此時,學生很自然聯想到利用函數y=x2-x-6的圖象來求不等式x2-x-60的解集。

      (二)比舊悟新,引出“三個二次”的關系

      為此我引導學生作出函數y=x2-x-6的圖象,按照“看一看 說一說 問一問”的思路進行探究。

      看函數y=x2-x-6的圖象并說出:

      ①方程x2-x-6=0的解是

      x=-2或x=3 ;

      ②不等式x2-x-60的解集是

      {x|x-2,或x3};

      ③不等式x2-x-60的解集是

      {x|-23}。

      此時,學生已經沖出了困惑,找到了利用二次函數的圖象來解一元二次不等式的方法。

      學生沉浸在成功的喜悅中,不妨趁熱打鐵問一問:如果把函數y=x2-x-6變為y=ax2+bx+c(a0),那么圖象與x軸的位置關系又怎樣呢?(學生回答:△0時,圖象與x軸有兩個交點;△=0時,圖象與x軸只有一個交點;△0時,圖象與x輛沒有交點。)請同學們討論:ax2+bx+c0與ax2+bx+c0的解集與函數y=ax2+bx+c的圖象有怎樣的關系?

      (三)歸納提煉,得出“三個二次”的關系

      1、引導學生根據圖象與x軸的相對位置關系,寫出相關不等式的解集。

      2、此時提出:若a0時,怎樣求解不等式ax2+bx+c0及ax2+bx+c0?(經討論之后,有的學生得出:將二次項系數由負化正,轉化為上述模式求解,教師應予以強調;也有的學生提出畫出相應的二次函數圖象,根據圖象寫出解集,教師應給予肯定。)

      (四)應用新知,熟練掌握一元二次不等式的解集

      借助二次函數的圖象,得到一元二次不等式的解集,學生形成了感性認識,為鞏固所學知識,我們一起來完成以下例題:

      例1、解不等式2x2-3x-20

      解:因為Δ0,方程2x2-3x-2=0的解是

      x1= ,x2=2

      所以,不等式的解集是

      { x| x ,或x2}

      例1的解決達到了兩個目的:一是鞏固了一元二次不等式解集的應用;二是規范了一元二次不等式的解題格式。

      下面我們接著學習課本例2。

      例2 解不等式-3x2+6x2

      課本例2的出現恰當好處,一方面突出了“對于二次項系數是負數(即a0)的一元二次不等式,可以先把二次項系數化為正數,再求解”;另一方面,學生對此例的解答極易出現寫錯解集(如出現“或”與“且”的錯誤)。

      通過例1、例2的解決,學生與我一起總結了解一元二次不等式的一般步驟:一化正—二算△—三求根—四寫解集。

      例3 解不等式4x2-4x+10

      例4 解不等式-x2+2x-30

      分別突出了“△=0”、“△0”對不等式解集的影響。這兩例由學生練習,教師巡視、指導,講評學生完成情況,尋找學生中的閃光點,給予熱情表揚。

      4道例題,具有典型性、層次性和學生的可接受性。為了避免學生學后“一團亂麻”、“一盤散沙”的局面,我和學生一起總結。

      (五)總結

      解一元二次不等式的“四部曲”:

      (1)把二次項的系數化為正數

      (2)計算判別式Δ

      (3)解對應的一元二次方程

      (4)根據一元二次方程的根,結合圖像(或口訣),寫出不等式的解集。概括為:一化正→二算Δ→三求根→四寫解集

      (六)作業布置

      為了使所有學生鞏固所學知識,我布置了“必做題”;又為學有余力者留有自由發展的空間,我布置了“探究題”。

      (1)必做題:習題1.5的1、3題

      (2)探究題:①若a、b不同時為零,記ax2+bx+c=0的解集為P,ax2+bx+c0的解集為M,ax2+bx+c0的解集為N,那么P∪M∪N=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是R,求實數k的取值范圍。

      (七)板書設計

      一元二次不等式解法(1)

      五、教學效果評價

      本節課立足課本,著力挖掘,設計合理,層次分明。以“三個一次關系→三個二次關系→一元二次不等式解法”為主線,以“從形到數,從具體到抽象,從特殊到一般”為靈魂,以“畫、看、說、用”為特色,把握重點,突破難點。在教學思想上既注重知識形成過程的教學,還特別突出學生學習方法的指導,探究能力的訓練,創新精神的培養,引導學生發現數學的美,體驗求知的樂趣。

    高中數學教案10

      1. 幽默風趣的你,平時在班里話語不多,也不張揚,但是,你在無意中的表現仍然贏得了很好的人際關系,學習上你認真刻苦,也能及時的完成作業,但是我覺得你總是沒把全部的心思用在學習上,不然以你的聰明,應該保持在前三名才對啊,加油吧,也許關注學習成績對你才是更有意義的事!

