高中數學教案
作為一名教學工作者,可能需要進行教案編寫工作,教案是實施教學的主要依據,有著至關重要的作用。來參考自己需要的教案吧!下面是小編精心整理的高中數學教案,歡迎閱讀與收藏。
高中數學教案1
教學目標
知識與技能目標:
本節的中心任務是研究導數的幾何意義及其應用,概念的形成分為三個層次:
(1)通過復習舊知“求導數的兩個步驟”以及“平均變化率與割線斜率的關系”,解決了平均變化率的幾何意義后,明確探究導數的幾何意義可以依據導數概念的形成尋求解決問題的途徑。
(2)從圓中割線和切線的變化聯系,推廣到一般曲線中用割線逼近的方法直觀定義切線。
(3)依據割線與切線的變化聯系,數形結合探究函數導數的幾何意義教案在導數的幾何意義教案處的導數導數的幾何意義教案的幾何意義,使學生認識到導數導數的幾何意義教案就是函數導數的幾何意義教案的圖象在導數的幾何意義教案處的切線的斜率。即:
導數的幾何意義教案=曲線在導數的幾何意義教案處切線的斜率k
在此基礎上,通過例題和練習使學生學會利用導數的幾何意義解釋實際生活問題,加深對導數內涵的理解。在學習過程中感受逼近的思想方法,了解“以直代曲”的數學思想方法。
過程與方法目標:
(1)學生通過觀察感知、動手探究,培養學生的動手和感知發現的能力。
(2)學生通過對圓的切線和割線聯系的認識,再類比探索一般曲線的情況,完善對切線的認知,感受逼近的思想,體會相切是種局部性質的本質,有助于數學思維能力的提高。
(3)結合分層的探究問題和分層練習,期望各種層次的學生都可以憑借自己的能力盡力走在教師的前面,獨立解決問題和發現新知、應用新知。
情感、態度、價值觀:
(1)通過在探究過程中滲透逼近和以直代曲思想,使學生了解近似與精確間的辨證關系;通過有限來認識無限,體驗數學中轉化思想的意義和價值;
(2)在教學中向他們提供充分的從事數學活動的機會,如:探究活動,讓學生自主探究新知,例題則采用練在講之前,講在關鍵處。在活動中激發學生的學習潛能,促進他們真正理解和掌握基本的數學知識技能、數學思想方法,獲得廣泛的數學活動經驗,提高綜合能力,學會學習,進一步在意志力、自信心、理性精神等情感與態度方面得到良好的發展。
教學重點與難點
重點:理解和掌握切線的新定義、導數的幾何意義及應用于解決實際問題,體會數形結合、以直代曲的思想方法。
難點:發現、理解及應用導數的幾何意義。
教學過程
一、復習提問
1.導數的定義是什么?求導數的三個步驟是什么?求函數y=x2在x=2處的導數.
定義:函數在導數的幾何意義教案處的導數導數的幾何意義教案就是函數在該點處的瞬時變化率。
求導數的步驟:
第一步:求平均變化率導數的幾何意義教案;
第二步:求瞬時變化率導數的幾何意義教案.
(即導數的幾何意義教案,平均變化率趨近于的確定常數就是該點導數)
2.觀察函數導數的幾何意義教案的圖象,平均變化率導數的幾何意義教案在圖形中表示什么?
生:平均變化率表示的是割線PQ的斜率.導數的幾何意義教案
師:這就是平均變化率(導數的幾何意義教案)的幾何意義,
3.瞬時變化率(導數的幾何意義教案)在圖中又表示什么呢?
如圖2-1,設曲線C是函數y=f(x)的圖象,點P(x0,y0)是曲線C上一點.點Q(x0+Δx,y0+Δy)是曲線C上與點P鄰近的任一點,作割線PQ,當點Q沿著曲線C無限地趨近于點P,割線PQ便無限地趨近于某一極限位置PT,我們就把極限位置上的直線PT,叫做曲線C在點P處的切線.
導數的幾何意義教案
追問:怎樣確定曲線C在點P的切線呢?因為P是給定的,根據平面解析幾何中直線的點斜式方程的知識,只要求出切線的斜率就夠了.設割線PQ的傾斜角為導數的幾何意義教案,切線PT的傾斜角為導數的幾何意義教案,易知割線PQ的斜率為導數的幾何意義教案。既然割線PQ的極限位置上的直線PT是切線,所以割線PQ斜率的極限就是切線PT的斜率導數的幾何意義教案,即導數的幾何意義教案。
由導數的定義知導數的幾何意義教案導數的幾何意義教案。
導數的幾何意義教案
由上式可知:曲線f(x)在點(x0,f(x0))處的切線的斜率就是y=f(x)在點x0處的導數f'(x0).今天我們就來探究導數的幾何意義。
C類學生回答第1題,A,B類學生回答第2題在學生回答基礎上教師重點講評第3題,然后逐步引入導數的幾何意義.
二、新課
1、導數的幾何意義:
函數y=f(x)在點x0處的導數f'(x0)的幾何意義,就是曲線y=f(x)在點(x0,f(x0))處切線的斜率.
即:導數的幾何意義教案
口答練習:
(1)如果函數y=f(x)在已知點x0處的導數分別為下列情況f'(x0)=1,f'(x0)=1,f'(x0)=-1,f'(x0)=2.試求函數圖像在對應點的切線的傾斜角,并說明切線各有什么特征。
(C層學生做)
(2)已知函數y=f(x)的圖象(如圖2-2),分別為以下三種情況的直線,通過觀察確定函數在各點的導數.(A、B層學生做)
導數的幾何意義教案
2、如何用導數研究函數的增減?
