1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>中考數學教案

    中考數學教案

    時間:2023-01-08 13:47:21 數學教案 我要投稿
    • 相關推薦

    中考數學教案

      作為一名優秀的教育工作者,時常會需要準備好教案,教案有助于順利而有效地開展教學活動?靵韰⒖冀贪甘窃趺磳懙陌桑∠旅媸切【幘恼淼闹锌紨祵W教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

    中考數學教案

    中考數學教案1

      一、素質教育目標

      (一)知識教學點

      使學生會根據一個銳角的正弦值和余弦值,查出這個銳角的大小.(二)能力訓練點

      逐步培養學生觀察、比較、分析、概括等邏輯思維能力.

      (三)德育滲透點

      培養學生良好的學習習慣.

      二、教學重點、難點和疑點

      1.重點:由銳角的正弦值或余弦值,查出這個銳角的大小.

      2.難點:由銳角的正弦值或余弦值,查出這個銳角的大小.

      3.疑點:由于余弦是減函數,查表時“值增角減,值減角增”學生常常出錯.

      三、教學步驟

      (一)明確目標

      1.銳角的正弦值與余弦值隨角度變化的規律是什么?

      這一規律也是本課查表的依據,因此課前還得引導學生回憶.

      答:當角度在0°~90°間變化時,正弦值隨著角度的'增大(或減小)而增大(或減小);當角度在0°~90°間變化時,余弦值隨角度的增大(或減小)而減小(或增大).

      2.若cos21°30′=0.9304,且表中同一行的修正值是則cos21°31′=______,

      cos21°28′=______.

      3.不查表,比較大。

      (1)sin20°______sin20°15′;

      (2)cos51°______cos50°10′;

      (3)sin21°______cos68°.

      學生在回答2題時極易出錯,教師一定要引導學生敘述思考過程,然后得出答案.

      3題的設計主要是考察學生對函數值隨角度的變化規律的理解,同時培養學生估算.

      (二)整體感知

      已知一個銳角,我們可用“正弦和余弦表”查出這個角的正弦值或余弦值.反過來,已知一個銳角的正弦值或余弦值,可用“正弦和余弦表”查出這個角的大小.因為學生有查“平方表”、“立方表”等經驗,對這一點必深信無疑.而且通過逆向思維,可能很快會掌握已知函數值求角的方法.

      (三)重點、難點的學習與目標完成過程.

      例8已知sinA=0.2974,求銳角A.

      學生通過上節課已知銳角查其正弦值和余弦值的經驗,完全能獨立查得銳角A,但教師應請同學講解查的過程:從正弦表中找出0.2974,由這個數所在行向左查得17°,由同一數所在列向上查得18′,即0.2974=sin17°18′,以培養學生語言表達能力.

      解:查表得sin17°18′=0.2974,所以

      銳角A=17°18′.

      例9已知cosA=0.7857,求銳角A.

      分析:學生在表中找不到0.7857,這時部分學生可能束手無策,但有上節課查表的經驗,少數思維較活躍的學生可能會想出辦法.這時教師讓學生討論,在探討中尋求辦法.這對解決本題會有好處,使學生印象更深,理解更透徹.

      若條件許可,應在討論后請一名學生講解查表過程:在余弦表中查不到0.7857.但能找到同它最接近的數0.7859,由這個數所在行向右查得38°,由同一個數向下查得12′,即0.7859=cos38°12′.但cosA=0.7857,比0.7859小0.0002,這說明∠A比38°12′要大,由0.7859所在行向右查得修正值0.0002對應的角度是1′,所以∠A=38°12′+1′=38°13′.

      解:查表得cos38°12′=0.7859,所以:

      0.7859=cos38°12′.

      值減0.0002角度增1′

      0.7857=cos38°13′,

      即銳角A=38°13′.

      例10已知cosB=0.4511,求銳角B.

      例10與例9相比較,只是出現余差(本例中的0.0002)與修正值不一致.教師只要講清如何使用修正值(用最接近的值),以使誤差最小即可,其余部分學生在例9的基礎上,可以獨立完成.

      解:0.4509=cos63°12′

      值增0.0003角度減1′

      0.4512=cos63°11′

      ∴銳角B=63°11′

      為了對例題加以鞏固,教師在此應設計練習題,教材P.15中2、3.