      2. 身為紀律委員的你,認真負責,以身作則,生活上的你平易近人,與同學關系融洽,學習上你勤奮刻苦,尤其在英語的學習上,顯示出了你的語言天賦,我覺得,假如你能把這份自信和興趣用到其他的學科學習中,也一定會收獲很多的!加油吧!

      3. 你能嚴格遵守校規,上課認真聽講,作業完成認真,樂于助人,愿意幫助同學,大掃除時你不怕苦,不怕累,但是英語方面還不夠給力,所以,如果再投入一點,定會取得更好的結果,而且你還是一個愿意動腦筋的好學生,如果繼續保持下去定會取得驕人的'成績!

      4. 你是個懂禮貌明事理的孩子,你能嚴格遵守班級紀律,熱愛集體,對待學習態度端正,上課能夠專心聽講,課下能夠認真完成作業。你的學習方法有待改進,若能做到學習時心無旁騖就好了,掌握知識也不夠牢固,思維能力要進一步培養和提高,平時善于多動筆認真作好筆記,多開動腦筋,相信你一定能在下學期更得更大的進步! 你學習認真刻苦,也能善于思考,更十分活潑,并能嚴格遵守班級和宿舍紀律,上課你能認真聽講,做作業時你十分專注,常常愿意花功夫鉆研難題,與同學相處也十分融洽,但若能在認真做作業的同時,將速度提上去,我相信你會做得更好。要多講究學習方法,不能靠熬夜來完成學習任務,提高學習效率,老師相信你一定能通過自己的努力取得更好的成績!

      5. 雖然你個頭小,但每次你領讀時的那股認真勁兒,令老師暗暗稱贊。你尊敬老師,和同學能和睦相處。甜美可愛的你,經過不斷的努力,你會更出色的!

      6. 你是個活潑可愛的孩子,課堂上,你非常投入地學習著,朗讀課文時數你最有感情。中午你還主動給老師捶背,真是個會關心人的孩子,老師謝謝你。你十分喜愛讀課外書,不過課上可不能偷看啊!愿書成為你的好朋友。

      7. 學習中你能嚴格要求自己,這是你永不落敗的秘訣。老師希望你能借助良好的學習方法,抓緊一切時間,笑在最后的一定是你!

      8. 許麗君——你思想上進,踏實穩重,誠實謙虛,尊敬老師。黑板報中有你傾注的心血,集體榮譽簿里有你的功勞。但學習的主動精神不夠,競爭意識不強,也很少看到你向老師請教,成績進步不明顯。請相信:世上沒有比腳更長的路,也沒有比心更高的山!望今后大膽進取,多思多問,發揮你的聰明才智,進一步激發活力,提高學習效率,持之以恒,美好的明天屬于你!

      9. 每天你都背著書包高高興興地來上學,學到了不少的知識,可惜只能記住很少的一部分。希望你改進學習方法,提高學習效率,在下學期有更大的進步!

      10. 你言語不多,但待人誠懇、禮貌,作風踏實,品學兼優,熱愛班級,關愛同學,勤奮好學,思維敏捷,成績優秀。愿你扎實各科基礎,堅持不懈,!一定能考上重點! 優秀的男生肯定是逗人喜歡的,老師希望你能一如既往的優秀,把這種優秀保持在你人生的每一階段中。你的人生就是輝煌如意的!

    高中數學教案11

      1.教學目標

      (1)知識目標: 1.在平面直角坐標系中,探索并掌握圓的標準方程;

      2.會由圓的方程寫出圓的半徑和圓心,能根據條件寫出圓的方程.

      (2)能力目標: 1.進一步培養學生用解析法研究幾何問題的能力;

      2.使學生加深對數形結合思想和待定系數法的理解;

      3.增強學生用數學的意識.

      (3)情感目標:培養學生主動探究知識、合作交流的意識,在體驗數學美的過程中激發學生的學習興趣.

      2.教學重點.難點

      (1)教學重點:圓的標準方程的求法及其應用.

      (2)教學難點:會根據不同的已知條件,利用待定系數法求圓的標準方程以及選擇恰

      當的坐標系解決與圓有關的實際問題.

      3.教學過程

      (一)創設情境(啟迪思維)

      問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2.7m,高為3m的貨車能不能駛入這個隧道?

      [引導] 畫圖建系

      [學生活動]:嘗試寫出曲線的方程(對求曲線的方程的步驟及圓的定義進行提示性復習)

      解:以某一截面半圓的圓心為坐標原點,半圓的直徑ab所在直線為x軸,建立直角坐標系,則半圓的方程為x2 y2=16(y≥0)

      將x=2.7代入,得 .

      即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛入這個隧道。

      (二)深入探究(獲得新知)

      問題二:1.根據問題一的探究能不能得到圓心在原點,半徑為 的圓的方程?