小結:附近:瞬時,增減:變化率,即研究函數在該點處的瞬時變化率,也就是導數。導數的正負即對應函數的增減。作出該點處的切線,可由切線的升降趨勢,得切線斜率的正負即導數的正負,就可以判斷函數的增減性,體會導數是研究函數增減、變化快慢的有效工具。
同時,結合以直代曲的思想,在某點附近的切線的.變化情況與曲線的變化情況一樣,也可以判斷函數的增減性。都反應了導數是研究函數增減、變化快慢的有效工具。
例1函數導數的幾何意義教案上有一點導數的幾何意義教案,求該點處的導數導數的幾何意義教案,并由此解釋函數的增減情況。
導數的幾何意義教案
函數在定義域上任意點處的瞬時變化率都是3,函數在定義域內單調遞增。(此時任意點處的切線就是直線本身,斜率就是變化率)
3、利用導數求曲線y=f(x)在點(x0,f(x0))處的切線方程.
例2求曲線y=x2在點M(2,4)處的切線方程.
解:導數的幾何意義教案
∴y'|x=2=2×2=4.
∴點M(2,4)處的切線方程為y-4=4(x-2),即4x-y-4=0.
由上例可歸納出求切線方程的兩個步驟:
(1)先求出函數y=f(x)在點x0處的導數f'(x0).
(2)根據直線方程的點斜式,得切線方程為y-y0=f'(x0)(x-x0).
提問:若在點(x0,f(x0))處切線PT的傾斜角為導數的幾何意義教案導數的幾何意義教案,求切線方程。(因為這時切線平行于y軸,而導數不存在,不能用上面方法求切線方程。根據切線定義可直接得切線方程導數的幾何意義教案)
(先由C類學生來回答,再由A,B補充.)
例3已知曲線導數的幾何意義教案上一點導數的幾何意義教案,求:(1)過P點的切線的斜率;
(2)過P點的切線的方程。
解:(1)導數的幾何意義教案,
導數的幾何意義教案
y'|x=2=22=4. ∴在點P處的切線的斜率等于4.
(2)在點P處的切線方程為導數的幾何意義教案即12x-3y-16=0.
練習:求拋物線y=x2+2在點M(2,6)處的切線方程.
(答案:y'=2x,y'|x=2=4切線方程為4x-y-2=0).
B類學生做題,A類學生糾錯。
三、小結
1.導數的幾何意義.(C組學生回答)
2.利用導數求曲線y=f(x)在點(x0,f(x0))處的切線方程的步驟.
(B組學生回答)
四、布置作業
1.求拋物線導數的幾何意義教案在點(1,1)處的切線方程。
2.求拋物線y=4x-x2在點A(4,0)和點B(2,4)處的切線的斜率,切線的方程.
3.求曲線y=2x-x3在點(-1,-1)處的切線的傾斜角
4.已知拋物線y=x2-4及直線y=x+2,求:(1)直線與拋物線交點的坐標; (2)拋物線在交點處的切線方程;
(C組學生完成1,2題;B組學生完成1,2,3題;A組學生完成2,3,4題)
教學反思:
本節內容是在學習了“變化率問題、導數的概念”等知識的基礎上,研究導數的幾何意義,由于新教材未設計極限,于是我盡量采用形象直觀的方式,讓學生通過動手作圖,自我感受整個逼近的過程,讓學生更加深刻地體會導數的幾何意義及“以直代曲”的思想。
本節課主要圍繞著“利用函數圖象直觀理解導數的幾何意義”和“利用導數的幾何意義解釋實際問題”兩個教學重心展開。先回憶導數的實際意義、數值意義,由數到形,自然引出從圖形的角度研究導數的幾何意義;然后,類比“平均變化率——瞬時變化率”的研究思路,運用逼近的思想定義了曲線上某點的切線,再引導學生從數形結合的角度思考,獲得導數的幾何意義——“導數是曲線上某點處切線的斜率”。
完成本節課第一階段的內容學習后,教師點明,利用導數的幾何意義,在研究實際問題時,某點附近的曲線可以用過此點的切線近似代替,即“以直代曲”,從而達到“以簡單的對象刻畫復雜對象”的目的,并通過兩個例題的研究,讓學生從不同的角度完整地體驗導數與切線斜率的關系,并感受導數應用的廣泛性。本節課注重以學生為主體,每一個知識、每一個發現,總設法由學生自己得出,課堂上給予學生充足的思考時間和空間,讓學生在動手操作、動筆演算等活動后,再組織討論,本教師只是在關鍵處加以引導。從學生的作業看來,效果較好。
高中數學教案2
百分數的意義、納稅、利息百分數應用題課本第127至128頁整理和復習,練習三十四。
一、復習目的
1.通過復習使學生進一步理解百分數的意義,掌握納稅、利息百分數應用題特征,能較熟練地理解這一類應用題。
2.提高學生解題能力。
3.對學生進行愛國主義教育。
二、學法指導
1.引導學生回憶所學知識,進行整理,形成知識網絡。
2.指導學生運用多種形式,合作學習,掌握所學知識。
三、教學重點:百分數的意義和百分數的應用。
四、教學難點:百分數的應用。
五、教學步驟
百分數有關知識
(一)百分數:意義,表示一個數是另一個數的百分之幾的.數。百分數也叫做百分率或百分比。寫法:90% 108.5%