      2.已知下列正弦值或余弦值,求銳角A或B:

      (1)sinA=0.7083,sinB=0.9371,

      sinA=0.3526,sinB=0.5688;

      (2)cosA=0.8290,cosB=0.7611,

      cosA=0.2996,cosB=0.9931.

      此題是配合例題而設置的,要求學生能快速準確得到答案.

      (1)45°6′,69°34′,20°39′,34°40′;

      (2)34°0′,40°26′,72°34′,6°44′.

      3.查表求sin57°與cos33°,所得的值有什么關系?

      此題是讓學生通過查表進一步印證關系式sinA=cos(90°-A),cosA=0.8387,∴sin57°=cos33°,或sin57°=cos(90°-57°),cos33°=sin(90°-33°).

      (四)、總結、擴展

      本節課我們重點學習了已知一個銳角的正弦值或余弦值,可用“正弦和余弦表”查出這個銳角的大小,這也是本課難點,同學們要會依據正弦值和余弦值隨角度變化規律(角度變化范圍0°~90°)查“正弦和余弦表”.

      四、布置作業

      教材復習題十四A組3、4,要求學生只查正、余弦。

    中考數學教案2

      一、素質教育目標

      (一)知識教學點

      使學生會查“正弦和余弦表”,即由已知銳角求正弦、余弦值.(二)能力滲透點

      逐步培養學生觀察、比較、分析、概括等邏輯思維能力.

      (三)德育訓練點

      培養學生良好的學習習慣.

      二、教學重點、難點

      1.重點:“正弦和余弦表”的查法.

      2.難點:當角度在0°~90°間變化時,正弦值與余弦值隨角度變化而變化的規律.

      三、教學步驟

      (一)明確目標

      1.復習提問

      1)30°、45°、60°的正弦值和余弦值各是多少?請學生口答.

      2)任意銳角的正弦(余弦)與它的余角的余弦(正弦)值之間的關系怎樣?通過復習,使學生便于理解正弦和余弦表的設計方式.

      (二)整體感知

      我們已經求出了30°、45°、60°這三個特殊角的正弦值和余弦值,但在生產和科研中還常用到其他銳角的正弦值和余弦值,為了使用上的方便,我們把0°—90°間每隔1′的各個角所對應的正弦值和余弦值(一般是含有四位有效數字的近似值),列成表格——正弦和余弦表.本節課我們來研究如何使用正弦和余弦表.

      (三)重點、難點的學習與目標完成過程

      1.“正弦和余弦表”簡介

      學生已經會查平方表、立方表、平方根表、立方根表,對數學用表的結構與查法有所了解.但正弦和余弦表與其又有所區別,因此首先向學生介紹“正弦和余弦表”.

      (1)“正弦和余弦表”的作用是:求銳角的正弦、余弦值,已知銳角的正弦、余弦值,求這個銳角.

      2)表中角精確到1′,正弦、余弦值有四位有效數字.

      3)凡表中所查得的值,都用等號,而非“≈”,根據查表所求得的.值進行近似計算,結果四舍五入后,一般用約等號“≈”表示.

      2.舉例說明

      例4查表求37°24′的正弦值.

      學生因為有查表經驗,因此查sin37°24′的值不會是到困難,完全可以自己解決.

      例5查表求37°26′的正弦值.

      學生在獨自查表時,在正弦表頂端的橫行里找不到26′,但26′在24′~30′間而靠近24′,比24′多2′,可引導學生注意修正值欄,這樣學生可能直接得答案.教師這時可設問“為什么將查得的5加在0.6074的最后一個數位上,而不是0.6074減去0.0005”.通過引導學生觀察思考,得結論:當角度在0°~90°間變化時,正弦值隨著角度的增大(或減小)而增大(或減小).

      解:sin37°24′=0.6074.

      角度增2′值增0.0005

      sin37°26′=0.6079.

      例6查表求sin37°23′的值.

      如果例5學生已經理解,那么例6學生完全可以自己解決,通過對比,加強學生的理解.

      解:sin37°24′=0.6074

      角度減1′值減0.0002

      sin37°23′=0.6072.

      在查表中,還應引導學生查得:

      sin0°=0,sin90°=1.

      根據正弦值隨角度變化規律:當角度從0°增加到90°時,正弦值從0增加到1;當角度從90°減少到0°時,正弦值從1減到0.

      可引導學生查得:

      cos0°=1,cos90°=0.

