1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>高一數學教案>高一數學函數的教案

    高一數學函數的教案

    時間:2023-01-13 15:28:11 高一數學教案 我要投稿

    高一數學函數的教案(15篇)

      作為一名為他人授業解惑的教育工作者,很有必要精心設計一份教案,教案是教學活動的依據,有著重要的地位。我們應該怎么寫教案呢?下面是小編為大家整理的高一數學函數的教案,僅供參考,歡迎大家閱讀。

    高一數學函數的教案(15篇)

    高一數學函數的教案1

      一、教學內容:橢圓的方程

      要求:理解橢圓的標準方程和幾何性質.

      重點:橢圓的方程與幾何性質.

      難點:橢圓的方程與幾何性質.

      二、點:

      1、橢圓的定義、標準方程、圖形和性質

      定 義

      第一定義:平面內與兩個定點 )的點的軌跡叫作橢圓,這兩個定點叫做橢圓的焦點,兩焦點間的距離叫做橢圓的焦距

      第二定義:

      平面內到動點距離與到定直線距離的比是常數e.(0

      標準方程

      焦點在x軸上

      焦點在y軸上

      圖 形

      焦點在x軸上

      焦點在y軸上

      性 質

      焦點在x軸上

      范 圍:

      對稱性: 軸、 軸、原點.

      頂點: , .

      離心率:e

      概念:橢圓焦距與長軸長之比

      定義式:

      范圍:

      2、橢圓中a,b,c,e的關系是:(1)定義:r1+r2=2a

      (2)余弦定理: + -2r1r2cos(3)面積: = r1r2 sin ?2c y0 (其中P( )

      三、基礎訓練:

      1、橢圓 的標準方程為 ,焦點坐標是 ,長軸長為___2____,短軸長為2、橢圓 的值是__3或5__;

      3、兩個焦點的坐標分別為 ___;

      4、已知橢圓 上一點P到橢圓一個焦點 的距離是7,則點P到另一個焦點5、設F是橢圓的一個焦點,B1B是短軸, ,則橢圓的離心率為6、方程 =10,化簡的結果是 ;

      滿足方程7、若橢圓短軸上的兩個三等分點與兩個焦點構成一個正方形,則橢圓的離心率為

      8、直線y=kx-2與焦點在x軸上的橢圓9、在平面直角坐標系 頂點 ,頂點 在橢圓 上,則10、已知點F是橢圓 的右焦點,點A(4,1)是橢圓內的一點,點P(x,y)(x≥0)是橢圓上的一個動點,則 的最大值是 8 .

      【典型例題】

      例1、(1)已知橢圓的中心在原點,焦點在坐標軸上,長軸長是短軸長的3倍,短軸長為4,求橢圓的方程.

      解:設方程為 .

      所求方程為

      (2)中心在原點,焦點在x軸上,右焦點到短軸端點的距離為2,到右頂點的距離為1,求橢圓的方程.

      解:設方程為 .

      所求方程為(3)已知三點P,(5,2),F1 (-6,0),F2 (6,0).設點P,F1,F2關于直線y=x的對稱點分別為 ,求以 為焦點且過點 的橢圓方程 .

      解:(1)由題意可設所求橢圓的標準方程為 ∴所以所求橢圓的標準方程為(4)求經過點M( , 1)的橢圓的標準方程.

      解:設方程為

      例2、如圖所示,我國發射的第一顆人造地球衛星運行軌道是以地心(地球的中心) 為一個焦點的橢圓,已知它的近地點A(離地面最近的點)距地面439km,遠地點B(離地面最遠的點)距地面2384km,并且 、A、B在同一直線上,設地球半徑約為6371km,求衛星運行的軌道方程 (精確到1km).

      解:建立如圖所示直角坐標系,使點A、B、 在 軸上,

      則 =OA-O = A=6371+439=6810

      解得 =7782.5, =972.5

      衛星運行的`軌道方程為

      例3、已知定圓

      分析:由兩圓內切,圓心距等于半徑之差的絕對值 根據圖形,用符號表示此結論:

      上式可以變形為 ,又因為 ,所以圓心M的軌跡是以P,Q為焦點的橢圓

      解:知圓可化為:圓心Q(3,0),

      設動圓圓心為 ,則 為半徑 又圓M和圓Q內切,所以 ,

      即 ,故M的軌跡是以P,Q為焦點的橢圓,且PQ中點為原點,所以 ,故動圓圓心M的軌跡方程是:

      例4、已知橢圓的焦點是 |和|(1)求橢圓的方程;

      (2)若點P在第三象限,且∠ =120°,求 .

      選題意圖:綜合考查數列與橢圓標準方程的基礎知識,靈活運用等比定理進行解題.

      解:(1)由題設| |=2| |=4

      ∴ , 2c=2, ∴b=∴橢圓的方程為 .

      (2)設∠ ,則∠ =60°-θ

      由正弦定理得:

      由等比定理得:

      整理得: 故

      說明:曲線上的點與焦點連線構成的三角形稱曲線三角形,與曲線三角形有關的問題常常借助正(余)弦定理,借助比例性質進行處理.對于第二問還可用后面的幾何性質,借助焦半徑公式余弦定理把P點橫坐標先求出來,再去解三角形作答

      例5、如圖,已知一個圓的圓心為坐標原點,半徑為2,從這個圓上任意一點P向 軸作垂線段PP?@,求線段PP?@的中點M的軌跡(若M分 PP?@之比為 ,求點M的軌跡)

      解:(1)當M是線段PP?@的中點時,設動點 ,則 的坐標為

      因為點 在圓心為坐標原點半徑為2的圓上,

      所以有 所以點

      (2)當M分 PP?@之比為 時,設動點 ,則 的坐標為

      因為點 在圓心為坐標原點半徑為2的圓上,所以有 ,

      即所以點

      例6、設向量 =(1, 0), =(x+m) +y =(x-m) +y + (I)求動點P(x,y)的軌跡方程;

      (II)已知點A(-1, 0),設直線y= (x-2)與點P的軌跡交于B、C兩點,問是否存在實數m,使得 ?若存在,求出m的值;若不存在,請說明理由.

      解:(I)∵ =(1, 0), =(0, 1), =6

      上式即為點P(x, y)到點(-m, 0)與到點(m, 0)距離之和為6.記F1(-m, 0),F2(m, 0)(0

      ∴ PF1+PF2=6>F1F2

      又∵x>0,∴P點的軌跡是以F1、F2為焦點的橢圓的右半部分.

      ∵ 2a=6,∴a=3

      又∵ 2c=2m,∴ c=m,b2=a2-c2=9-m2

      ∴ 所求軌跡方程為 (x>0,0<m<3)

      ( II )設B(x1, y1),C(x2, y2),

      ∴∴ 而y1y2= (x1-2)? (x2-2)

      = [x1x2-2(x1+x2)+4]

      ∴ [x1x2-2(x1+x2)+4]

      = [10x1x2+7(x1+x2)+13]

      若存在實數m,使得 成立

      則由 [10x1x2+7(x1+x2)+13]=

      可得10x1x2+7(x1+x2)+10=0 ①

      再由

      消去y,得(10-m2)x2-4x+9m2-77=0 ②

      因為直線與點P的軌跡有兩個交點.

      所以

      由①、④、⑤解得m2= <9,且此時△>0

      但由⑤,有9m2-77= <0與假設矛盾

      ∴ 不存在符合題意的實數m,使得

      例7、已知C1: ,拋物線C2:(y-m)2=2px (p>0),且C1、C2的公共弦AB過橢圓C1的右焦點.

      (Ⅰ)當AB⊥x軸時,求p、m的值,并判斷拋物線C2的焦點是否在直線AB上;

      (Ⅱ)若p= ,且拋物線C2的焦點在直線AB上,求m的值及直線AB的方程.

      解:(Ⅰ)當AB⊥x軸時,點A、B關于x軸對稱,所以m=0,直線AB的方程為x=1,從而點A的坐標為(1, )或(1,- ).

      ∵點A在拋物線上,∴

      此時C2的焦點坐標為( ,0),該焦點不在直線AB上.

      (Ⅱ)當C2的焦點在AB上時,由(Ⅰ)知直線AB的斜率存在,設直線AB的方程為y=k(x-1).

      由 (kx-k-m)2= ①

      因為C2的焦點F( ,m)在y=k(x-1)上.

      所以k2x2- (k2+2)x+ =0 ②

      設A(x1,y1),B(x2,y2),則x1+x2=

      由

      (3+4k2)x2-8k2x+4k2-12=0 ③

      由于x1、x2也是方程③的兩根,所以x1+x2=

      從而 = k2=6即k=±

      又m=- ∴m= 或m=-

      當m= 時,直線AB的方程為y=- (x-1);

      當m=- 時,直線AB的方程為y= (x-1).

      例8、已知橢圓C: (a>0,b>0)的左、右焦點分別是F1、F2,離心率為e.直線l:y=ex+a與x軸,y軸分別交于點A、B,M是直線l與橢圓C的一個公共點,P是點F1關于直線l的對稱點,設 = .

      (Ⅰ)證明:(Ⅱ)若 ,△MF1F2的周長為6,寫出橢圓C的方程;

      (Ⅲ)確定解:(Ⅰ)因為A、B分別為直線l:y=ex+a與x軸、y軸的交點,所以A、B的坐標分別是A(- ,0),B(0,a).

      由 得 這里∴M = ,a)

      即 解得

      (Ⅱ)當 時, ∴a=2c

      由△MF1F2的周長為6,得2a+2c=6

      ∴a=2,c=1,b2=a2-c2=3

      故所求橢圓C的方程為

      (Ⅲ)∵PF1⊥l ∴∠PF1F2=90°+∠BAF1為鈍角,要使△PF1F2為等腰三角形,必有PF1=F1F2,即 PF1=C.