與分數在定義有什么不同:使學生明確:分數既可以表示一個數,又可以表示兩個數的比;百分數只表示兩個數的比,不能寫單位名稱。
(二)百分數和分數小數的互化:百分數小數互化
百分數分數互化:
(三)百分數的應用:
百分數的一般應用題,一個數是另一個數的百分之幾,發芽率 出粉率 合格率 出勤率 ┉┉(結合133頁3題) 稍復雜的百分數應用題
關鍵:確定單位“1”與分數應用題類同。
納稅:增值稅,消費稅,營業稅,個人所得稅(結合133頁5題)
利息:利息=本金×利率×時間
百分數有關知識:百分數、小數、分數互化133頁整理和復習2題。練習三十四1、2題分組練習,訂正時說一說是怎樣想的。
六、布置作業
練習三十四3、4題,學生獨立解答,教師巡視。
七、板書設計(略)
高中數學教案3
教學目標:
1。了解反函數的概念,弄清原函數與反函數的定義域和值域的關系。
2。會求一些簡單函數的反函數。
3。在嘗試、探索求反函數的過程中,深化對概念的認識,總結出求反函數的一般步驟,加深對函數與方程、數形結合以及由特殊到一般等數學思想方法的認識。
4。進一步完善學生思維的深刻性,培養學生的逆向思維能力,用辯證的觀點分析問題,培養抽象、概括的能力。
教學重點:
求反函數的方法。
教學難點:
反函數的概念。
教學過程:
教學活動
設計意圖一、創設情境,引入新課
1。復習提問
①函數的概念
②y=f(x)中各變量的意義
2。同學們在物理課學過勻速直線運動的位移和時間的函數關系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是時間t的函數;在t=中,時間t是位移S的函數。在這種情況下,我們說t=是函數S=vt的反函數。什么是反函數,如何求反函數,就是本節課學習的內容。
3。板書課題
由實際問題引入新課,激發了學生學習興趣,展示了教學目標。這樣既可以撥去"反函數"這一概念的神秘面紗,也可使學生知道學習這一概念的必要性。
二、實例分析,組織探究
1。問題組一:
(用投影給出函數與;與()的圖象)
(1)這兩組函數的圖像有什么關系?這兩組函數有什么關系?(生答:與的圖像關于直線y=x對稱;與()的圖象也關于直線y=x對稱。是求一個數立方的運算,而是求一個數立方根的運算,它們互為逆運算。同樣,與()也互為逆運算。)
(2)由,已知y能否求x?
(3)是否是一個函數?它與有何關系?
(4)與有何聯系?
2。問題組二:
(1)函數y=2x 1(x是自變量)與函數x=2y 1(y是自變量)是否是同一函數?
(2)函數(x是自變量)與函數x=2y 1(y是自變量)是否是同一函數?
(3)函數 ()的定義域與函數()的值域有什么關系?
3。滲透反函數的概念。
(教師點明這樣的函數即互為反函數,然后師生共同探究其特點)
從學生熟知的函數出發,抽象出反函數的概念,符合學生的認知特點,有利于培養學生抽象、概括的能力。
通過這兩組問題,為反函數概念的引出做了鋪墊,利用舊知,引出新識,在"最近發展區"設計問題,使學生對反函數有一個直觀的粗略印象,為進一步抽象反函數的概念奠定基礎。
三、師生互動,歸納定義
1。(根據上述實例,教師與學生共同歸納出反函數的定義)
函數y=f(x)(x∈A) 中,設它的值域為 C。我們根據這個函數中x,y的關系,用 y 把 x 表示出來,得到 x = j (y) 。如果對于y在C中的任何一個值,通過x = j (y),x在A中都有的值和它對應,那么, x = j (y)就表示y是自變量,x是自變量 y 的函數。這樣的函數 x = j (y)(y ∈C)叫做函數y=f(x)(x∈A)的.反函數。記作: 。考慮到"用 x表示自變量, y表示函數"的習慣,將中的x與y對調寫成。
2。引導分析:
1)反函數也是函數;
2)對應法則為互逆運算;
3)定義中的"如果"意味著對于一個任意的函數y=f(x)來說不一定有反函數;
4)函數y=f(x)的定義域、值域分別是函數x=f(y)的值域、定義域;
5)函數y=f(x)與x=f(y)互為反函數;
6)要理解好符號f;
7)交換變量x、y的原因。
3。兩次轉換x、y的對應關系
(原函數中的自變量x與反函數中的函數值y 是等價的,原函數中的函數值y與反函數中的自變量x是等價的)
4。函數與其反函數的關系
函數y=f(x)
函數
定義域
A
C
值 域
C
A
四、應用解題,總結步驟
1。(投影例題)
【例1】求下列函數的反函數
(1)y=3x—1 (2)y=x 1
【例2】求函數的反函數。
(教師板書例題過程后,由學生總結求反函數步驟。)
2。總結求函數反函數的步驟:
1° 由y=f(x)反解出x=f(y)。
2° 把x=f(y)中 x與y互換得。
3° 寫出反函數的定義域。
(簡記為:反解、互換、寫出反函數的定義域)【例3】(1)有沒有反函數?