      根據余弦值隨角度變化規律知:當角度從0°增加到90°時,余弦值從1減小到0,當角度從90°減小到0°時,余弦值從0增加到1.

      (四)總結與擴展

      1.請學生總結

      本節課主要討論了“正弦和余弦表”的查法.了解正弦值,余弦值隨角度的變化而變化的規律:當角度在0°~90°間變化時,正弦值隨著角度的增大而增大,隨著角度的減小而減小;當角度在0°~90°間變化時,余弦值隨著角度的增大而減小,隨著角度的減小而增大.

      2.“正弦和余弦表”的用處除了已知銳角查其正、余弦值外,還可以已知正、余弦值,求銳角,同學們可以試試看.

      四、布置作業

      預習教材中例8、例9、例10,養成良好的學習習慣.

      五、板書設計

    中考數學教案3

      6.6 函數的應用(1)

      一、知識要點

      一次函數、反比例函數的應用.

      二、課前演練

      1.(20xx上海)一輛汽車在行駛過程中,路程y(千米)與

      時間x(小時)之間的函數關系如圖所示 當時 0≤x≤1,

      y關于x的函數解析式為y=60x,那么當 1≤x≤2時,y

      關于x的函數解析式為_____ _______________.

      2.(20xx麗水)甲、 乙兩人以相同路線前往離學校12千米

      的地方參加植樹活動. 圖中l甲、l乙分別表示甲、乙兩人

      前往目的地所行駛的路程S(千米)隨時間t(分)變化的函

      數圖象,則每分鐘乙比甲多行駛 千米.

      三、例題分析

      例1 (20xx南京)小穎和小亮上山游玩,小穎乘纜車,小亮步行,兩人相約在山頂的纜車終點會合.已知小亮行走到纜車終點的路程是纜車到山頂的線路長的2倍,小穎在小亮出發后50min才乘上纜車,纜車的平均速度為180m/min.設小亮出發xmin后行走的路程為ym.圖中的折線表示小亮在整個行走過程中y與x的函數關系.

      ⑴小亮行走的總路程是_______㎝,他途中休息了______min.

      ⑵①當50≤x≤80時,求y與x的函數關系式;

     、诋斝》f到達纜車終點為時,小亮離纜車終點的路程是多少?

      例2(20xx成都)如圖,反比例函數y=kx(k≠0)的圖象經過點(12 ,8),直線y=-x+b經過該反比例函數圖象上的點Q(4,m).

      (1)求上述反比例函數和直線的函數表達式;

      (2)設該直線與x軸、y軸分別交于A、B兩點,與反比例函數

      圖象的另一個交點為P,連接0P、OQ,求△OPQ的面積.

      四、鞏固練習

      1. 拖拉機開始行駛時,油箱中有油4升,如果每小時耗油0.5升,那么油箱中余油y(升)與它工作的時間t(時)之間的函數關系的圖象是( )

      2. 已知等腰三角形的周長為10㎝,將底邊長y㎝表示為腰長x㎝的關系式是y=10-2x,則其自變量x的取值范圍是( )

      A.00

      3.(20xx連云港)我市某醫藥公司要把藥品運往外地,現有兩種運輸方式可供選擇:

      方式一:使用快遞公司的郵車運輸,裝卸收費400元,另外每公里再加收4元;

      方式二:使用鐵路運輸公司的火車運輸,裝卸收費820元,另外每公里再加收2元,

      (1)分別寫出郵車、火車運輸的總費用y1(元)、y2(元)與運輸路程x(km)之間的函數關系式;

      (2)你認為選用哪種運輸方式較好,為什么?

      4. 制作一種產品,需先將材料加熱達到60℃后,再進行操作.設該材料溫度為y(℃),從加熱開始計算的時間為x(分鐘).據了解,設該材料加熱時,溫度y與時間x成一次函數關系;停止加熱進行操作時,溫度y與時間x成反比例關系(如圖).已知該材料在操作加工前的溫度為15℃,加熱5分鐘后溫度達到60℃.

      (1)分別求出將材料加熱和停止加熱進行操作時,y與x的函數關系式;

      (2)根據工藝要求,當材料的溫度低于15℃時,須停止操作,那么從開始加熱到停止操作,共經歷了多少時間?

      海南初中數學組

      §6.7 函數的應用(2)

      一、知識要點

      二次函數在實際問題中的應用.