      設點F1到l的距離為d,由

      PF1= =得: =e ∴e2= 于是

      即當(注:也可設P(x0,y0),解出x0,y0求之)

      【模擬】

      一、選擇題

      1、動點M到定點 和 的距離的和為8,則動點M的軌跡為 ( )

      A、橢圓 B、線段 C、無圖形 D、兩條射線

      2、設橢圓的兩個焦點分別為F1、F2,過F2作橢圓長軸的垂線交橢圓于點P,若△F1PF2為等腰直角三角形,則橢圓的離心率是 ( )

      A、 C、2- -1

      3、(20xx年高考湖南卷)F1、F2是橢圓C: 的焦點,在C上滿足PF1⊥PF2的點P的個數為( )

      A、2個 B、4個 C、無數個 D、不確定

      4、橢圓 的左、右焦點為F1、F2,一直線過F1交橢圓于A、B兩點,則△ABF2的周長為 ( )

      A、32 B、16 C、8 D、4

      5、已知點P在橢圓(x-2)2+2y2=1上,則 的最小值為( )

      A、 C、

      6、我們把離心率等于黃金比 是優美橢圓,F、A分別是它的左焦點和右頂點,B是它的短軸的一個端點,則 等于( )

      A、 C、

      二、填空題

      7、橢圓 的頂點坐標為 和 ,焦點坐標為 ,焦距為 ,長軸長為 ,短軸長為 ,離心率為 ,準線方程為 .

      8、設F是橢圓 的右焦點,且橢圓上至少有21個不同的點Pi(i=1,2, ),使得FP1、FP2、FP3…組成公差為d的等差數列,則d的取值范圍是 .

      9、設 , 是橢圓 的兩個焦點,P是橢圓上一點,且 ,則得 .

      10、若橢圓 =1的準線平行于x軸則m的取值范圍是

      三、解答題

      11、根據下列條件求橢圓的標準方程

      (1)和橢圓 共準線,且離心率為 .

      (2)已知P點在以坐標軸為對稱軸的橢圓上,點P到兩焦點的距離分別為 和 ,過P作長軸的垂線恰好過橢圓的一個焦點.

      12、已知 軸上的一定點A(1,0),Q為橢圓 上的動點,求AQ中點M的軌跡方程

      13、橢圓 的焦點為 =(3, -1)共線.

      (1)求橢圓的離心率;

      (2)設M是橢圓上任意一點,且 = 、 ∈R),證明 為定值.

      【試題答案】

      1、B

      2、D

      3、A

      4、B

      5、D(法一:設 ,則y=kx代入橢圓方程中得:(1+2k2)x2-4x+3=0,由△≥0得: .法二:用橢圓的參數方程及三角函數的有界性求解)

      6、C

      7、( ;(0, );6;10;8; ; .

      8、 ∪

      9、

      10、m< 且m≠0.

      11、(1)設橢圓方程 .

      解得 , 所求橢圓方程為(2)由 .

      所求橢圓方程為 的坐標為

      因為點 為橢圓 上的動點

      所以有

      所以中點

      13、解:設P點橫坐標為x0,則 為鈍角.當且僅當 .

      14、(1)解:設橢圓方程 ,F(c,0),則直線AB的方程為y=x-c,代入 ,化簡得:

      x1x2=

      由 =(x1+x2,y1+y2), 共線,得:3(y1+y2)+(x1+x2)=0,

      又y1=x1-c,y2=x2-c

      ∴ 3(x1+x2-2c)+(x1+x2)=0,∴ x1+x2=

      即 = ,∴ a2=3b2

      ∴ 高中地理 ,故離心率e= .

      (2)證明:由(1)知a2=3b2,所以橢圓 可化為x2+3y2=3b2

      設 = (x2,y2),∴ ,

      ∵M∴ ( )2+3( )2=3b2

      即: )+ (由(1)知x1+x2= ,a2= 2,b2= c2.

      x1x2= = 2

      x1x2+3y1y2=x1x2+3(x1-c)(x2-c)

      =4x1x2-3(x1+x2)c+3c2= 2- 2+3c2=0

      又 =3b2代入①得

      為定值,定值為1.

    高一數學函數的教案2

      1.掌握對數函數的概念,圖象和性質,且在掌握性質的基礎上能進行初步的應用。

      (1) 能在指數函數及反函數的概念的基礎上理解對數函數的定義,了解對底數的要求,及對定義域的要求,能利用互為反函數的兩個函數圖象間的關系正確描繪對數函數的圖象。

      (2) 能把握指數函數與對數函數的實質去研究認識對數函數的性質,初步學會用對數函數的性質解決簡單的問題。

      2.通過對數函數概念的.學習,樹立相互聯系相互轉化的觀點,通過對數函數圖象和性質的學習,滲透數形結合,分類討論等思想,注重培養學生的觀察,分析,歸納等邏輯思維能力。

      3.通過指數函數與對數函數在圖象與性質上的對比,對學生進行對稱美,簡潔美等審美教育,調動學生學習數學的積極性。

      高一數學對數函數教案:教材分析

      (1) 對數函數又是函數中一類重要的基本初等函數,它是在學生已經學過對數與常用對數,反函數以及指數函數的基礎上引入的。故是對上述知識的應用,也是對函數這一重要數學思想的進一步認識與理解。對數函數的概念,圖象與性質的學習使學生的知識體系更加完整,系統,同時又是對數和函數知識的拓展與延伸。它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習對數方程,對數不等式的基礎。

      (2) 本節的教學重點是理解對數函數的定義,掌握對數函數的圖象性質。難點是利用指數函數的圖象和性質得到對數函數的圖象和性質。由于對數函數的概念是一個抽象的形式,學生不易理解,而且又是建立在指數與對數關系和反函數概念的基礎上,故應成為教學的重點。

      (3) 本節課的主線是對數函數是指數函數的反函數,所有的問題都應圍繞著這條主線展開。而通過互為反函數的兩個函數的關系由已知函數研究未知函數的性質,這種方法是第一次使用,學生不適應,把握不住關鍵,所以應是本節課的難點。

      高一數學對數函數教案:教法建議

      (1) 對數函數在引入時,就應從學生熟悉的指數問題出發,通過對指數函數的認識逐步轉化為對對數函數的認識,而且畫對數函數圖象時,既要考慮到對底數 的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質。

      (2) 在本節課中結合對數函數教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函數這條主線引導學生思考的方向。這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣。

    高一數學函數的教案3

      教學目標:

      1.進一步理解對數函數的性質,能運用對數函數的相關性質解決對數型函數的常見問題.

      2.培養學生數形結合的思想,以及分析推理的能力.

      教學重點:

      對數函數性質的應用.

      教學難點:

      對數函數的性質向對數型函數的演變延伸.

      教學過程:

      一、問題情境

      1.復習對數函數的性質.

      2.回答下列問題.

      (1)函數y=log2x的值域是 ;

      (2)函數y=log2x(x≥1)的值域是 ;

      (3)函數y=log2x(0

      3.情境問題.

      函數y=log2(x2+2x+2)的.定義域和值域分別如何求呢?

      二、學生活動

      探究完成情境問題.

      三、數學運用

      例1 求函數y=log2(x2+2x+2)的定義域和值域.

      練習:

      (1)已知函數y=log2x的值域是[-2,3],則x的范圍是________________.

      (2)函數 ,x(0,8]的值域是 .

      (3)函數y=log (x2-6x+17)的值域 .

      (4)函數 的值域是_______________.

      例2 判斷下列函數的奇偶性:

      (1)f (x)=lg (2)f (x)=ln( -x)

      例3 已知loga 0.75>1,試求實數a 取值范圍.

      例4 已知函數y=loga(1-ax)(a>0,a≠1).

      (1)求函數的定義域與值域;

      (2)求函數的單調區間.

      練習:

      1.下列函數(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域為R的有 (請寫出所有正確結論的序號).

      2.函數y=lg( -1)的圖象關于 對稱.

      3.已知函數 (a>0,a≠1)的圖象關于原點對稱,那么實數m= .

      4.求函數 ,其中x [ ,9]的值域.

      四、要點歸納與方法小結

      (1)借助于對數函數的性質研究對數型函數的定義域與值域;

      (2)換元法;

      (3)能畫出較復雜函數的圖象,根據圖象研究函數的性質(數形結合).

      五、作業

      課本P70~71-4,5,10,11.

    高一數學函數的教案4

      教學目標

      會運用圖象判斷單調性;理解函數的單調性,能判斷或證明一些簡單函數單調性;注意必須在定義域內或其子集內討論函數的單調性。

      重 點

      函數單調性的證明及判斷。

      難 點

      函數單調性證明及其應用。

      一、復習引入

      1、函數的定義域、值域、圖象、表示方法

      2、函數單調性

      (1)單調增函數

      (2)單調減函數

      (3)單調區間

      二、例題分析

      例1、畫出下列函數圖象,并寫出單調區間:

      (1) (2) (2)

      例2、求證:函數 在區間 上是單調增函數。

      例3、討論函數 的單調性,并證明你的結論。

      變(1)討論函數 的單調性,并證明你的結論

      變(2)討論函數 的單調性,并證明你的結論。

      例4、試判斷函數 在 上的單調性。

      三、隨堂練習

      1、判斷下列說法正確的是 。

      (1)若定義在 上的函數 滿足 ,則函數 是 上的單調增函數;

      (2)若定義在 上的函數 滿足 ,則函數 在 上不是單調減函數;

      (3)若定義在 上的函數 在區間 上是單調增函數,在區間 上也是單調增函數,則函數 是 上的單調增函數;

      (4)若定義在 上的函數 在區間 上是單調增函數,在區間 上也是單調增函數,則函數 是 上的單調增函數。

      2、若一次函數 在 上是單調減函數,則點 在直角坐標平面的( )

      A.上半平面 B.下半平面 C.左半平面 D.右半平面

      3、函數 在 上是___ ___;函數 在 上是__ _____。

      3.下圖分別為函數 和 的圖象,求函數 和 的單調增區間。

      4、求證:函數 是定義域上的單調減函數。

      四、回顧小結

      1、函數單調性的判斷及證明。

      課后作業

      一、基礎題

      1、求下列函數的`單調區間

      (1) (2)

      2、畫函數 的圖象,并寫出單調區間。

      二、提高題

      3、求證:函數 在 上是單調增函數。

      4、若函數 ,求函數 的單調區間。

      5、若函數 在 上是增函數,在 上是減函數,試比較 與 的大小。

      三、能力題

      6、已知函數 ,試討論函數f(x)在區間 上的單調性。

      變(1)已知函數 ,試討論函數f(x)在區間 上的單調性。

    高一數學函數的教案5

      教材分析:

      “指數函數”是在學生系統地學習了函數概念及性質,掌握了指數與指數冪的運算性質的基礎上展開研究的.作為重要的基本初等函數之一,指數函數既是函數近代定義及性質的第一次應用,也為今后研究其他函數提供了方法和模式,為后續的學習奠定基礎.指數函數在知識體系中起了承上啟下的作用,同時在生活及生產實際中有著廣泛的應用,因此它也是對學生進行情感價值觀教育的好素材,所以指數函數應重點研究.