(2)的反函數是________。
(3)(x<0)的反函數是__________。
在上述探究的基礎上,揭示反函數的定義,學生有針對性地體會定義的特點,進而對定義有更深刻的認識,與自己的預設產生矛盾沖突,體會反函數。在剖析定義的過程中,讓學生體會函數與方程、一般到特殊的數學思想,并對數學的符號語言有更好的把握。
通過動畫演示,表格對照,使學生對反函數定義從感性認識上升到理性認識,從而消化理解。
通過對具體例題的講解分析,在解題的步驟上和方法上為學生起示范作用,并及時歸納總結,培養學生分析、思考的習慣,以及歸納總結的能力。
題目的設計遵循了從了解到理解,從掌握到應用的不同層次要求,由淺入深,循序漸進。并體現了對定義的反思理解。學生思考練習,師生共同分析糾正。
五、鞏固強化,評價反饋
1。已知函數 y=f(x)存在反函數,求它的反函數 y =f( x)
(1)y=—2x 3(xR) (2)y=—(xR,且x)
( 3 ) y=(xR,且x)
2。已知函數f(x)=(xR,且x)存在反函數,求f(7)的值。
五、反思小結,再度設疑
本節課主要研究了反函數的定義,以及反函數的求解步驟。互為反函數的兩個函數的圖象到底有什么特點呢?為什么具有這樣的特點呢?我們將在下節研究。
(讓學生談一下本節課的學習體會,教師適時點撥)
進一步強化反函數的概念,并能正確求出反函數。反饋學生對知識的掌握情況,評價學生對學習目標的落實程度。具體實踐中可采取同學板演、分組競賽等多種形式調動學生的積極性。"問題是數學的心臟"學生帶著問題走進課堂又帶著新的問題走出課堂。
六、作業
習題2。4 第1題,第2題
進一步鞏固所學的知識。
教學設計說明
"問題是數學的心臟"。一個概念的形成是螺旋式上升的,一般要經過具體到抽象,感性到理性的過程。本節教案通過一個物理學中的具體實例引入反函數,進而又通過若干函數的圖象進一步加以誘導剖析,最終形成概念。
反函數的概念是教學中的難點,原因是其本身較為抽象,經過兩次代換,又采用了抽象的符號。由于沒有一一映射,逆映射等概念的支撐,使學生難以從本質上去把握反函數的概念。為此,我們大膽地使用教材,把互為反函數的兩個函數的圖象關系預先揭示,進而探究原因,尋找規律,程序是從問題出發,研究性質,進而得出概念,這正是數學研究的順序,符合學生認知規律,有助于概念的建立與形成。另外,對概念的剖析以及習題的配備也很精當,通過不同層次的問題,滿足學生多層次需要,起到評價反饋的作用。通過對函數與方程的分析,互逆探索,動畫演示,表格對照、學生討論等多種形式的教學環節,充分調動了學生的探求欲,在探究與剖析的過程中,完善學生思維的深刻性,培養學生的逆向思維。使學生自然成為學習的主人。
高中數學教案4
課題:
等比數列的概念
教學目標
1、通過教學使學生理解等比數列的概念,推導并掌握通項公式、
2、使學生進一步體會類比、歸納的思想,培養學生的觀察、概括能力、
3、培養學生勤于思考,實事求是的精神,及嚴謹的科學態度、
教學重點,難點
重點、難點是等比數列的定義的歸納及通項公式的推導、
教學用具
投影儀,多媒體軟件,電腦、
教學方法
討論、談話法、
教學過程
一、提出問題
給出以下幾組數列,將它們分類,說出分類標準、(幻燈片)
①—2,1,4,7,10,13,16,19,…
②8,16,32,64,128,256,…
③1,1,1,1,1,1,1,…
④243,81,27,9,3,1,,,…
⑤31,29,27,25,23,21,19,…
⑥1,—1,1,—1,1,—1,1,—1,…
⑦1,—10,100,—1000,10000,—100000,…
⑧0,0,0,0,0,0,0,…
由學生發表意見(可能按項與項之間的關系分為遞增數列、遞減數列、常數數列、擺動數列,也可能分為等差、等比兩類),統一一種分法,其中②③④⑥⑦為有共同性質的一類數列(學生看不出③的情況也無妨,得出定義后再考察③是否為等比數列)、
二、講解新課
請學生說出數列②③④⑥⑦的共同特性,教師指出實際生活中也有許多類似的例子,如變形蟲分裂問題、假設每經過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設開始有一個變形蟲,經過一個單位時間它分裂為兩個變形蟲,經過兩個單位時間就有了四個變形蟲,…,一直進行下去,記錄下每個單位時間的變形蟲個數得到了一列數
這個數列也具有前面的幾個數列的共同特性,這是我們將要研究的另一類數列——等比數列、(這里播放變形蟲分裂的多媒體軟件的第一步)
等比數列(板書)
1、等比數列的定義(板書)
根據等比數列與等差數列的名字的區別與聯系,嘗試給等比數列下定義、學生一般回答可能不夠完美,多數情況下,有了等差數列的基礎是可以由學生概括出來的教師寫出等比數列的定義,標注出重點詞語、
請學生指出等比數列②③④⑥⑦各自的公比,并思考有無數列既是等差數列又是等比數列、學生通過觀察可以發現③是這樣的數列,教師再追問,還有沒有其他的例子,讓學生再舉兩例、而后請學生概括這類數列的一般形式,學生可能說形如的數列都滿足既是等差又是等比數列,讓學生討論后得出結論:當時,數列既是等差又是等比數列,當時,它只是等差數列,而不是等比數列、教師追問理由,引出對等比數列的認識:
2、對定義的認識(板書)
(1)等比數列的首項不為0;
(2)等比數列的每一項都不為0,即
問題:一個數列各項均不為0是這個數列為等比數列的什么條件?