      答:x2 y2=r2

      2.如果圓心在 ,半徑為 時又如何呢?

      [學生活動] 探究圓的方程。

      [教師預設] 方法一:坐標法

      如圖,設m(x,y)是圓上任意一點,根據定義點m到圓心c的距離等于r,所以圓c就是集合p={m||mc|=r}

      由兩點間的`距離公式,點m適合的條件可表示為 ①

      把①式兩邊平方,得(x―a)2 (y―b)2=r2

      方法二:圖形變換法

      方法三:向量平移法

      (三)應用舉例(鞏固提高)

      i.直接應用(內化新知)

      問題三:1.寫出下列各圓的方程(課本p77練習1)

      (1)圓心在原點,半徑為3;

      (2)圓心在 ,半徑為 ;

      (3)經過點 ,圓心在點 .

      2.根據圓的方程寫出圓心和半徑

      (1) ; (2) .

      ii.靈活應用(提升能力)

      問題四:1.求以 為圓心,并且和直線 相切的圓的方程.

      [教師引導]由問題三知:圓心與半徑可以確定圓.

      2.已知圓的方程為 ,求過圓上一點 的切線方程.

      [學生活動]探究方法

      [教師預設]

      方法一:待定系數法(利用幾何關系求斜率-垂直)

      方法二:待定系數法(利用代數關系求斜率-聯立方程)

      方法三:軌跡法(利用勾股定理列關系式) [多媒體課件演示]

      方法四:軌跡法(利用向量垂直列關系式)

      3.你能歸納出具有一般性的結論嗎?

      已知圓的方程是 ,經過圓上一點 的切線的方程是: .

      iii.實際應用(回歸自然)

      問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度ab=20m,拱高op=4m,在建造時每隔4m需用一個支柱支撐,求支柱 的長度(精確到0.01m).

      [多媒體課件演示創設實際問題情境]

      (四)反饋訓練(形成方法)

      問題六:1.求以c(-1,-5)為圓心,并且和y軸相切的圓的方程.

      2.已知點a(-4,-5),b(6,-1),求以ab為直徑的圓的方程.

      3.求圓x2 y2=13過點(-2,3)的切線方程.

      4.已知圓的方程為 ,求過點 的切線方程.

    高中數學教案12

      教學目標:

      1.進一步熟練掌握比較法證明不等式;

      2.了解作商比較法證明不等式;

      3.提高學生解題時應變能力.

      教學重點

      比較法的應用

      教學難點

      常見解題技巧

      教學方法啟發引導式

      教學活動

      (一)導入新課

      (教師活動)教師打出字幕(復習提問),請三位同學回答問題,教師點評.

      (學生活動)思考問題,回答.

      [字幕]1.比較法證明不等式的步驟是怎樣的?

      2.比較法證明不等式的步驟中,依據、手段、目的各是什么?

      3.用比較法證明不等式的步驟中,最關鍵的是哪一步?學了哪些常用的變形方法?對式子的變形還有其它方法嗎?

      [點評]用比較法證明不等式步驟中,關鍵是對差式的變形.在我們所學的知識中,對式子變形的常用方法除了配方、通分,還有因式分解.這節課我們將繼續學習比較法證明不等式,積累對差式變形的常用方法和比較法思想的應用.(板書課題)

      設計意圖:復習鞏固已學知識,銜接新知識,引入本節課學習的內容.

      (二)新課講授

      【嘗試探索,建立新知】

      (教師活動)提出問題,引導學生研究解決問題,并點評.

      (學生活動)嘗試解決問題.

      [問題]

      1.化簡

      2.比較與()的大小.

      (學生解答問題)

      [點評]

      ①問題1,我們采用了因式分解的方法進行簡化.

      ②通過學習比較法證明不等式,我們不難發現,比較法的思想方法還可用來比較兩個式子的大小.

      設計意圖:啟發學生研究問題,建立新知,形成新的知識體系.

      【例題示范,學會應用】

      (教師活動)教師打出字幕(例題),引導、啟發學生研究問題,井點評解題過程.

      (學生活動)分析,研究問題.

      [字幕]例題3已知 a b 是正數,且,求證

      [分析]依題目特點,作差后重新組項,采用因式分解來變形.

      證明:(見課本)

      [點評]因式分解也是對差式變形的一種常用方法.此例將差式變形為幾個因式的積的形式,在確定符號中,表達過程較復雜,如何書寫證明過程,例3給出了一個好的示范.

      [點評]解這道題在判斷符號時用了分類討論,分類討論是重要的數學 思想方法.要理解為什么分類,怎樣分類.分類時要不重不漏.

      [字幕]例5甲、乙兩人同時同地沿同一條路線走到同一地點.甲有一半時間以速度 m 行走,另一半時間以速度 n 行走;有一半路程乙以速度 m 行走,另一半路程以速度 n 行走,如果,問甲、乙兩人誰先到達指定地點.