      學情分析:

      通過初中階段的學習和高中對函數、指數的運算等知識的系統學習,學生對函數已經有了一定的認識,學生對用“描點法”描繪出函數圖象的方法已基本掌握,已初步了解數形結合的思想.另外,學生對由特殊到一般再到特殊的數學活動過程已有一定的體會.

      教學目標:

      知識與技能:理解指數函數的概念和意義,能正確作出其圖象,掌握指數函數的性質并能自覺、靈活地應用其性質(單調性、中介值)比較大小.

      過程與方法:

      (1) 體會從特殊到一般再到特殊的研究問題的方法,培養學生觀察、歸納、猜想、概括的能力,讓學生了解數學來源于生活又在生活中有廣泛的應用;理解并掌握探求函數性質的一般方法;

      (2) 從數和形兩方面理解指數函數的性質,體會數形結合、分類討論的數學思想方法,提高思維的靈活性,培養學生直觀、嚴謹的思維品質.

      情感、態度與價值觀:

      (1)體驗從特殊到一般再到特殊的學習規律,認識事物之間的普遍聯系與相互轉化,培養學生用聯系的觀點看問題,激發學生自主探究的精神,在探究過程中體驗合作學習的樂趣;

      (2)讓學生在數形結合中感悟數學的統一美、和諧美,進一步培養學生的學習興趣.

      教學重點:指數函數的圖象和性質

      教學難點:指數函數概念的引入及指數函數性質的應用

      教法研究:

      本節課準備由實際問題引入指數函數的概念,這樣可以讓學生知道指數函數的概念來源于客觀實際,便于學生接受并有利于培養學生用數學的意識.

      利用函數圖象來研究函數性質是函數中的一個非常重要的思想,本節課將是利用特殊的指數函數圖象歸納總結指數函數的性質,這樣便于學生研究其變化規律,理解其性質并掌握一般地探求函數性質的方法 同時運用現代信息技術學習、探索和解決問題,幫助學生理解新知識

      本節課使用的教學方法有:直觀教學法、啟發引導法、發現法

      教學過程:

      一、問題情境 :

      問題1:某種細胞分裂時,由一個分裂成2個,2個分裂成4個,4個分裂成8個,以此類推,一個這樣的細胞分裂x次后,得到的細胞個數y與x的函數關系式是什么?

      問題2:一種放射性物質不斷變化為其它物質,每經過一年剩余質量約是原來的 ,設該物質的初始質量為1,經過 年后的剩余質量為 ,你能寫出 之間的函數關系式嗎?

      分析可知,函數的關系式分別是 與

      問題3:在問題1和2中,兩個函數的自變量都是正整數,但在實際問題中自變量不一定都是正整數,比如在問題2中,我們除了關心1年、2年、3年后該物質的剩余量外,還想知道3個月、一年半后該物質的剩余量,怎么辦?

      這就需要對函數的定義域進行擴充,結合指數概念的的擴充,我們也可以將函數的定義域擴充至全體實數,這樣就得到了一個新的函數——指數函數.

      二、數學建構 :

      1]定義:

      一般地,函數 叫做指數函數,其中 .

      問題4:為什么規定 ?

      問題5:你能舉出指數函數的'例子嗎?

      閱讀材料(“放射性碳法”測定古物的年代):

      在動植物體內均含有微量的放射性 ,動植物死亡后,停止了新陳代謝, 不在產生,且原有的 會自動衰變.經過5740年( 的半衰期),它的殘余量為原來的一半.經過科學測定,若 的原始含量為1,則經過x年后的殘留量為 = .

      這種方法經常用來推算古物的年代.

      練習1:判斷下列函數是否為指數函數.

      (1) (2)

      (3) (4)

      說明:指數函數的解析式y= 中, 的系數是1.

      有些函數貌似指數函數,實際上卻不是,如y= +k (a>0且a 1,k Z);

      有些函數看起來不像指數函數,實際上卻是,如y= (a>0,且a 1),因為它可以化為y= ,其中 >0,且 1

      2]通過圖象探究指數函數的性質及其簡單應用:利用幾何畫板及其他多媒體軟件和學生一起完成

      問題6:我們研究函數的性質,通常都研究哪些性質?一般如何去研究?

      函數的定義域,值域,單調性,奇偶性等;

      利用函數圖象研究函數的性質

      問題7:作函數圖象的一般步驟是什么?

      列表,描點,作圖

      探究活動1:用列表描點法作出 , 的圖像(借助幾何畫板演示),觀察、比較這兩個函數的圖像,我們可以得到這兩個函數哪些共同的性質?請同學們仔細觀察.

      引導學生分析圖象并總結此時指數函數的性質(底數大于1):

      (1)定義域?R

      (2)值域?函數的值域為

      (3)過哪個定點?恒過 點,即

      (4)單調性? 時, 為 上的增函數

      (5)何時函數值大于1?小于1? 當 時, ;當 時,

      問題8::是否所有的指數函數都是這樣的性質?你能找出與剛才的函數性質不一樣的指數函數嗎?

      (引導學生自我分析和反思,培養學生的反思能力和解決問題的能力).

      根據學生的發現,再總結當底數小于1時指數函數的相關性質并作比較.

      問題9:到現在,你能自制一份表格,比較 及 兩種不同情況下 的圖象和性質嗎?

      (學生完成表格的設計,教師適當引導)

    高一數學函數的教案6

      和初中數學相比,高中數學的內容多,抽象性、理論性強,因為不少同學進入高中之后很不適應,特別是高一年級,進校后,代數里首先遇到的是理論性很強的函數,再加上立體幾何,空間概念、空間想象能力又不可能一下子就建立起來,這就使一些初中數學學得還不

      錯的同學不能很快地適應而感到困難,以下就怎樣學好高中數學談幾點意見和建議。

      一、首先要改變觀念。

      初中階段,特別是初中三年級,通過大量的練習,可使你的成績有明顯的提高,這是因為初中數學知識相對比較淺顯,更易于掌握,通過反復練習,提高了熟練程度,即可提高成績,既使是這樣,對有些問題理解得不夠深刻甚至是不理解的。例如在初中問a=2時,a等于什么,在中考中錯的人極少,然而進入高中后,老師問,如果a=2,且a<0,那么a等于什么,既使是重點學校的學生也會有一些同學毫不思索地回答:a=2。就是以說明了這個問題。又如,前幾年北京四中高一年級的一個同學在高一上學期期中考試以后,曾向老師提出“抗議”說:“你們平時的作業也不多,測驗也很少,我不會學”,這也正說明了改變觀念的重要性。

      高中數學的理論性、抽象性強,就需要在對知識的理解上下功夫,要多思考,多研究。

      二、提高聽課的效率是關鍵。

      學生學習期間,在課堂的時間占了一大部分。因此聽課的效率如何,決定著學習的基本狀況,提高聽課效率應注意以下幾個方面:

      1、 課前預習能提高聽課的針對性。

      預習中發現的難點,就是聽課的重點;對預習中遇到的沒有掌握好的有關的舊知識,可進行補缺,以減少聽課過程中的困難;有助于提高思維能力,預習后把自己理解了的東西與老師的講解進行比較、分析即可提高自己思維水平;預習還可以培養自己的自學能力。

      2、 聽課過程中的科學。

      首先應做好課前的物質準備和精神準備,以使得上課時不至于出現書、本等物丟三落四的現象;上課前也不應做過于激烈的體育運動或看小書、下棋、打牌、激烈爭論等。以免上課后還喘噓噓,或不能平靜下來。

      其次就是聽課要全神貫注。

      全神貫注就是全身心地投入課堂學習,耳到、眼到、心到、口到、手到。

      耳到:就是專心聽講,聽老師如何講課,如何分析,如何歸納總結,另外,還要聽同學們的答問,看是否對自己有所啟發。

      眼到:就是在聽講的同時看課本和板書,看老師講課的表情,手勢和演示實驗的動作,生動而深刻的接受老師所要表達的思想。

      心到:就是用心思考,跟上老師的數學思路,分析老師是如何抓住重點,解決疑難的。

      口到:就是在老師的指導下,主動回答問題或參加討論。

      手到:就是在聽、看、想、說的基礎上劃出課文的重點,記下講課的要點以及自己的感受或有創新思維的見解。

      若能做到上述“五到”,精力便會高度集中,課堂所學的一切重要內容便會在自己頭腦中留下深刻的印象。

      3、 特別注意老師講課的開頭和結尾。

      老師講課開頭,一般是概括前節課的要點指出本節課要講的內容,是把舊知識和新知識聯系起來的環節,結尾常常是對一節課所講知識的歸納總結,具有高度的概括性,是在理解的基礎上掌握本節知識方法的綱要。