(3)公比不為0、
用數學式子表示等比數列的定義、
是等比數列
①、在這個式子的寫法上可能會有一些爭議,如寫成
,可讓學生研究行不行,好不好;接下來再問,能否改寫為
是等比數列?為什么不能?式子給出了數列第項與第
項的數量關系,但能否確定一個等比數列?(不能)確定一個等比數列需要幾個條件?當給定了首項及公比后,如何求任意一項的值?所以要研究通項公式、
3、等比數列的通項公式(板書)
問題:用和表示第項
①不完全歸納法
②疊乘法,…,,這個式子相乘得,所以(板書)
(1)等比數列的通項公式得出通項公式后,讓學生思考如何認識通項公式、(板書)
(2)對公式的認識
由學生來說,最后歸結:
①函數觀點;
②方程思想(因在等差數列中已有認識,此處再復習鞏固而已)、
這里強調方程思想解決問題、方程中有四個量,知三求一,這是公式最簡單的應用,請學生舉例(應能編出四類問題)、解題格式是什么?(不僅要會解題,還要注意規范表述的訓練)
如果增加一個條件,就多知道了一個量,這是公式的更高層次的應用,下節課再研究、同學可以試著編幾道題。
三、小結
1、本節課研究了等比數列的'概念,得到了通項公式;
2、注意在研究內容與方法上要與等差數列相類比;
3、用方程的思想認識通項公式,并加以應用。
探究活動
將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設這張紙的厚度為0、01毫米。
參考答案:
30次后,厚度為,這個厚度超過了世界最高的山峰——珠穆朗瑪峰的高度。如果紙再薄一些,比如紙厚0、001毫米,對折34次就超過珠穆朗瑪峰的高度了、還記得國王的承諾嗎?第31個格子中的米已經是1073741824粒了,后邊的格子中的米就更多了,最后一個格子中的米應是粒,用計算器算一下吧(對數算也行)。
高中數學教案5
一.教材分析:
集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。
二.目標分析:
教學重點.難點
重點:集合的含義與表示方法.
難點:表示法的恰當選擇.
教學目標
l.知識與技能
(1)通過實例,了解集合的含義,體會元素與集合的屬于關系;
(2)知道常用數集及其專用記號; (3)了解集合中元素的確定性.互異性.無序性;
(4)會用集合語言表示有關數學對象;
2.過程與方法
(1)讓學生經歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.
(2)讓學生歸納整理本節所學知識.
3.情感.態度與價值觀
使學生感受到學習集合的必要性,增強學習的積極性.
三.教法分析
1.教學方法:學生通過閱讀教材,自主學習.思考.交流.討論和概括,從而更好地完成本節課的教學目標.2.教學手段:在教學中使用投影儀來輔助教學.
四.過程分析
(一)創設情景,揭示課題
1.教師首先提出問題:(1)介紹自己的家庭、原來就讀的學校、現在的班級。
(2)問題:像“家庭”、“學校”、“班級”等,有什么共同特征?
引導學生互相交流.與此同時,教師對學生的活動給予評價.
2.活動:(1)列舉生活中的集合的例子;(2)分析、概括各實例的共同特征
由此引出這節要學的內容。
設計意圖:既激發了學生濃厚的學習興趣,又為新知作好鋪墊
(二)研探新知,建構概念
1.教師利用多媒體設備向學生投影出下面7個實例:
(1)1—20以內的所有質數;(2)我國古代的四大發明;
(3)所有的安理會常任理事國; (4)所有的正方形;
(5)海南省在20xx年9月之前建成的所有立交橋;
(6)到一個角的兩邊距離相等的所有的點;
(7)國興中學20xx年9月入學的高一學生的全體.
2.教師組織學生分組討論:這7個實例的共同特征是什么?
3.每個小組選出——位同學發表本組的討論結果,在此基礎上,師生共同概括出7個實例的特征,并給出集合的含義.一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素.
4.教師指出:集合常用大寫字母A,B,C,D,?表示,元素常用小寫字母a,b,c,d?表示.
設計意圖:通過實例讓學生感受集合的概念,激發學習的興趣,培養學生樂于求索的精神
(三)質疑答辯,發展思維
1.教師引導學生閱讀教材中的相關內容,思考:集合中元素有什么特點?并注意個別輔導,解答學生疑難.使學生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構成兩個集合的'元素是一樣的,我們就稱這兩個集合相等.
2.教師組織引導學生思考以下問題:
判斷以下元素的全體是否組成集合,并說明理由:
(1)大于3小于11的偶數;(2)我國的小河流.讓學生充分發表自己的建解.
3.讓學生自己舉出一些能夠構成集合的例子以及不能構成集合的例子,并說明理由.教師對學生的學習活動給予及時的評價.
4.教師提出問題,讓學生思考
b是(1)如果用A表示高—(3)班全體學生組成的集合,用a表示高一(3)班的一位同學,
高一(4)班的一位同學,那么a,b與集合A分別有什么關系?由此引導學生得出元素與集合的關系有兩種:屬于和不屬于.
如果a是集合A的元素,就說a屬于集合A,記作a?A.
如果a不是集合A的元素,就說a不屬于集合A,記作a?A.
(2)如果用A表示“所有的安理會常任理事國”組成的集合,則中國.日本與集合A的關系分別是什么?請用數學符號分別表示.
(3)讓學生完成教材第6頁練習第1題.
5.教師引導學生回憶數集擴充過程,然后閱讀教材中的相交內容,寫出常用數集的記號.并讓學生完成習題1.1A組第1題.
6.教師引導學生閱讀教材中的相關內容,并思考.討論下列問題:
(1)要表示一個集合共有幾種方式?
(2)試比較自然語言.列舉法和描述法在表示集合時,各自的特點?適用的對象是什么?
(3)如何根據問題選擇適當的集合表示法?
使學生弄清楚三種表示方式的優缺點和體會它們存在的必要性和適用對象。
設計意圖:明確集合元素的三大特性,使學生弄清楚三種表示方式的優缺點,從而突破難點。
(四)鞏固深化,反饋矯正
教師投影學習:
(1)用自然語言描述集合{1,3,5,7,9}; (2)用例舉法表示集合A?{x?N|1?x?8}
(3)試選擇適當的方法表示下列集合:教材第6頁練習第2題.