      [分析]設從出發地點至指定地點的路程為,甲、乙兩人走完這段路程用的時間分別為,要回答題目中的問題,只要比較、的大小就可以了.

      解:(見課本)

      [點評]此題是一個實際問題,學習了如何利用比較法證明不等式的思想方法解決有關實際問題.要培養自己學數學,用數學的良好品質.

      設計意圖:鞏固比較法證明不等式的方法,掌握因式分解的變形方法和分類討論確定符號的方法.培養學生應用知識解決實際問題的能力.

      【課堂練習】

      (教師活動)教師打出字幕練習,要求學生獨立思考,完成練習;請甲、乙兩位學生板演;巡視學生的解題情況,對正確的給予肯定,對偏差及時糾正;點評練習中存在的問題.

      (學生活動)在筆記本上完成練習,甲、乙兩位同學板演.

      [字幕]練習:1.設,比較與的大小.

      2.已知,求證

      設計意圖:掌握比較法證明不等式及思想方法的應用.靈活掌握因式分解法對差式的變形和分類討論確定符號.反饋信息,調節課堂教學.

      【分析歸納、小結解法】

      (教師活動)分析歸納例題的解題過程,小結對差式變形、確定符號的常用方法和利用不等式解決實際問題的解題步驟.

      (學生活動)與教師一道小結,并記錄在筆記本上.

      1.比較法不僅是證明不等式的一種基本、重要的'方法,也是比較兩個式子大小的一種重要方法.

      2.對差式變形的常用方法有:配方法,通分法,因式分解法等.

      3.會用分類討論的方法確定差式的符號.

      4.利用不等式解決實際問題的解題步驟:①類比列方程解應用題的步驟.②分析題意,設未知數,找出數量關系(函數關系,相等關系或不等關系),③列出函數關系、等式或不等式,④求解,作答.

      設計意圖:培養學生分析歸納問題的能力,掌握用比較法證明不等式的知識體系.

      (三)小結

      (教師活動)教師小結本節課所學的知識及數學 思想與方法.

      (學生活動)與教師一道小結,并記錄筆記.

      本節課學習了對差式變形的一種常用方法因式分解法;對符號確定的分類討論法;應用比較法的思想解決實際問題.

      通過學習比較法證明不等式,要明確比較法證明不等式的理論依據,理解轉化,使問題簡化是比較法證明不等式中所蘊含的重要數學思想,掌握求差后對差式變形以及判斷符號的重要方法,并在以后的學習中繼續積累方法,培養用數學知識解決實際問題的能力.

      設計意圖:培養學生對所學的知識進行概括歸納的能力,鞏固所學的知識,領會化歸、類比、分類討論的重要數學 思想方法.

      (四)布置作業

      1.課本作業:P17 7、8。

      2,思考題:已知,求證

      3.研究性題:對于同樣的距離,船在流水中來回行駛一次的時間和船在靜水中來回行駛一次的時間是否相等?(假設船在流水中的速度和部在靜水中的速度保持不變)

      設計意圖:思考題讓學生了解商值比較法,掌握分類討論的思想.研究性題是使學生理論聯系實際,用數學解決實際問題,提高應用數學的能力.

      (五)課后點評

      1.教學評價、反饋調節措施的構想:本節課采用啟發引導,講練結合的授課方式,發揮教師主導作用,體現學生主體地位,通過啟發誘導學生深入思考問題,解決問題,反饋學習信息,調節教學活動.

      2.教學措施的設計:由于對差式變形,確定符號是掌握比較法證明不等式的關鍵,本節課在上節課的基礎上繼續學習差式變形的方法和符號的確定,例3和例4分別使學生掌握因式分解變形和分類討論確定符號,例5使學生對所學的知識會應用.例題設計目的在于突出重點,突破難點,學會應用

    高中數學教案13

      猴子搬香蕉

      一個小猴子邊上有100根香蕉,它要走過50米才能到家,每次它最多搬50根香蕉,(多了就被壓死了),它每走1米就要吃掉一根,請問它最多能把多少根香蕉搬到家里?

      解答:

      100只香蕉分兩次,一次運50只,走1米,再回去搬另外50只,這樣走了1米的時候,前50只吃掉了兩只,后50只吃掉了1只,剩下48+49只;兩米的時候剩下46+48只;...到16米的時候剩下(50-2×16)+(50-16)=18+34只;17米的時候剩下16+33只,共49只;然后把剩下的這49只一次運回去,要走剩下的33米,每米吃一個,到家還有16個香蕉。

      河岸的距離

      兩艘輪船在同一時刻駛離河的兩岸,一艘從A駛往B,另一艘從B開往A,其中一艘開得比另一艘快些,因此它們在距離較近的岸500公里處相遇。到達預定地點后,每艘船要停留15分鐘,以便讓乘客上下船,然后它們又返航。這兩艘渡輪在距另一岸100公里處重新相遇。試問河有多寬?