      4、要認真把握好思維邏輯,分析問題的思路和解決問題的思想方法,堅持下去,就一定能舉一反三,提高思維和解決問題的能力。

      此外還要特別注意老師講課中的提示。

      老師講課中常常對一些重點難點會作出某些語言、語氣、甚至是某種動作的提示。

      最后一點就是作好筆記,筆記不是記錄而是將上述聽課中的要點,思維方法等作出簡單扼要的記錄,以便復習,消化,思考。

      三、做好復習和總結工作。

      1、做好及時的復習。

      課完課的當天,必須做好當天的復習。

      復習的有效方法不是一遍遍地看書或筆記,而是采取回憶式的復習:先把書,筆記合起來回憶上課老師講的內容,例題:分析問題的思路、方法等(也可邊想邊在草稿本上寫一寫)盡量想得完整些。然后打開筆記與書本,對照一下還有哪些沒記清的,把它補起來,就使得當天上課內容鞏固下來,同時也就檢查了當天課堂聽課的效果如何,也為改進聽課方法及提高聽課效果提出必要的改進措施。

      2、 做好單元復習。

      學習一個單元后應進行階段復習,復習方法也同及時復習一樣,采取回憶式復習,而后與書、筆記相對照,使其內容完善,而后應做好單元小節。

      3做好單元小結。

      單元小結內容應包括以下部分。

      (1)本單元(章)的知識網絡;

      (2)本章的基本思想與方法(應以典型例題形式將其表達出來);

      (3)自我體會:對本章內,自己做錯的典型問題應有記載,分析其原因及正確答案,應記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補上。

      四、關于做練習題量的問題

      有不少同學把提高數學成績的希望寄托在大量做題上。我認為這是不妥當的,我認為,“不要以做題多少論英雄”,重要的不在做題多,而在于做題的效益要高。做題的目的在于檢查你學的知識,方法是否掌握得很好。如果你掌握得不準,甚至有偏差,那么多做題的.結果,反而鞏固了你的缺欠,因此,要在準確地把握住基本知識和方法的基礎上做一定量的練習是必要的。而對于中檔題,尢其要講究做題的效益,即做題后有多大收獲,這就需要在做題后進行一定的“反思”,思考一下本題所用的基礎知識,數學思想方法是什么,為什么要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過,把它們聯系起來,你就會得到更多的經驗和教訓,更重要的是養成善于思考的好習慣,這將大大有利于你今后的學習。當然沒有一定量(老師布置的作業量)的練習就不能形成技能,也是不行的。

      另外,就是無論是作業還是測驗,都應把準確性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,也是學好數學的重要問題。

      最后想說的是:“興趣”和信心是學好數學的最好的老師。這里說的“興趣”沒有將來去研究數學,做數學家的意思,而主要指的是不反感,不要當做負擔。“偉大的動力產生于偉大的理想”。只要明白學習數學的重要,你就會有無窮的力量,并逐步對數學感到興趣。有了一定的興趣,隨之信心就會增強,也就不會因為某次考試的成績不理想而泄氣,在不斷總結經驗和教訓的過程中,你的信心就會不斷地增強,你也就會越來越認識到“興趣”和信心是你學習中的最好的老師。

    高一數學函數的教案7

      一、教學目標

      【知識與技能】

      理解函數的奇偶性及其幾何意義.

      【過程與方法】

      利用指數函數的圖像和性質,及單調性來解決問題.

      【情感態度與價值觀】

      體會指數函數是一類重要的函數模型,激發學生學習數學的興趣.

      二、教學重難點

      【重點】

      函數的奇偶性及其幾何意義

      【難點】

      判斷函數的奇偶性的方法與格式.

      三、教學過程

      (一)導入新課

      取一張紙,在其上畫出平面直角坐標系,并在第一象限任畫一可作為函數圖象的圖形,然后按如下操作并回答相應問題:

      1 以y軸為折痕將紙對折,并在紙的背面(即第二象限)畫出第一象限內圖形的痕跡,然后將紙展開,觀察坐標系中的圖形;

      問題:將第一象限和第二象限的圖形看成一個整體,則這個圖形可否作為某個函數y=f(x)的圖象,若能請說出該圖象具有什么特殊的性質?函數圖象上相應的點的'坐標有什么特殊的關系?

      答案:(1)可以作為某個函數y=f(x)的圖象,并且它的圖象關于y軸對稱;

      (2)若點(x,f(x))在函數圖象上,則相應的點(-x,f(x))也在函數圖象上,即函數圖象上橫坐標互為相反數的點,它們的縱坐標一定相等.

      (二)新課教學

      1.函數的奇偶性定義

      像上面實踐操作1中的圖象關于y軸對稱的函數即是偶函數,操作2中的圖象關于原點對稱的函數即是奇函數.

      (1)偶函數(even function)

      一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數.

      (學生活動):仿照偶函數的定義給出奇函數的定義

      (2)奇函數(odd function)

      一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做奇函數.

      注意:

      1 函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;

      2 由函數的奇偶性定義可知,函數具有奇偶性的一個必要條件是,對于定義域內的任意一個x,則-x也一定是定義域內的一個自變量(即定義域關于原點對稱).

      2.具有奇偶性的函數的圖象的特征

      偶函數的圖象關于y軸對稱;

      奇函數的圖象關于原點對稱.

      3.典型例題

      (1)判斷函數的奇偶性

      例1.(教材P36例3)應用函數奇偶性定義說明兩個觀察思考中的四個函數的奇偶性.(本例由學生討論,師生共同總結具體方法步驟)

      解:(略)

      總結:利用定義判斷函數奇偶性的格式步驟:

      1 首先確定函數的定義域,并判斷其定義域是否關于原點對稱;

      2 確定f(-x)與f(x)的關系;

      3 作出相應結論:

      若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;

      若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.

      (三)鞏固提高

      1.教材P46習題1.3 B組每1題

      解:(略)

      說明:函數具有奇偶性的一個必要條件是,定義域關于原點對稱,所以判斷函數的奇偶性應應首先判斷函數的定義域是否關于原點對稱,若不是即可斷定函數是非奇非偶函數.

      2.利用函數的奇偶性補全函數的圖象

      (教材P41思考題)

      規律:

      偶函數的圖象關于y軸對稱;

      奇函數的圖象關于原點對稱.

      說明:這也可以作為判斷函數奇偶性的依據.

      (四)小結作業

      本節主要學習了函數的奇偶性,判斷函數的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數的奇偶性時,必須注意首先判斷函數的定義域是否關于原點對稱.單調性與奇偶性的綜合應用是本節的一個難點,需要學生結合函數的圖象充分理解好單調性和奇偶性這兩個性質.

      課本P46 習題1.3(A組) 第9、10題, B組第2題.

      四、板書設計

      函數的奇偶性

      一、偶函數:一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數.

      二、奇函數:一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做奇函數.

      三、規律:

      偶函數的圖象關于y軸對稱;

      奇函數的圖象關于原點對稱.

    高一數學函數的教案8

      本文題目:高一數學教案:對數函數及其性質

      2.2.2 對數函數及其性質(二)

      內容與解析

      (一) 內容:對數函數及其性質(二)。

      (二) 解析:從近幾年高考試題看,主要考查對數函數的性質,一般綜合在對數函數中考查.題型主要是選擇題和填空題,命題靈活.學習本部分時,要重點掌握對數的運算性質和技巧,并熟練應用.

      一、 目標及其解析:

      (一) 教學目標

      (1) 了解對數函數在生產實際中的簡單應用.進一步理解對數函數的圖象和性質;

      (2) 學習反函數的概念,理解對數函數和指數函數互為反函數,能夠在同一坐標上看出互為反函數的兩個函數的圖象性質..

      (二) 解析

      (1)在對數函數 中,底數 且 ,自變量 ,函數值 .作為對數函數的三個要點,要做到道理明白、記憶牢固、運用準確.

      (2)反函數求法:①確定原函數的值域即新函數的定義域.②把原函數y=f(x)視為方程,用y表示出x.③把x、y互換,同時標明反函數的定義域.

      二、 問題診斷分析

      在本節課的教學中,學生可能遇到的問題是不易理解反函數,熟練掌握其轉化關系是學好對數函數與反函數的基礎。

      三、 教學支持條件分析

      在本節課一次遞推的.教學中,準備使用PowerPoint 20xx。因為使用PowerPoint 20xx,有利于提供準確、最核心的文字信息,有利于幫助學生順利抓住老師上課思路,節省老師板書時間,讓學生盡快地進入對問題的分析當中。

      四、 教學過程

      問題一. 對數函數模型思想及應用:

      ① 出示例題:溶液酸堿度的測量問題:溶液酸堿度pH的計算公式 ,其中 表示溶液中氫離子的濃度,單位是摩爾/升.

      (Ⅰ)分析溶液酸堿讀與溶液中氫離子濃度之間的關系?

      (Ⅱ)純凈水 摩爾/升,計算純凈水的酸堿度.

      ②討論:抽象出的函數模型? 如何應用函數模型解決問題? 強調數學應用思想

      問題二.反函數:

      ① 引言:當一個函數是一一映射時, 可以把這個函數的因變量作為一個新函數的自變量, 而把這個函數的自變量新的函數的因變量. 我們稱這兩個函數為反函數(inverse function)

      ② 探究:如何由 求出x?

      ③ 分析:函數 由 解出,是把指數函數 中的自變量與因變量對調位置而得出的. 習慣上我們通常用x表示自變量,y表示函數,即寫為 .

      那么我們就說指數函數 與對數函數 互為反函數

      ④ 在同一平面直角坐標系中,畫出指數函數 及其反函數 圖象,發現什么性質?

      ⑤ 分析:取 圖象上的幾個點,說出它們關于直線 的對稱點的坐標,并判斷它們是否在 的圖象上,為什么?

      ⑥ 探究:如果 在函數 的圖象上,那么P0關于直線 的對稱點在函數 的圖象上嗎,為什么?

      由上述過程可以得到什么結論?(互為反函數的兩個函數的圖象關于直線 對稱)

      ⑦練習:求下列函數的反函數: ;

      (師生共練 小結步驟:解x ;習慣表示;定義域)

      (二)小結:函數模型應用思想;反函數概念;閱讀P84材料

      五、 目標檢測

      1.(20xx全國卷Ⅱ文)函數y= (x 0)的反函數是

      A. (x 0) B. (x 0) C. (x 0) D. (x 0)

      1.B 解析:本題考查反函數概念及求法,由原函數x 0可知A、C錯,原函數y 0可知D錯,選B.