設計意圖:使學生及時鞏固所學新知,體會三種表示方式存在的必要性和適用對象
(五)歸納小結,布置作業
小結:在師生互動中,讓學生了解或體會下例問題:
1.本節課我們學習了哪些知識內容? 2.你認為學習集合有什么意義?
3.選擇集合的表示法時應注意些什么?
設計意圖:通過回顧,對概念的發生與發展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。
作業:1.課后書面作業:第13頁習題1.1A組第4題.
2.元素與集合的關系有多少種?如何表示?類似地集合與集合間的關系又有多少種
呢?如何表示?請同學們通過預習教材.
五.板書分析
高中數學教案6
教學目標
1.了解映射的概念,象與原象的概念,和一一映射的概念.
(1)明確映射是特殊的對應即由集合 ,集合 和對應法則f三者構成的一個整體,知道映射的特殊之處在于必須是多對一和一對一的對應;
(2)能準確使用數學符號表示映射, 把握映射與一一映射的區別;
(3)會求給定映射的指定元素的象與原象,了解求象與原象的方法.
2.在概念形成過程中,培養學生的觀察,比較和歸納的能力.
3.通過映射概念的學習,逐步提高學生對知識的探究能力.
教學建議
教材分析
(1)知識結構
映射是一種特殊的對應,一一映射又是一種特殊的映射,而且函數也是特殊的映射,它們之間的關系可以通過下圖表示出來,如圖:
由此我們可從集合的包含關系中幫助我們把握相關概念間的區別與聯系.
(2)重點,難點分析
本節的教學重點和難點是映射和一一映射概念的形成與認識.
①映射的概念是比較抽象的概念,它是在初中所學對應的基礎上發展而來.教學中應特別強調對應集合 B中的唯一這點要求的理解;
映射是學生在初中所學的對應的基礎上學習的,對應本身就是由三部分構成的整體,包括集 合A和集合B及對應法則f,由于法則的不同,對應可分為一對一,多對一,一對多和多對多. 其中只有一對一和多對一的能構成映射,由此可以看到映射必是“對B中之唯一”,而只要是對應就必須保證讓A中之任一與B中元素相對應,所以滿足一對一和多對一的對應就能體現出“任一對唯一”.
②而一一映射又在映射的基礎上增加新的要求,決定了它在學習中是比較困難的.
教法建議
(1)在映射概念引入時,可先從學生熟悉的對應入手, 選擇一些具體的生活例子,然后再舉一些數學例子,分為一對多、多對一、多對一、一對一四種情況,讓學生認真觀察,比較,再引導學生發現其中一對一和多對一的對應是映射,逐步歸納概括出映射的基本特征,讓學生的認識從感性認識到理性認識.
(2)在剛開始學習映射時,為了能讓學生看清映射的構成,可以選擇用圖形表示映射,在集合的選擇上可選擇能用列舉法表示的有限集,法則盡量用語言描述,這樣的表示方法讓學生可以比較直觀的認識映射,而后再選擇用抽象的數學符號表示映射,比如:
(3)對于學生層次較高的`學校可以在給出定義后讓學生根據自己的理解舉出映射的例子,教師也給出一些映射的例子,讓學生從中發現映射的特點,并用自己的語言描述出來,最后教師加以概括,再從中引出一一映射概念;對于學生層次較低的學校,則可以由教師給出一些例子讓學生觀察,教師引導學生發現映射的特點,一起概括.最后再讓學生舉例,并逐步增加要求向一一映射靠攏,引出一一映射概念.
(4)關于求象和原象的問題,應在計算的過程中總結方法,特別是求原象的方法是解方程或方程組,還可以通過方程組解的不同情況(有唯一解,無解或有無數解)加深對映射的認識.
(5)在教學方法上可以采用啟發,討論的形式,讓學生在實例中去觀察,比較,啟發學生尋找共性,共同討論映射的特點,共同舉例,計算,最后進行小結,教師要起到點撥和深化的作用.
教學設計方案
2.1映射
教學目標(1)了解映射的概念,象與原象及一一映射的概念.
(2)在概念形成過程中,培養學生的觀察,分析對比,歸納的能力.
(3)通過映射概念的學習,逐步提高學生的探究能力.
教學重點難點::映射概念的形成與認識.
教學用具:實物投影儀
教學方法:啟發討論式
教學過程:
一、引入
在初中,我們已經初步探討了函數的定義并研究了幾類簡單的常見函數.在高中,將利用前面集合有關知識,利用映射的觀點給出函數的定義.那么映射是什么呢?這就是我們今天要詳細的概念.
二、新課
在前一章集合的初步知識中,我們學習了元素與集合及集合與集合之間的關系,而映射是重點研究兩個集合的元素與元素之間的對應關系.這要先從我們熟悉的對應說起(用投影儀打出一些對應關系,共6個)
我們今天要研究的是一類特殊的對應,特殊在什么地方呢?
提問1:在這些對應中有哪些是讓A中元素就對應B中唯一一個元素?
讓學生仔細觀察后由學生回答,對有爭議的,或漏選,多選的可詳細說明理由進行討論.最后得出(1),(2),(5),(6)是符合條件的(用投影儀將這幾個集中在一起)
提問2:能用自己的語言描述一下這幾個對應的共性嗎?
經過師生共同推敲,將映射的定義引出.(主體內容由學生完成,教師做必要的補充)
高中數學教案7
教學目標:
1.了解反函數的概念,弄清原函數與反函數的定義域和值域的關系.
2.會求一些簡單函數的反函數.