      解答:

      當兩艘渡輪在x點相遇時,它們距A岸500公里,此時它們走過的距離總和等于河的寬度。當它們雙方抵達對岸時,走過的總長度

      等于河寬的兩倍。在返航中,它們在z點相遇,這時兩船走過的距離之和等于河寬的三倍,所以每一艘渡輪現在所走的距離應該等于它們第一次相遇時所走的距離的三倍。在兩船第一次相遇時,有一艘渡輪走了500公里,所以當它到達z點時,已經走了三倍的距離,即1500公里,這個距離比河的寬度多100公里。所以,河的寬度為1400公里。每艘渡輪的上、下客時間對答案毫無影響。

      變量交換

      不使用任何其他變量,交換a,b變量的值?

      分析與解答

      a = a+b

      b = a-b

      a= a-b

      步行時間

      某公司的辦公大樓在市中心,而公司總裁溫斯頓的家在郊區一個小鎮的附近。他每次下班以后都是乘同一次市郊火車回小鎮。小鎮車站離家還有一段距離,他的私人司機總是在同一時刻從家里開出轎車,去小鎮車站接總裁回家。由于火車與轎車都十分準時,因此,火車與轎車每次都是在同一時刻到站。

      有一次,司機比以往遲了半個小時出發。溫斯頓到站后,找不到

      他的車子,又怕回去晚了遭老婆罵,便急匆匆沿著公路步行往家里走,途中遇到他的轎車正風馳電掣而來,立即招手示意停車,跳上車子后也顧不上罵司機,命其馬上掉頭往回開。回到家中,果不出所料,他老婆大發雷霆:“又到哪兒鬼混去啦!你比以往足足晚回了22分鐘??”。溫斯頓步行了多長時間?

      解答:

      假如溫斯頓一直在車站等候,那么由于司機比以往晚了半小時出發,因此,也將晚半小時到達車站。也就是說,溫斯頓將在車站空等半小時,等他的轎車到達后坐車回家,從而他將比以往晚半小時到家。而現在溫斯頓只比平常晚22分鐘到家,這縮短下來的8分鐘是如果總裁在火車站死等的話,司機本來要花在從現在遇到溫斯頓總裁的地點到火車站再回到這個地點上的時間。這意味著,如果司機開車從現在遇到總裁的地點趕到火車站,單程所花的時間將為4分鐘。因此,如果溫斯頓等在火車站,再過4分鐘,他的轎車也到了。也就是說,他如果等在火車站,那么他也已經等了30-4=26分鐘了。但是懼內的溫斯頓總裁畢竟沒有等,他心急火燎地趕路,把這26分鐘全都花在步行上了。

      因此,溫斯頓步行了26分鐘。

      付清欠款

      有四個人借錢的數目分別是這樣的:阿伊庫向貝爾借了10美元;

      貝爾向查理借了20美元;查理向迪克借了30美元;迪克又向阿伊庫借了40美元。碰巧四個人都在場,決定結個賬,請問最少只需要動用多少美金就可以將所有欠款一次付清?

      解答:

      貝爾、查理、迪克各自拿出10美元給阿伊庫就可解決問題了。這樣的話只動用了30美元。最笨的辦法就是用100美元來一一付清。

      貝爾必須拿出10美元的`欠額,查理和迪克也一樣;而阿伊庫則要收回借出的30美元。再復雜的問題只要有條理地分析就會很簡單。養成經常性地歸納整理、摸索實質的好習慣。

      一美元紙幣

      注:美國貨幣中的硬幣有1美分、5美分、10美分、25美分、50美分和1美元這幾種面值。

      一家小店剛開始營業,店堂中只有三位男顧客和一位女店主。當這三位男士同時站起來付帳的時候,出現了以下的情況:

      (1)這四個人每人都至少有一枚硬幣,但都不是面值為1美分或1美元的硬幣。

      (2)這四人中沒有一人能夠兌開任何一枚硬幣。

      (3)一個叫盧的男士要付的賬單款額最大,一位叫莫的男士要

      付的帳單款額其次,一個叫內德的男士要付的賬單款額最小。

      (4)每個男士無論怎樣用手中所持的硬幣付賬,女店主都無法找清零錢。

      (5)如果這三位男士相互之間等值調換一下手中的硬幣,則每個人都可以付清自己的賬單而無需找零。

      (6)當這三位男士進行了兩次等值調換以后,他們發現手中的硬幣與各人自己原先所持的硬幣沒有一枚面值相同。

      (7)隨著事情的進一步發展,又出現如下的情況:

      (8)在付清了賬單而且有兩位男士離開以后,留下的男士又買了一些糖果。這位男士本來可以用他手中剩下的硬幣付款,可是女店主卻無法用她現在所持的硬幣找清零錢。于是,這位男士用1美元的紙幣付了糖果錢,但是現在女店主不得不把她的全部硬幣都找給了他。

      現在,請你不要管那天女店主怎么會在找零上屢屢遇到麻煩,這三位男士中誰用1美元的紙幣付了糖果錢?