      2. (20xx廣東卷理)若函數 是函數 的反函數,其圖像經過點 ,則 ( )

      A. B. C. D.

      2. B 解析: ,代入 ,解得 ,所以 ,選B.

      3. 求函數 的反函數

      3.解析:顯然y0,反解 可得, ,將x,y互換可得 .可得原函數的反函數為 .

      【總結】20xx年已經到來,新的一年數學網會為您整理更多更好的文章,希望本文高一數學教案:對數函數及其性質能給您帶來幫助!

    高一數學函數的教案9

      教學目標:

      掌握二倍角的正弦、余弦、正切公式,能用上述公式進行簡單的求值、化簡、恒等證明;引導學生發現數學規律,讓學生體會化歸這一基本數學思想在發現中所起的作用,培養學生的創新意識.

      教學重點:

      二倍角公式的推導及簡單應用.

      教學難點:

      理解倍角公式,用單角的三角函數表示二倍角的三角函數.

      教學過程:

      Ⅰ.課題導入

      前一段時間,我們共同探討了和角公式、差角公式,今天,我們繼續探討一下二倍角公式.我們知道,和角公式與差角公式是可以互相化歸的.當兩角相等時,兩角之和便為此角的二倍,那么是否可把和角公式化歸為二倍角公式呢?請同學們試推.

      先回憶和角公式

      sin(α+β)=sinαcosβ+cosαsinβ

      當α=β時,sin(α+β)=sin2α=2sinαcosα

      即:sin2α=2sinαcosα(S2α)

      cos(α+β)=cosαcosβ-sinαsinβ

      當α=β時cos(α+β)=cos2α=cos2α-sin2α

      即:cos2α=cos2α-sin2α(C2α)

      tan(α+β)=tanα+tanβ1-tanαtanβ

      當α=β時,tan2α=2tanα1-tan2α

      Ⅱ.講授新課

      同學們推證所得結果是否與此結果相同呢?其中由于sin2α+cos2α=1,公式C2α還可以變形為:cos2α=2cos2α-1或:cos2α=1-2sin2α

      同學們是否也考慮到了呢?

      另外運用這些公式要注意如下幾點:

      (1)公式S2α、C2α中,角α可以是任意角;但公式T2α只有當α≠π2 +kπ及α≠π4 +kπ2 (k∈Z)時才成立,否則不成立(因為當α=π2 +kπ,k∈Z時,tanα的值不存在;當α=π4 +kπ2 ,k∈Z時tan2α的值不存在).

      當α=π2 +kπ(k∈Z)時,雖然tanα的`值不存在,但tan2α的值是存在的,這時求tan2α的值可利用誘導公式:

      即:tan2α=tan2(π2 +kπ)=tan(π+2kπ)=tanπ=0

      (2)在一般情況下,sin2α≠2sinα

      例如:sinπ3 =32≠2sinπ6 =1;只有在一些特殊的情況下,才有可能成立[當且僅當α=kπ(k∈Z)時,sin2α=2sinα=0成立].

      同樣在一般情況下cos2α≠2cosαtan2α≠2tanα

      (3)倍角公式不僅可運用于將2α作為α的2倍的情況,還可以運用于諸如將4α作為2α的2倍,將α作為 α2 的2倍,將 α2 作為 α4 的2倍,將3α作為 3α2 的2倍等等.

    高一數學函數的教案10

      平面解析幾何初步:

      ①直線與方程是解析幾何的基礎,是重點考查的內容,單獨考查多以選擇題、填空題出現;間接考查則以直線與圓、橢圓、雙曲線、拋物線等綜合為主,多為中、高難度,往往作為把關題出現在題目中。直接考查主要考查直線的傾斜角、直線方程,兩直線的位置關系,點到直線的距離,對稱問題等,間接考查一定會出現在中 高考,主要考查直線與圓錐曲線的綜合問題。

      ②圓的問題主要涉及圓的方程、直線與圓的位置關系、圓與圓的位置關系以及圓的集合性質的討論,難度中等或偏易,多以選擇題、填空題的形式出現,其中熱點為圓的切線問題。③空間直角坐標系是平面直角坐標系在空間的推廣,在解決空間問題中具有重要的作業,空間向量的坐標運算就是在空間直角坐標系下實現的。空間直角坐標系也是解答立體幾何問題的重要工具,一般是與空間向量在坐標運算結合起來運用,也不排除出現考查基礎知識的選擇題和填空題。

      直線方程及其應用

      直線是最簡單的幾何圖形,是解析幾何最基礎的部分,本章的基本概念;基本公式;直線方程的各種形式以及兩直線平行、垂直、重合的判定都是解析幾何重要的基礎內容。應達到熟練掌握、靈活運用的程度,線性規劃是直線方程一個方面的應用,屬教材新增內容,中單純的直線方程問題不難,但將直線方程與其他綜合的問題是比較棘手的。

      難點磁場

      已知a<1,b<1,c<1,求證:abc+2>a+b+c.

      案例探究

      [例1]某校一年級為配合素質,利用一間教室作為學生繪畫成果展覽室,為節約經費,他們利用課桌作為展臺,將裝畫的鏡框放置桌上,斜靠展出,已知鏡框對桌面的傾斜角為α(90°≤α<180°)鏡框中,畫的上、下邊緣與鏡框下邊緣分別相距a m,b m,(a>b)。問學生距離鏡框下緣多遠看畫的效果最佳?

      命題意圖:本題是一個非常實際的.問題,它不僅考查了直線的有關概念以及對三角知識的綜合運用,而且更重要的是考查了把實際問題轉化為問題的。

      知識依托:三角函數的定義,兩點連線的斜率公式,不等式法求最值。

      錯解分析:解決本題有幾處至關重要,一是建立恰當的坐標系,使問題轉化成解析幾何問題求解;二是把問題進一步轉化成求tanACB的最大值。如果坐標系選擇不當,或選擇求sinACB的最大值。都將使問題變得復雜起來。

      技巧與:欲使看畫的效果最佳,應使∠ACB取最大值,欲求角的最值,又需求角的一個三角函數值。

      解:建立如圖所示的直角坐標系,AO為鏡框邊,AB為畫的寬度,O為下邊緣上的一點,在x軸的正半軸上找一點C(x,0)(x>0),欲使看畫的效果最佳,應使∠ACB取得最大值。

      由三角函數的定義知:A、B兩點坐標分別為(acosα,asinα)、(bcosα,bsinα),于是直線AC、BC的斜率分別為:

      kAC=tanxCA=

      于是tanACB=

      由于∠ACB為銳角,且x>0,則tanACB≤,當且僅當=x,即x=時,等號成立,此時∠ACB取最大值,對應的點為C(,0),因此,學生距離鏡框下緣cm處時,視角最大,即看畫效果最佳。

      [例2]預算用20xx元購買單件為50元的桌子和20元的椅子,希望使桌椅的總數盡可能的多,但椅子不少于桌子數,且不多于桌子數的1.5倍,問桌、椅各買多少才行?

      命題意圖:利用線性規劃的思想方法解決某些實際問題屬于直線方程的一個應用,本題主要考查找出約束條件與目標函數、準確地描畫可行域,再利用圖形直觀求得滿足題設的最優解。

      知識依托:約束條件,目標函數,可行域,最優解。

      錯解分析:解題中應當注意到問題中的桌、椅張數應是自然數這個隱含條件,若從圖形直觀上得出的最優解不滿足題設時,應作出相應地調整,直至滿足題設。

      技巧與方法:先設出桌、椅的變數后,目標函數即為這兩個變數之和,再由此在可行域內求出最優解。

      解:設桌椅分別買x,y張,把所給的條件表示成不等式組,即約束條件

      為由

      ∴A點的坐標為(,)

      由

      ∴B點的坐標為(25,)

      所以滿足約束條件的可行域是以A(,),B(25,),O(0,0)為頂點的三角形區域(如下圖)

      由圖形直觀可知,目標函數z=x+y在可行域內的最優解為(25,),但注意到x∈N,y∈N*,故取y=37.

      故有買桌子25張,椅子37張是最好選擇。

      [例3]拋物線有光學性質:由其焦點射出的光線經拋物線折射后,高中數學,沿平行于拋物線對稱軸的方向射出,今有拋物線y2=2px(p>0)。一光源在點M(,4)處,由其發出的光線沿平行于拋物線的軸的方向射向拋物線上的點P,折射后又射向拋物線上的點 Q,再折射后,又沿平行于拋物線的軸的方向射出,途中遇到直線l:2x-4y-17=0上的點N,再折射后又射回點M(如下圖所示)

      (1)設P、Q兩點坐標分別為(x1,y1)、(x2,y2),證明:y1.y2=-p2;

      (2)求拋物線的方程;

      (3)試判斷在拋物線上是否存在一點,使該點與點M關于PN所在的直線對稱?若存在,請求出此點的坐標;若不存在,請說明理由。

      命題意圖:對稱問題是直線方程的又一個重要應用。本題是一道與中的光學知識相結合的綜合性題目,考查了學生理解問題、分析問題、解決問題的能力。

      知識依托:韋達定理,點關于直線對稱,直線關于直線對稱,直線的點斜式方程,兩點式方程。

      錯解分析:在證明第(1)問題,注意討論直線PQ的斜率不存在時。

      技巧與方法:點關于直線對稱是解決第(2)、第(3)問的關鍵。

      (1)證明:由拋物線的光學性質及題意知

      光線PQ必過拋物線的焦點F(,0),

      設直線PQ的方程為y=k(x-) ①

      由①式得x=y+,將其代入拋物線方程y2=2px中,整理,得y2-y-p2=0,由韋達定理,y1y2=-p2.

      當直線PQ的斜率角為90°時,將x=代入拋物線方程,得y=±p,同樣得到y1.y2=

      -p2.

      (2)解:因為光線QN經直線l反射后又射向M點,所以直線MN與直線QN關于直線l對稱,設點M(,4)關于l的對稱點為M′(x′,y′),則

      解得

      直線QN的方程為y=-1,Q點的縱坐標y2=-1,

      由題設P點的縱坐標y1=4,且由(1)知:y1.y2=-p2,則4.(-1)=-p2,

      得p=2,故所求拋物線方程為y2=4x.