3.在嘗試、探索求反函數的過程中,深化對概念的認識,總結出求反函數的一般步驟,加深對函數與方程、數形結合以及由特殊到一般等數學思想方法的認識.
4.進一步完善學生思維的深刻性,培養學生的逆向思維能力,用辯證的觀點分析問題,培養抽象、概括的能力.
教學重點:求反函數的方法.
教學難點:反函數的概念.
教學過程:
教學活動
設計意圖一、創設情境,引入新課
1.復習提問
①函數的概念
②y=f(x)中各變量的意義
2.同學們在物理課學過勻速直線運動的位移和時間的函數關系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是時間t的函數;在t=中,時間t是位移S的函數.在這種情況下,我們說t=是函數S=vt的反函數.什么是反函數,如何求反函數,就是本節課學習的內容.
3.板書課題
由實際問題引入新課,激發了學生學習興趣,展示了教學目標.這樣既可以撥去"反函數"這一概念的神秘面紗,也可使學生知道學習這一概念的必要性.
二、實例分析,組織探究
1.問題組一:
(用投影給出函數與;與()的圖象)
(1)這兩組函數的圖像有什么關系?這兩組函數有什么關系?(生答:與的圖像關于直線y=x對稱;與()的圖象也關于直線y=x對稱.是求一個數立方的運算,而是求一個數立方根的運算,它們互為逆運算.同樣,與()也互為逆運算.)
(2)由,已知y能否求x?
(3)是否是一個函數?它與有何關系?
(4)與有何聯系?
2.問題組二:
(1)函數y=2x 1(x是自變量)與函數x=2y 1(y是自變量)是否是同一函數?
(2)函數(x是自變量)與函數x=2y 1(y是自變量)是否是同一函數?
(3)函數 ()的定義域與函數()的值域有什么關系?
3.滲透反函數的概念.
(教師點明這樣的函數即互為反函數,然后師生共同探究其特點)
從學生熟知的函數出發,抽象出反函數的概念,符合學生的認知特點,有利于培養學生抽象、概括的能力.
通過這兩組問題,為反函數概念的引出做了鋪墊,利用舊知,引出新識,在"最近發展區"設計問題,使學生對反函數有一個直觀的粗略印象,為進一步抽象反函數的概念奠定基礎.
三、師生互動,歸納定義
1.(根據上述實例,教師與學生共同歸納出反函數的定義)
函數y=f(x)(x∈A) 中,設它的值域為 C.我們根據這個函數中x,y的關系,用 y 把 x 表示出來,得到 x = j (y) .如果對于y在C中的任何一個值,通過x = j (y),x在A中都有的值和它對應,那么, x = j (y)就表示y是自變量,x是自變量 y 的函數.這樣的函數 x = j (y)(y ∈C)叫做函數y=f(x)(x∈A)的反函數.記作: .考慮到"用 x表示自變量, y表示函數"的習慣,將中的x與y對調寫成.
2.引導分析:
1)反函數也是函數;
2)對應法則為互逆運算;
3)定義中的"如果"意味著對于一個任意的函數y=f(x)來說不一定有反函數;
4)函數y=f(x)的定義域、值域分別是函數x=f(y)的值域、定義域;
5)函數y=f(x)與x=f(y)互為反函數;
6)要理解好符號f;
7)交換變量x、y的原因.
3.兩次轉換x、y的對應關系
(原函數中的自變量x與反函數中的函數值y 是等價的,原函數中的函數值y與反函數中的`自變量x是等價的)
4.函數與其反函數的關系
函數y=f(x)
函數
定義域
A
C
值 域
C
A
四、應用解題,總結步驟
1.(投影例題)
【例1】求下列函數的反函數
(1)y=3x-1 (2)y=x 1
【例2】求函數的反函數.
(教師板書例題過程后,由學生總結求反函數步驟.)
2.總結求函數反函數的步驟:
1° 由y=f(x)反解出x=f(y).
2° 把x=f(y)中 x與y互換得.
3° 寫出反函數的定義域.
(簡記為:反解、互換、寫出反函數的定義域)【例3】(1)有沒有反函數?
(2)的反函數是________.
(3)(x<0)的反函數是__________.
在上述探究的基礎上,揭示反函數的定義,學生有針對性地體會定義的特點,進而對定義有更深刻的認識,與自己的預設產生矛盾沖突,體會反函數.在剖析定義的過程中,讓學生體會函數與方程、一般到特殊的數學思想,并對數學的符號語言有更好的把握.
通過動畫演示,表格對照,使學生對反函數定義從感性認識上升到理性認識,從而消化理解.
通過對具體例題的講解分析,在解題的步驟上和方法上為學生起示范作用,并及時歸納總結,培養學生分析、思考的習慣,以及歸納總結的能力.
題目的設計遵循了從了解到理解,從掌握到應用的不同層次要求,由淺入深,循序漸進.并體現了對定義的反思理解.學生思考練習,師生共同分析糾正.
五、鞏固強化,評價反饋
1.已知函數 y=f(x)存在反函數,求它的反函數 y =f( x)
(1)y=-2x 3(xR) (2)y=-(xR,且x)
( 3 ) y=(xR,且x)
2.已知函數f(x)=(xR,且x)存在反函數,求f(7)的值.
五、反思小結,再度設疑
本節課主要研究了反函數的定義,以及反函數的求解步驟.互為反函數的兩個函數的圖象到底有什么特點呢?為什么具有這樣的特點呢?我們將在下節研究.
(讓學生談一下本節課的學習體會,教師適時點撥)
進一步強化反函數的概念,并能正確求出反函數.反饋學生對知識的掌握情況,評價學生對學習目標的落實程度.具體實踐中可采取同學板演、分組競賽等多種形式調動學生的積極性."問題是數學的心臟"學生帶著問題走進課堂又帶著新的問題走出課堂.