      解答:

      對題意的以下兩點這樣理解:

      (2)中不能換開任何一個硬幣,指的是如果任何一個人不能有2個5分,否則他能換1個10分硬幣。

      (6)中指如果A,B換過,并且A,C換過,這就是兩次交換。

    高中數學教案14

      一.教材分析:

      集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。

      二.目標分析:

      教學重點.難點

      重點:集合的含義與表示方法.

      難點:表示法的恰當選擇.

      教學目標

      l.知識與技能

      (1)通過實例,了解集合的含義,體會元素與集合的屬于關系;

      (2)知道常用數集及其專用記號; (3)了解集合中元素的確定性.互異性.無序性;

      (4)會用集合語言表示有關數學對象;

      2.過程與方法

      (1)讓學生經歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.

      (2)讓學生歸納整理本節所學知識.

      3.情感.態度與價值觀

      使學生感受到學習集合的必要性,增強學習的積極性.

      三.教法分析

      1.教學方法:學生通過閱讀教材,自主學習.思考.交流.討論和概括,從而更好地完成本節課的教學目標.2.教學手段:在教學中使用投影儀來輔助教學.

      四.過程分析

      (一)創設情景,揭示課題

      1.教師首先提出問題:(1)介紹自己的家庭、原來就讀的學校、現在的班級。

      (2)問題:像“家庭”、“學校”、“班級”等,有什么共同特征?

      引導學生互相交流.與此同時,教師對學生的活動給予評價.

      2.活動:(1)列舉生活中的集合的`例子;(2)分析、概括各實例的共同特征

      由此引出這節要學的內容。

      設計意圖:既激發了學生濃厚的學習興趣,又為新知作好鋪墊

      (二)研探新知,建構概念

      1.教師利用多媒體設備向學生投影出下面7個實例:

      (1)1—20以內的所有質數;(2)我國古代的四大發明;

      (3)所有的安理會常任理事國; (4)所有的正方形;

      (5)海南省在20xx年9月之前建成的所有立交橋;

      (6)到一個角的兩邊距離相等的所有的點;

      (7)國興中學20xx年9月入學的高一學生的全體.

      2.教師組織學生分組討論:這7個實例的共同特征是什么?

      3.每個小組選出——位同學發表本組的討論結果,在此基礎上,師生共同概括出7個實例的特征,并給出集合的含義.一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素.

      4.教師指出:集合常用大寫字母A,B,C,D,?表示,元素常用小寫字母a,b,c,d?表示.

      設計意圖:通過實例讓學生感受集合的概念,激發學習的興趣,培養學生樂于求索的精神

      (三)質疑答辯,發展思維

      1.教師引導學生閱讀教材中的相關內容,思考:集合中元素有什么特點?并注意個別輔導,解答學生疑難.使學生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構成兩個集合的元素是一樣的,我們就稱這兩個集合相等.

      2.教師組織引導學生思考以下問題:

      判斷以下元素的全體是否組成集合,并說明理由:

      (1)大于3小于11的偶數;(2)我國的小河流.讓學生充分發表自己的建解.

      3.讓學生自己舉出一些能夠構成集合的例子以及不能構成集合的例子,并說明理由.教師對學生的學習活動給予及時的評價.

      4.教師提出問題,讓學生思考

      b是(1)如果用A表示高—(3)班全體學生組成的集合,用a表示高一(3)班的一位同學,

      高一(4)班的一位同學,那么a,b與集合A分別有什么關系?由此引導學生得出元素與集合的關系有兩種:屬于和不屬于.

      如果a是集合A的元素,就說a屬于集合A,記作a?A.

      如果a不是集合A的元素,就說a不屬于集合A,記作a?A.

      (2)如果用A表示“所有的安理會常任理事國”組成的集合,則中國.日本與集合A的關系分別是什么?請用數學符號分別表示.

      (3)讓學生完成教材第6頁練習第1題.

      5.教師引導學生回憶數集擴充過程,然后閱讀教材中的相交內容,寫出常用數集的記號.并讓學生完成習題1.1A組第1題.

      6.教師引導學生閱讀教材中的相關內容,并思考.討論下列問題:

      (1)要表示一個集合共有幾種方式?

      (2)試比較自然語言.列舉法和描述法在表示集合時,各自的特點?適用的對象是什么?

      (3)如何根據問題選擇適當的集合表示法?