      (3)解:將y=4代入y2=4x,得x=4,故P點坐標為(4,4)

      將y=-1代入直線l的方程為2x-4y-17=0,得x=,

      故N點坐標為(,-1)

      由P、N兩點坐標得直線PN的方程為2x+y-12=0,

      設M點關于直線NP的對稱點M1(x1,y1)

      又M1(,-1)的坐標是拋物線方程y2=4x的解,故拋物線上存在一點(,-1)與點M關于直線PN對稱。

      錦囊妙計

      1.對直線方程中的基本概念,要重點掌握好直線方程的特征值(主要指斜率、截距)等問題;直線平行和垂直的條件;與距離有關的問題等。

      2.對稱問題是直線方程的一個重要應用,里面所涉及到的對稱一般都可轉化為點關于點或點關于直線的對稱。中點坐標公式和兩條直線垂直的條件是解決對稱問題的重要工具。

      3.線性規劃是直線方程的又一應用。線性規劃中的可行域,實際上是二元一次不等式(組)表示的平面區域。求線性目標函數z=ax+by的最大值或最小值時,設t=ax+by,則此直線往右(或左)平移時,t值隨之增大(或減小),要會在可行域中確定最優解。

      4.由于一次函數的圖象是一條直線,因此有關函數、數列、不等式、復數等代數問題往往借助直線方程進行,考查學生的綜合能力及創新能力

    高一數學函數的教案11

      教學目標:

      使學生理解函數的概念,明確決定函數的三個要素,學會求某些函數的定義域,掌握判定兩個函數是否相同的方法;使學生理解靜與動的辯證關系.

      教學重點:

      函數的概念,函數定義域的求法.

      教學難點:

      函數概念的理解.

      教學過程:

      Ⅰ.課題導入

      [師]在初中,我們已經學習了函數的概念,請同學們回憶一下,它是怎樣表述的?

      (幾位學生試著表述,之后,教師將學生的回答梳理,再表述或者啟示學生將表述補充完整再條理表述).

      設在一個變化的過程中有兩個變量x和y,如果對于x的每一個值,y都有惟一的值與它對應,那么就說y是x的函數,x叫做自變量.

      [師]我們學習了函數的概念,并且具體研究了正比例函數,反比例函數,一次函數,二次函數,請同學們思考下面兩個問題:

      問題一:y=1(xR)是函數嗎?

      問題二:y=x與y=x2x 是同一個函數嗎?

      (學生思考,很難回答)

      [師]顯然,僅用上述函數概念很難回答這些問題,因此,需要從新的高度來認識函數概念(板書課題).

      Ⅱ.講授新課

      [師]下面我們先看兩個非空集合A、B的元素之間的一些對應關系的例子.

      在(1)中,對應關系是乘2,即對于集合A中的每一個數n,集合B中都有一個數2n和它對應.

      在(2)中,對應關系是求平方,即對于集合A中的每一個數m,集合B中都有一個平方數m2和它對應.

      在(3)中,對應關系是求倒數,即對于集合A中的每一個數x,集合B中都有一個數 1x 和它對應.

      請同學們觀察3個對應,它們分別是怎樣形式的對應呢?

      [生]一對一、二對一、一對一.

      [師]這3個對應的共同特點是什么呢?

      [生甲]對于集合A中的任意一個數,按照某種對應關系,集合B中都有惟一的數和它對應.

      [師]生甲回答的很好,不但找到了3個對應的共同特點,還特別強調了對應關系,事實上,一個集合中的數與另一集合中的數的對應是按照一定的關系對應的,這是不能忽略的. 實際上,函數就是從自變量x的集合到函數值y的集合的一種對應關系.

      現在我們把函數的概念進一步敘述如下:(板書)

      設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有惟一確定的數f(x)和它對應,那么就稱f︰AB為從集合A到集合B的一個函數.

      記作:y=f(x),xA

      其中x叫自變量,x的取值范圍A叫做函數的定義域,與x的值相對應的y(或f(x))值叫做函數值,函數值的集合{y|y=f(x),xA}叫函數的值域.

      一次函數f(x)=ax+b(a0)的定義域是R,值域也是R.對于R中的任意一個數x,在R中都有一個數f(x)=ax+b(a0)和它對應.

      反比例函數f(x)=kx (k0)的定義域是A={x|x0},值域是B={f(x)|f(x)0},對于A中的任意一個實數x,在B中都有一個實數f(x)= kx (k0)和它對應.

      二次函數f(x)=ax2+bx+c(a0)的定義域是R,值域是當a0時B={f(x)|f(x)4ac-b24a };當a0時,B={f(x)|f(x)4ac-b24a },它使得R中的任意一個數x與B中的.數f(x)=ax2+bx+c(a0)對應.

      函數概念用集合、對應的語言敘述后,我們就很容易回答前面所提出的兩個問題.

      y=1(xR)是函數,因為對于實數集R中的任何一個數x,按照對應關系函數值是1,在R中y都有惟一確定的值1與它對應,所以說y是x的函數.

      Y=x與y=x2x 不是同一個函數,因為盡管它們的對應關系一樣,但y=x的定義域是R,而y=x2x 的定義域是{x|x0}. 所以y=x與y=x2x 不是同一個函數.

      [師]理解函數的定義,我們應該注意些什么呢?

      (教師提出問題,啟發、引導學生思考、討論,并和學生一起歸納、總結)

      注意:①函數是非空數集到非空數集上的一種對應.

      ②符號f:AB表示A到B的一個函數,它有三個要素;定義域、值域、對應關系,三者缺一不可.

      ③集合A中數的任意性,集合B中數的惟一性.

      ④f表示對應關系,在不同的函數中,f的具體含義不一樣.

      ⑤f(x)是一個符號,絕對不能理解為f與x的乘積.

      [師]在研究函數時,除用符號f(x)表示函數外,還常用g(x) 、F(x)、G(x)等符號來表示

      Ⅲ.例題分析

      [例1]求下列函數的定義域.

      (1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x

      分析:函數的定義域通常由問題的實際背景確定.如果只給出解析式y=f(x),而沒有指明它的定義域.那么函數的定義域就是指能使這個式子有意義的實數x的集合.

      解:(1)x-20,即x2時,1x-2 有意義

      這個函數的定義域是{x|x2}

      (2)3x+20,即x-23 時3x+2 有意義

      函數y=3x+2 的定義域是[-23 ,+)

      (3) x+10 x2

      這個函數的定義域是{x|x{x|x2}=[-1,2)(2,+).

      注意:函數的定義域可用三種方法表示:不等式、集合、區間.

      從上例可以看出,當確定用解析式y=f(x)表示的函數的定義域時,常有以下幾種情況:

      (1)如果f(x)是整式,那么函數的定義域是實數集R;

      (2)如果f(x)是分式,那么函數的定義域是使分母不等于零的實數的集合;

      (3)如果f(x)是偶次根式,那么函數的定義域是使根號內的式子不小于零的實數的集合;

      (4)如果f(x)是由幾個部分的數學式子構成的,那么函數的定義域是使各部分式子都有意義的實數的集合(即使每個部分有意義的實數的集合的交集);

      (5)如果f(x)是由實際問題列出的,那么函數的定義域是使解析式本身有意義且符合實際意義的實數的集合.

      例如:一矩形的寬為x m,長是寬的2倍,其面積為y=2x2,此函數定義域為x0而不是全體實數.

      由以上分析可知:函數的定義域由數學式子本身的意義和問題的實際意義決定.

      [師]自變量x在定義域中任取一個確定的值a時,對應的函數值用符號f(a)來表示.例如,函數f(x)=x2+3x+1,當x=2時的函數值是f(2)=22+32+1=11

      注意:f(a)是常量,f(x)是變量 ,f(a)是函數f(x)中當自變量x=a時的函數值.

      下面我們來看求函數式的值應該怎樣進行呢?

      [生甲]求函數式的值,嚴格地說是求函數式中自變量x為某一確定的值時函數式的值,因此,求函數式的值,只要把函數式中的x換為相應確定的數(或字母,或式子)進行計算即可.

      [師]回答正確,不過要準確地求出函數式的值,計算時萬萬不可粗心大意噢!

      [生乙]判定兩個函數是否相同,就看其定義域或對應關系是否完全一致,完全一致時,這兩個函數就相同;不完全一致時,這兩個函數就不同.

      [師]生乙的回答完整嗎?

      [生]完整!(課本上就是如生乙所述那樣寫的).

      [師]大家說,判定兩個函數是否相同的依據是什么?

      [生]函數的定義.

      [師]函數的定義有三個要素:定義域、值域、對應關系,我們判定兩個函數是否相同為什么只看兩個要素:定義域和對應關系,而不看值域呢?

      (學生竊竊私語:是啊,函數的三個要素不是缺一不可嗎?怎不看值域呢?)

      (無人回答)

      [師]同學們預習時還是欠仔細,欠思考!我們做事情,看問題都要多問幾個為什么!函數的值域是由什么決定的,不就是由函數的定義域與對應關系決定的嗎!關注了函數的定義域與對應關系,三者就全看了!

      (生恍然大悟,我們怎么就沒想到呢?)

      [例2]求下列函數的值域

      (1)y=1-2x (xR) (2)y=|x|-1 x{-2,-1,0,1,2}

      (3)y=x2+4x+3 (-31)

      分析:求函數的值域應確定相應的定義域后再根據函數的具體形式及運算確定其值域.

      對于(1)(2)可用直接法根據它們的定義域及對應法則得到(1)(2)的值域.

      對于(3)可借助數形結合思想利用它們的圖象得到值域,即圖象法.

      解:(1)yR

      (2)y{1,0,-1}

      (3)畫出y=x2+4x+3(-31)的圖象,如圖所示,

      當x[-3,1]時,得y[-1,8]

      Ⅳ.課堂練習

      課本P24練習17.