      二、課前演練

      1.(20xx株洲)某廣場有一噴水池,水從地面噴出,如圖,

      以水平地面為x軸,出水點為原點,建立直角坐標系,

      水在空中劃出的曲線是拋物線y=-x2+4x(單位:米)的

      一部分,則水噴出的.最大高度是( )

      A.4米 B.3米 C.2米 D.1米

      2.(20xx梧州)20xx年5月22日—29日在美麗的青島市

      舉行了蘇迪 曼杯羽毛球混合團體錦標賽.在比賽中,某

      次羽毛球的運動路線可以看作是拋物線y=-14x2+bx+c的一

      部分(如圖),其中出球點B離地面O點的距離是1m,球落

      地點A到O點的距離是4m,那么這條拋物線的解析式是( )

      A.y=-14x2+34x+1 B.y=-14x2+34x-1 C.y=-14x2-34x+1 D.y=-14x2-34x-1

      三、例題分析

      例1(20xx沈陽)一玩具廠去年生產某種玩具,成本為10元/件,出廠價為12元/件,年銷售量為2萬件.今年計劃通過適當增加成本來提高產品檔次,以拓展市場.若今年這種玩具每件的成本比去年成本增加0.7x倍,今年這種玩具每件的出廠價比去年出廠價相應提高0.5x倍,則預計今年年銷售量將比去年年銷售量增加x倍(本題中0

      (1)用含 的代數式表示,今年生產的這種玩具每件的成本為________元,今年生產的這種玩具每件的出廠價為_________元.

      (2)求今年這種玩具的每件利潤y元與x之間的函數關系式.

      (3)設今年這種玩具的年銷售利潤為w萬元,求當x為何值時,今年的年銷售利潤最大?最大年銷售利潤是多少萬元?

      注:年銷售利潤=(每件玩具的出廠價-每件玩具的成本)×年銷售量.

      四、鞏固練習

      1.(20xx西寧)西寧中心廣場有各種音樂噴泉,其中一個噴水管

      的最大高度為3米,此時距噴水管的水平距離為12米,在如圖

      所示的坐標系中,這個噴泉的函數關系式是( )

      A.y=-(x-12)2+3 B.y=-3(x+12)2+3 C.y=-12(x-12)2+3 D.y=-12(x+12)2+3

      2.(20xx聊城)某公園草坪的防護欄由100段形狀

      相同的拋物線形構件組成,為了牢固起見,每段

      護欄需要間距0.4m加設一根不銹鋼的支柱,防護

      欄的最高點距底部0.5m(如圖),則這條防護欄需

      要不銹鋼支柱的總長度至少為( )

      A.50m B.100m C.160m D.200m

      3.(20xx甘肅)如圖,正方形ABCD邊長為1,E、F、G、H分別為各邊上的點,且AE=BF=CG=DH,設小正方形EFGH的面積為s,AE為x,則s關于x的函數圖象大致是( )

      4. 某公司試銷一種成本單價為500元/件的新產品,規定試銷時的銷售單價不低于成本單價,又不高于800元/件,經試銷調查,發現銷售量y(件)與銷售單價x(元/件)可近似看作一次函數y=kx+b的關系(如圖).

      (1)根據圖象,求出一次函數的解析式;

      (2)設公司獲得的毛利潤為S元.

      ①試用銷售單價x表示毛利潤S;

     、谡埥Y合S與x的函數圖象說明:銷售單價定為多少時,該公司可獲得最大利潤?最大利潤是多少?此時銷售量是多少?

      5.(20xx曲靖)一名男生推鉛球,鉛球行進高度y(單位:m)與水平距離x(單位:m)之間的關系是y=-112 x2+23 x+53 ,鉛球運行路線如圖.

      (1)求鉛球推出的水平距離;

      (2)通過計算說明鉛球行進高度能否達到4m.

    【中考數學教案】相關文章:

    數學教案09-28

    數學教案12-30

    數學教案及反思07-28

    小學數學教案08-29

    人教版數學教案08-27

    數學教案《折扣》08-24

    《青蛙》數學教案08-15

    《種花》數學教案08-16

    《等分》數學教案09-07

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      久久亚洲成a人片 | 亚洲欧美国产制服 | 秋霞步兵区国产精品 | 中文专区欧美三级在线 | 伊人久久精品久久亚洲一区 | 尤物视频在线观看卡不卡 |