      使學生弄清楚三種表示方式的優缺點和體會它們存在的必要性和適用對象。

      設計意圖:明確集合元素的三大特性,使學生弄清楚三種表示方式的優缺點,從而突破難點。

      (四)鞏固深化,反饋矯正

      教師投影學習:

      (1)用自然語言描述集合{1,3,5,7,9}; (2)用例舉法表示集合A?{x?N|1?x?8}

      (3)試選擇適當的方法表示下列集合:教材第6頁練習第2題.

      設計意圖:使學生及時鞏固所學新知,體會三種表示方式存在的必要性和適用對象

      (五)歸納小結,布置作業

      小結:在師生互動中,讓學生了解或體會下例問題:

      1.本節課我們學習了哪些知識內容? 2.你認為學習集合有什么意義?

      3.選擇集合的表示法時應注意些什么?

      設計意圖:通過回顧,對概念的發生與發展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。

      作業:1.課后書面作業:第13頁習題1.1A組第4題.

      2.元素與集合的關系有多少種?如何表示?類似地集合與集合間的關系又有多少種

    呢?如何表示?請同學們通過預習教材.

      五.板書分析

    高中數學教案15

      一、教材分析

      1、教材地位和作用:二面角是我們日常生活中經常見到的、很普通的一個空間圖形。“二面角”是人教版《數學》第二冊(下B)中9.7的內容。它是在學生學過兩條異面直線所成的角、直線和平面所成角、又要重點研究的一種空間的角,它是為了研究兩個平面的垂直而提出的一個概念,也是學生進一步研究多面體的基礎。因此,它起著承上啟下的作用。通過本節課的學習還對學生系統地掌握直線和平面的知識乃至于創新能力的培養都具有十分重要的意義。

      2、教學目標:

      知識目標:(1)正確理解二面角及其平面角的概念,并能初步運用它們解決實際問題。

      (2)進一步培養學生把空間問題轉化為平面問題的化歸思想。

      能力目標:(1)突出對類比、直覺、發散等探索性思維的培養,從而提高學生的創新能力。(2)通過對圖形的觀察、分析、比較和操作來強化學生的動手操作能力。

      德育目標:(1)使學生認識到數學知識來自實踐,并服務于實踐,增強學生應用數學的意識(2)通過揭示線線、線面、面面之間的內在聯系,進一步培養學生聯系的辯證唯物主義觀點。

      情感目標:在平等的教學氛圍中,通過學生之間、師生之間的交流、合作和評價,拉近學生之間、師生之間的情感距離。

      3、重點、難點:

      重點:“二面角”和“二面角的平面角”的概念

      難點:“二面角的平面角”概念的形成過程

      二、教法分析

      1、教學方法:在引入課題時,我采用多媒體、實物演示法,在新課探究中采用問題啟導、活動探究和類比發現法,在形成技能時以訓練法、探究研討法為主。

      2、教學控制與調節的措施:本節課由于充分運用了多媒體和實物教具,預計學生對二面角及二面角平面角的概念能夠理解,根據學生及教學的實際情況,估計二面角的具體求法一節課內完成有一定的困難,所以將其放在下節課。

      3、教學手段:教學手段的現代化有利于提高課堂效益,有利于創新人才的培養,根據本節課的`教學需要,確定利用多媒體課件來輔助教學;此外,為加強直觀教學,還要預先做好一些二面角的模型。

      三、學法指導

      1、樂學:在整個學習過程中學生要保持強烈的好奇心和求知欲,不斷強化自己的創新意識,全身心地投入到學習中去,成為學習的主人。

      2、學會:在掌握基礎知識的同時,學生要注意領會化歸、類比聯想等數學思想方法的運用,學會建立完善的認知結構。

      3、會學:通過自己親身參與,學生要領會復習類比和深入研究這兩種知識創新的方法,從而既學到知識,又學會創新,既能解決問題,更能發現問題。

      四、教學過程

      心理學研究表明,當學生明確數學概念的學習目的和意義時,就會對概念的學習產生濃厚的興趣。創設問題情境,激發了學生的創新意識,營造了創新思維的氛圍。

      (一)、二面角

      1、揭示概念產生背景。

      問題情境1、在平面幾何中“角”是怎樣定義的?

      問題情境2、在立體幾何中我們還學習了哪些角?

      問題情境3、運用多媒體和身邊的實例,展示我們遇到的另一種空間的角——二面角(板書課題)。

      通過這三個問題,打開了學生的原有認知結構,為知識的創新做好了準備;同時也讓學生領會到,二面角這一概念的產生是因為它與我們的生活密不可分,激發學生的求知欲。2、展現概念形成過程。

      問題情境4、那么,應該如何定義二面角呢?