      Ⅴ.課時小結

      本節課我們學習了函數的定義(包括定義域、值域的概念)、區間的概念及求函數定義域的方法.學習函數定義應注意的問題及求定義域時的各種情形應該予以重視.(本小結的內容可由學生自己來歸納)

      Ⅵ.課后作業

      課本P28,習題1、2. 文 章來

    高一數學函數的教案12

      案例背景:

      對數函數是函數中又一類重要的基本初等函數,它是在學生已經學過對數與常用對數,反函數以及指數函數的基礎上引入的.故是對上述知識的應用,也是對函數這一重要數學思想的進一步認識與理解.對數函數的概念,圖象與性質的學習使學生的知識體系更加完整,系統,同時又是對數和函數知識的拓展與延伸.它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習對數方程,對數不等式的基礎.

      案例敘述:

      (一).創設情境

      (師):前面的幾種函數都是以形式定義的方式給出的,今天我們將從反函數的角度介紹新的函數.

      反函數的實質是研究兩個函數的關系,所以自然我們應從大家熟悉的函數出發,再研究其反函數.這個熟悉的.函數就是指數函數.

      (提問):什么是指數函數?指數函數存在反函數嗎?

      (學生): 是指數函數,它是存在反函數的.

      (師):求反函數的步驟

      (由一個學生口答求反函數的過程):

      由 得 .又 的值域為 ,

      所求反函數為 .

      (師):那么我們今天就是研究指數函數的反函數-----對數函數.

      (二)新課

      1.(板書) 定義:函數 的反函數 叫做對數函數.

      (師):由于定義就是從反函數角度給出的,所以下面我們的研究就從這個角度出發.如從定義中你能了解對數函數的什么性質嗎?最初步的認識是什么?

      (教師提示學生從反函數的三定與三反去認識,學生自主探究,合作交流)

      (學生)對數函數的定義域為 ,對數函數的值域為 ,且底數 就是指數函數中的 ,故有著相同的限制條件 .

      (在此基礎上,我們將一起來研究對數函數的圖像與性質.)

      2.研究對數函數的圖像與性質

      (提問)用什么方法來畫函數圖像?

      (學生1)利用互為反函數的兩個函數圖像之間的關系,利用圖像變換法畫圖.

      (學生2)用列表描點法也是可以的。

      請學生從中上述方法中選出一種,大家最終確定用圖像變換法畫圖.

      (師)由于指數函數的圖像按 和 分成兩種不同的類型,故對數函數的圖像也應以1為分界線分成兩種情況 和 ,并分別以 和 為例畫圖.

      具體操作時,要求學生做到:

      (1) 指數函數 和 的圖像要盡量準確(關鍵點的位置,圖像的變化趨勢等).

      (2) 畫出直線 .

      (3) 的圖像在翻折時先將特殊點 對稱點 找到,變化趨勢由靠近 軸對稱為逐漸靠近 軸,而 的圖像在翻折時可提示學生分兩段翻折,在 左側的先翻,然后再翻在 右側的部分.

      學生在筆記本完成具體操作,教師在學生完成后將關鍵步驟在黑板上演示一遍,畫出

      和 的圖像.(此時同底的指數函數和對數函數畫在同一坐標系內)如圖:

      教師畫完圖后再利用電腦將 和 的圖像畫在同一坐標系內,如圖:

      然后提出讓學生根據圖像說出對數函數的性質(要求從幾何與代數兩個角度說明)

      3. 性質

      (1) 定義域:

      (2) 值域:

      由以上兩條可說明圖像位于 軸的右側.

      (3)圖像恒過(1,0)

      (4) 奇偶性:既不是奇函數也不是偶函數,即它不關于原點對稱,也不關于 軸對稱.

      (5) 單調性:與 有關.當 時,在 上是增函數.即圖像是上升的

      當 時,在 上是減函數,即圖像是下降的.

      之后可以追問學生有沒有最大值和最小值,當得到否定答案時,可以再問能否看待何時函數值為正?學生看著圖可以答出應有兩種情況:

      當 時,有 ;當 時,有 .

      學生回答后教師可指導學生巧記這個結論的方法:當底數與真數在1的同側時函數值為正,當底數與真數在1的兩側時,函數值為負,并把它當作第(6)條性質板書記下來.

      最后教師在總結時,強調記住性質的關鍵在于要腦中有圖.且應將其性質與指數函數的性質對比記憶.(特別強調它們單調性的一致性)

      對圖像和性質有了一定的了解后,一起來看看它們的應用.

      (三).簡單應用

      1. 研究相關函數的性質

      例1. 求下列函數的定義域:

      (1) (2) (3)

      先由學生依次列出相應的不等式,其中特別要注意對數中真數和底數的條件限制.

      2. 利用單調性比較大小

      例2. 比較下列各組數的大小

      (1) 與 ; (2) 與 ;

      (3) 與 ; (4) 與 .

      讓學生先說出各組數的特征即它們的底數相同,故可以構造對數函數利用單調性來比大小.最后讓學生以其中一組為例寫出詳細的比較過程.

     三.拓展練習

      練習:若 ,求 的取值范圍.

    四.小結及作業

      案例反思:

      本節的教學重點是理解對數函數的定義,掌握對數函數的圖象性質.難點是利用指數函數的圖象和性質得到對數函數的圖象和性質.由于對數函數的概念是一個抽象的形式,學生不易理解,而且又是建立在指數與對數關系和反函數概念的基礎上,通過互為反函數的兩個函數的關系由已知函數研究未知函數的性質,這種方法是第一次使用,學生不適應,把握不住關鍵,因而在教學上采取教師逐步引導,學生自主合作的方式,從學生熟悉的指數問題出發,通過對指數函數的認識逐步轉化為對對數函數的認識,而且畫對數函數圖象時,既要考慮到對底數的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質.

      在教學中一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地以反函數這條主線引導學生思考的方向.這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣.

    高一數學函數的教案13

      教學目標:

      1.進一步理解用集合與對應的語言來刻畫的函數的概念,進一步理解函數的本質是數集之間的對應;

      2.進一步熟悉與理解函數的定義域、值域的定義,會利用函數的定義域與對應法則判定有關函數是否為同一函數;

      3.通過教學,進一步培養學生由具體逐步過渡到符號化,代數式化,并能對以往學習過的知識進行理性化思考,對事物間的聯系的一種數學化的思考.

      教學重點:

      用對應來進一步刻畫函數;求基本函數的定義域和值域.

      教學過程:

      一、問題情境

      1.情境.

      復述函數及函數的定義域的概念.

      2.問題.

      概念中集合A為函數的定義域,集合B的'作用是什么呢?

      二、學生活動

      1.理解函數的值域的概念;

      2.能利用觀察法求簡單函數的值域;

      3.探求簡單的復合函數f(f(x))的定義域與值域.

      三、數學建構

      1.函數的值域:

      (1)按照對應法則f,對于A中所有x的值的對應輸出值組成的集合稱之

      為函數的值域;

      (2)值域是集合B的子集.

      2.x g(x) f(x) f(g(x)),其中g(x)的值域即為f(g(x))的定義域;

      四、數學運用

      (一)例題.

      例1 已知函數f (x)=x2+2x,求 f (-2),f (-1),f (0),f (1).

      例2 根據不同條件,分別求函數f(x)=(x-1)2+1的值域.

      (1)x∈{-1,0,1,2,3};

      (2)x∈R;

      (3)x∈[-1,3];

      (4)x∈(-1,2];

      (5)x∈(-1,1).

      例3 求下列函數的值域:

      ①= ;②= .

      例4 已知函數f(x)與g(x)分別由下表給出:

      x1234x1234

      f(x)2341g(x)2143

      分別求f (f (1)),f (g (2)),g(f (3)),g (g (4))的值.

      (二)練習.

      (1)求下列函數的值域:

      ①=2-x2;②=3-|x|.

      (2)已知函數f(x)=3x2-5x+2,求f(3)、f(-2)、f(a)、f(a+1).

      (3)已知函數f(x)=2x+1,g(x)=x2-2x+2,試分別求出g(f(x))和f(g(x))的值域,比較一下,看有什么發現.

      (4)已知函數=f(x)的定義域為[-1,2],求f(x)+f(-x)的定義域.

      (5)已知f(x)的定義域為[-2,2],求f(2x),f(x2+1)的定義域.

      五、回顧小結

      函數的對應本質,函數的定義域與值域;

      利用分解的思想研究復合函數.

      六、作業

      課本P31-5,8,9.

    高一數學函數的教案14

      【學情分析】:

      高一學過了函數的單調性,在引入導數概念與幾何意義后,發現導數是描述函數在某一點的瞬時變化率。在此基礎上,我們發現導數與函數的增減性以及增減的快慢都有很緊密的聯系。本節內容就是通過對函數導數計算,來判定可導函數增減性。

      【教學目標】:

      (1)正確理解利用導數判斷函數的單調性的原理;

      (2)掌握利用導數判斷函數單調性的方法

      (3)能夠利用導數解釋實際問題中的函數單調性

      【教學重點】:

      利用導數判斷函數單調性,會求不超過三次的多項式函數的單調區間

      【教學過程設計】:

      教學環節

      教學活動

      設計意圖

      情景引入過程

      從高臺跳水運動員的高度h隨時間t變化的函數:

      分析運動動員的運動過程:

      上升→最高點→下降

      運動員瞬時速度變換過程:

      減速→0→加速

      從實際問題中物理量入手

      學生容易接受

      實際意義向函數意義過渡

      從函數的角度分析上述過程:

      先增后減

      由正數減小到0,再由0減小到負數

      將實際的量與函數及其導數意義聯系起來,過渡自然,突破理解障礙

      引出函數單調性與導數正負的關系

      通過上述實際例子的.分析,聯想觀察其他函數的單調性與其導數正負的關系

      進一步的函數單調性與導數正負驗證,加深兩者之間的關系

      我們能否得出以下結論:

      在某個區間(a,b)內,如果,那么函數y=f(x)在這個區間內單調遞增;如果,那么函數y=f(x)在這個區間內單調遞減

      答案是肯定的

      從導數的概念給出解釋

      表明函數在此點處的切線斜率是由左下向右上,因此在附近單調遞增

      表明函數在此點處的切線斜率是由左上向右下,因此在附近單調遞減

      所以,若,則,f(x)為增函數

      同理可說明時,f(x)為減函數

      用導數的幾何意義理解導數正負與單調性的內在關系,幫助理解與記憶

      導數正負與函數單調性總結

      若y=f(x)在區間(a,b)上可導,則

      (1)在(a,b)內,y=f(x)在(a,b)單調遞增

      (2)在(a,b)內,y=f(x)在(a,b)單調遞減

      抽象概括我們的心法手冊(用以指導我們拆解題目)

      例題精講

      1、根據導數正負判斷函數單調性

      教材例1在教學環節中的處理方式:

      以學生的自學為主,可以更改部分數據,讓學生動手模仿。

      小結:導數的正負→函數的增減→構建函數大致形狀

      提醒學生觀察的點的圖像特點(為下節埋下伏筆)

      丟出思考題:“”的點是否一定對應函數的最值(由于學生尚未解除“極值”的概念,暫時還是以最值代替)

      例題處理的目標就是為達到將“死結論”變成“活套路”

      2、利用導數判斷函數單調性以及計算求函數單調區間

      教材例2在教學環節中的處理方式:

      可以先以為例回顧我們高一判斷函數單調性的定義法;再與我們導數方法形成對比,體會導數方法的優越性。

      引導學生逐步貫徹落實我們之前準備的“心法手冊”

      判斷單調性→計算導數大小→能否判斷導數正負

      →Y,得出函數單調性;

      →N,求“導數大于(小于)0”的不等式的解集→得出單調區間

      補充例題:

      已知函數y=x+,試討論出此函數的單調區間.

      解:y′=(x+)′=1-1·x-2=

      令>0. 解得x>1或x<-1.

      ∴y=x+的單調增區間是(-∞,-1)和(1,+∞).

      令<0,解得-1<x<0或0<x<1.

      ∴y=x+的單調減區間是(-1,0)和(0,1)

      要求根據函數單調性畫此函數的草圖

      3、實際問題中利用導數意義判斷函數圖像

      教材例3的處理方式:

      可以根據課程進度作為課堂練習處理

      同時還可以引入類似的練習補充(如學生上學路上,距離學校的路程與時間的函數圖像)

      堂上練習

      教材練習2——由函數圖像寫函數導數的正負性

      教材練習1——判斷函數單調性,計算單調區間

      針對教材的三個例題作知識強化練習

      內容總結

      體會導數在判斷函數單調性方面的極大優越性

      體會學習導數的重要性

      課后練習:

      1、函數的遞增區間是( )

      A B全品 C D全品

      答案C 對于任何實數都恒成立

      2、已知函數在上是單調函數,則實數的

      取值范圍是( )

      A B全品

      C D全品

      答案B在恒成立,

      3、函數單調遞增區間是( )

      A B全品 C D全品

      答案C 令

      4、對于上可導的任意函數,若滿足,則必有( )

      A B全品

      C D全品

      答案C 當時,,函數在上是增函數;當時,,在上是減函數,故當時取得最小值,即有

      得

      5、函數的單調增區間為 ,單調減區間為___________________

      答案

      6、函數的單調遞增區間是___________________________全品

      答案

      7、已知的圖象經過點,且在處的切線方程是

      (1)求的解析式;(2)求的單調遞增區間

      解:(1)的圖象經過點,則,

      切點為,則的圖象經過點

      得單調遞增區間為

    高一數學函數的教案15

      一、教學目標:

      1、知識與技能:

      (1) 結合實例,了解正整數指數函數的概念.

      (2)能夠求出正整數指數函數的解析式,進一步研究其性質.

      2、 過程與方法:

      (1)讓學生借助實例,了解正整數指數函數,體會從具體到一般,從個別到整體的研究過程和研究方法.

      (2)從圖像上觀察體會正整數指數函數的性質,為這一章的學習作好鋪墊.

      3、情感.態度與價值觀:使學生通過學習正整數指數函數體會學習指數函數的重要意義,增強學習研究函數的積極性和自信心.

      二、教學重點: 正整數指數函數的定義.教學難點:正整數指數函數的解析式的確定.

      三、學法指導:學生觀察、思考、探究.教學方法:探究交流,講練結合。

      四、教學過程

      (一)新課導入

      [互動過程1]:

      (1)請你用列表表示1個細胞分裂次數分別

      為1,2,3,4,5,6,7,8時,得到的細胞個數;

      (2)請你用圖像表示1個細胞分裂的次數n( )與得到的細

      胞個數y之間的關系;

      (3)請你寫出得到的細胞個數y與分裂次數n之間的關系式,試用

      科學計算器計算細胞分裂15次、20次得到的細胞個數.

      解:

      (1)利用正整數指數冪的運算法則,可以算出1個細胞分裂1,2,3,

      4,5,6,7,8次后,得到的細胞個數

      分裂次數 1 2 3 4 5 6 7 8

      細胞個數 2 4 8 16 32 64 128 256

      (2)1個細胞分裂的次數 與得到的細胞個數 之間的關系可以用圖像表示,它的圖像是由一些孤立的點組成

      (3)細胞個數 與分裂次數 之間的關系式為 ,用科學計算器算得 ,

      所以細胞分裂15次、20次得到的細胞個數分別為32768和1048576.

      探究:從本題中得到的函數來看,自變量和函數值分別是什么?此函數是什么類型的函數? 細胞個數 隨著分裂次數 發生怎樣變化?你從哪里看出?

      小結:從本題中可以看出我們得到的細胞分裂個數都是底數為2的指數,而且指數是變量,取值為正整數. 細胞個數 與分裂次數 之間的關系式為 .細胞個數 隨著分裂次數 的增多而逐漸增多.

      [互動過程2]:問題2.電冰箱使用的氟化物的釋放破壞了大氣上層的臭氧層,臭氧含量Q近似滿足關系式Q=Q00.9975 t,其中Q0是臭氧的初始量,t是時間(年),這里設Q0=1.

      (1)計算經過20,40,60,80,100年,臭氧含量Q;

      (2)用圖像表示每隔20年臭氧含量Q的變化;

      (3)試分析隨著時間的增加,臭氧含量Q是增加還是減少.

      解:(1)使用科學計算器可算得,經過20,40,60,80,100年,臭氧含量Q的值分別為0.997520=0.9512, 0.997540=0.9047, 0.997560=0.8605, 0.997580=0.8185, 0.9975100=0.7786;

      (2)用圖像表示每隔20年臭氧含量Q的變化如圖所

      示,它的圖像是由一些孤立的點組成.

      (3)通過計算和觀察圖形可以知道, 隨著時間的增加,

      臭氧含量Q在逐漸減少.

      探究:從本題中得到的函數來看,自變量和函數值分別

      又是什么?此函數是什么類型的函數?,臭氧含量Q隨著

      時間的增加發生怎樣變化?你從哪里看出?

      小結:從本題中可以看出我們得到的臭氧含量Q都是底數為0.9975的指數,而且指數是變量,取值為正整數. 臭氧含量Q近似滿足關系式Q=0.9975 t, 隨著時間的增加,臭氧含量Q在逐漸減少.

      [互動過程3]:上面兩個問題所得的函數有沒有共同點?你能統一嗎?自變量的取值范圍又是什么?這樣的`函數圖像又是什么樣的?為什么?

      正整數指數函數的定義:一般地,函數 叫作正整數指數函數,其中 是自變量,定義域是正整數集 .

      說明: 1.正整數指數函數的圖像是一些孤立的點,這是因為函數的定義域是正整數集.2.在研究增長問題、復利問題、質量濃度問題中常見這類函數.

      (二)、例題:某地現有森林面積為1000 ,每年增長5%,經過 年,森林面積為 .寫出 , 間的函數關系式,并求出經過5年,森林的面積.

      分析:要得到 , 間的函數關系式,可以先一年一年的增長變化,找出規律,再寫出 , 間的函數關系式.

      解: 根據題意,經過一年, 森林面積為1000(1+5%) ;經過兩年, 森林面積為1000(1+5%)2 ;經過三年, 森林面積為1000(1+5%)3 ;所以 與 之間的函數關系式為 ,經過5年,森林的面積為1000(1+5%)5=1276.28(hm2).

      練習:課本練習1,2

      補充例題:高一某學生家長去年年底到銀行存入20xx元,銀行月利率為2.38%,那么如果他第n個月后從銀行全部取回,他應取回錢數為y,請寫出n與y之間的關系,一年后他全部取回,他能取回多少?

      解:一個月后他應取回的錢數為y=20xx(1+2.38%),二個月后他應取回的錢數為y=20xx(1+2.38%)2;,三個月后他應取回的錢數為y=20xx(1+2.38%)3,, n個月后他應取回的錢數為y=20xx(1+2.38%)n; 所以n與y之間的關系為y=20xx(1+2.38%)n (nN+),一年后他全部取回,他能取回的錢數為y=20xx(1+2.38%)12.

      補充練習:某工廠年產值逐年按8%的速度遞增,今年的年產值為200萬元,那么第n年后該廠的年產值為多少?

      (三)、小結:1.正整數指數函數的圖像是一些孤立的點,這是因為函數的定義域是正整數集.2.在研究增長問題、復利問題、質量濃度問題中常見這類函數.

      (四)、作業:課本習題3-1 1,2,3

    【高一數學函數的教案】相關文章:

    高一數學函數的教案08-26

    高一數學教案函數12-28

    高一數學教案《函數概念》11-20

    高一數學對數函數教案08-26

    高一數學指數函數教案12-09

    高一數學函數的教案15篇01-12

    數學函數的教案03-06

    高一數學教案函數15篇12-30

    高一數學函數的教案通用15篇01-14

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      亚洲欧美老师机在线AⅤ | 色道福利网站在线观看 | 在线日韩日本国产亚洲 | 尤物国产在线精品三区蜜芽 | 日韩欧美亚洲中文乱码 | 香蕉国产精品偷在看视频 |