      創設這個問題情境,為學生創新思維的展開提供了空間。引導學生回憶平面幾何中“角”這一概念的引入過程。教師應注意多讓學生說,對于學生的創新意識和創新結果,教師要給與積極的評價。

      問題情境5、同學們能舉出一些二面角的實例嗎?通過實際運用,可以促使學生更加深刻地理解概念。

      (二)、二面角的平面角

      1、揭示概念產生背景。平面幾何中可以把角理解為是一個旋轉量,同樣一個二面角也可以看作是一個半平面以其棱為軸旋轉而成的,也是一個旋轉量。說明二面角不僅有大小,而且其大小是唯一確定的。平面

      與平面的位置關系,總的說來只有相交或平行兩種情況,為了對相交平面的相互位置作進一步的探討,我們有必要來研究二面角的度量問題。

      問題情境6、二面角的大小應該怎么度量?能否轉化為平面角來處理?這樣就從度量二面角大小的需要上揭示了二面角的平面角概念產生的背景。

      2、展現概念形成過程

      (1)、類比。教師啟發,尋找類比聯想的對象。

      問題情境7、我們以前碰到過類似的問題嗎?引導學生回憶前面所學過的兩種空間角的定義,電腦演示以提高效率。

      問題情境8、兩定義的共同點是什么?生:空間角總是轉化為平面的角,并且這個角是唯一確定的。

      問題情境9、這個平面的角的頂點及兩邊是如何確定的?

      (2)、提出猜想:二面角的大小也可通過平面的角來定義。對學生提出的猜想,教師應該給予充分的肯定,以培養他們大膽猜想的意識和習慣,這對強化他們的創新意識大有幫助。

      問題情境10、那么,這個角的頂點及兩邊應如何確定呢?生:頂點放在棱上,兩邊分別放在兩個面內。這也是學生直覺思維的結果。

      (3)、探索實驗。通過實驗,激發了學生的學習興趣,培養了學生的動手操作能力。

      (4)、繼續探索,得到定義。

      問題情境11、那么,怎樣使這個角的大小唯一確定呢?師生共同探討后發現,角的頂點確定后,要使此角的大小唯一確定,只須使它的兩條邊在平面內唯一確定,聯想到平面內過直線上一點的垂線的唯一性,由此發現二面角的大小的一種描述方法。

      (5)、自我驗證:要求學生閱讀課本上的定義。并說明定義的合理性,教師作適當的引導,并加以理論證明。

      (三)、二面角及其平面角的畫法

      主要分為直立式和平臥式兩種,用電腦《幾何畫板》作圖。

      (四)、范例分析

      為鞏固學生所學知識,由于時間的關系設置了一道例題。來源于實際生活,不但培養了學生分析問題和解決問題的能力,也讓學生領會到數學概念來自生活實際,并服務于生活實際,從而增強他們應用數學的意識。

      例:一張邊長為10厘米的正三角形紙片ABc,以它的高AD為折痕,折成一個1200二面角,求此時B、c兩點間的距離。

      分析:涉及二面角的計算問題,關鍵是找出(或作出)該二面角的平面角。引導學生充分利用已知圖形的性質,最后發現可由定義找出該二面角的平面角。可讓學生先做,為調動學生的積極性,并增加學生的參與感,活躍課堂的氣氛,教師可給學生板演的機會。教師講評時強調解題規范即必須證明∠BDc是二面角B—AD—c的平面角。

      變式訓練:圖中共有幾個二面角?能求出它們的大小嗎?根據課堂實際情況,本題的變式訓練也可作為課后思考題。

      題后反思:(1)解題過程中必須證明∠BDc是二面角B—AD—c的平面角。

      (2)求二面角的平面角的方法是:先找(或作)——后證——再解(三角形)

      (五)、練習、小結與作業

      練習:習題9.7的第3題

      小結在復習完二面角及其平面角的概念后,要求學生對空間中三種角加以比較、歸納,以促成學生建立起空間中角這一概念系統。同時要求學生對本節課的學習方法進行總結,領會復習類比和深入研究這兩種知識創新的方法。

      作業:習題9.7的第4題

      思考題:見例題

      五、板書設計(見課件)

      以上是我對《二面角》授課的初步設想,不足之處,懇請大家批評指正,謝謝!

    【高中數學教案】相關文章:

    高中數學教案08-16

    高中數學教案12-30

    【推薦】高中數學教案01-25

    高中數學教案【熱門】01-25

    【熱】高中數學教案01-25

    高中數學教案【推薦】01-25

    高中數學教案【薦】01-25

    【精】高中數學教案01-25

    高中數學教案【熱】01-25

    高中數學教案【精】02-01

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      中文字幕不卡在线观看 | 亚洲国产精品悠悠久久琪琪 | 日韩在线视频一区二区三 | 色丁狠狠桃花久久综合网 | 五月天一区二区精品 | 亚洲中文字永久在线 |