六、作業
習題2.4第1題,第2題
進一步鞏固所學的知識.
教學設計說明
"問題是數學的心臟".一個概念的形成是螺旋式上升的,一般要經過具體到抽象,感性到理性的過程.本節教案通過一個物理學中的具體實例引入反函數,進而又通過若干函數的圖象進一步加以誘導剖析,最終形成概念.
反函數的概念是教學中的難點,原因是其本身較為抽象,經過兩次代換,又采用了抽象的符號.由于沒有一一映射,逆映射等概念的支撐,使學生難以從本質上去把握反函數的概念.為此,我們大膽地使用教材,把互為反函數的兩個函數的圖象關系預先揭示,進而探究原因,尋找規律,程序是從問題出發,研究性質,進而得出概念,這正是數學研究的順序,符合學生認知規律,有助于概念的建立與形成.另外,對概念的剖析以及習題的配備也很精當,通過不同層次的問題,滿足學生多層次需要,起到評價反饋的作用.通過對函數與方程的分析,互逆探索,動畫演示,表格對照、學生討論等多種形式的教學環節,充分調動了學生的探求欲,在探究與剖析的過程中,完善學生思維的深刻性,培養學生的逆向思維.使學生自然成為學習的主人。
高中數學教案8
1. 幽默風趣的你,平時在班里話語不多,也不張揚,但是,你在無意中的表現仍然贏得了很好的人際關系,學習上你認真刻苦,也能及時的完成作業,但是我覺得你總是沒把全部的心思用在學習上,不然以你的聰明,應該保持在前三名才對啊,加油吧,也許關注學習成績對你才是更有意義的事!
2. 身為紀律委員的你,認真負責,以身作則,生活上的你平易近人,與同學關系融洽,學習上你勤奮刻苦,尤其在英語的學習上,顯示出了你的語言天賦,我覺得,假如你能把這份自信和興趣用到其他的學科學習中,也一定會收獲很多的`!加油吧!
3. 你能嚴格遵守校規,上課認真聽講,作業完成認真,樂于助人,愿意幫助同學,大掃除時你不怕苦,不怕累,但是英語方面還不夠給力,所以,如果再投入一點,定會取得更好的結果,而且你還是一個愿意動腦筋的好學生,如果繼續保持下去定會取得驕人的成績!
4. 你是個懂禮貌明事理的孩子,你能嚴格遵守班級紀律,熱愛集體,對待學習態度端正,上課能夠專心聽講,課下能夠認真完成作業。你的學習方法有待改進,若能做到學習時心無旁騖就好了,掌握知識也不夠牢固,思維能力要進一步培養和提高,平時善于多動筆認真作好筆記,多開動腦筋,相信你一定能在下學期更得更大的進步! 你學習認真刻苦,也能善于思考,更十分活潑,并能嚴格遵守班級和宿舍紀律,上課你能認真聽講,做作業時你十分專注,常常愿意花功夫鉆研難題,與同學相處也十分融洽,但若能在認真做作業的同時,將速度提上去,我相信你會做得更好。要多講究學習方法,不能靠熬夜來完成學習任務,提高學習效率,老師相信你一定能通過自己的努力取得更好的成績!
5. 雖然你個頭小,但每次你領讀時的那股認真勁兒,令老師暗暗稱贊。你尊敬老師,和同學能和睦相處。甜美可愛的你,經過不斷的努力,你會更出色的!
6. 你是個活潑可愛的孩子,課堂上,你非常投入地學習著,朗讀課文時數你最有感情。中午你還主動給老師捶背,真是個會關心人的孩子,老師謝謝你。你十分喜愛讀課外書,不過課上可不能偷看啊!愿書成為你的好朋友。
7. 學習中你能嚴格要求自己,這是你永不落敗的秘訣。老師希望你能借助良好的學習方法,抓緊一切時間,笑在最后的一定是你!
8. 許麗君——你思想上進,踏實穩重,誠實謙虛,尊敬老師。黑板報中有你傾注的心血,集體榮譽簿里有你的功勞。但學習的主動精神不夠,競爭意識不強,也很少看到你向老師請教,成績進步不明顯。請相信:世上沒有比腳更長的路,也沒有比心更高的山!望今后大膽進取,多思多問,發揮你的聰明才智,進一步激發活力,提高學習效率,持之以恒,美好的明天屬于你!
9. 每天你都背著書包高高興興地來上學,學到了不少的知識,可惜只能記住很少的一部分。希望你改進學習方法,提高學習效率,在下學期有更大的進步!
10. 你言語不多,但待人誠懇、禮貌,作風踏實,品學兼優,熱愛班級,關愛同學,勤奮好學,思維敏捷,成績優秀。愿你扎實各科基礎,堅持不懈,!一定能考上重點! 優秀的男生肯定是逗人喜歡的,老師希望你能一如既往的優秀,把這種優秀保持在你人生的每一階段中。你的人生就是輝煌如意的!
高中數學教案9
內容分析:
1、 集合是中學數學的一個重要的基本概念
在小學數學中,就滲透了集合的初步概念,到了初中,更進一步應用集合的語言表述一些問題。例如,在代數中用到的有數集、解集等;在幾何中用到的有點集。至于邏輯,可以說,從開始學習數學就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學習、工作中,也是認識問題、研究問題不可缺少的工具。這些可以幫助學生認識學習本章的意義,也是本章學習的基礎。
把集合的初步知識與簡易邏輯知識安排在高中數學的最開始,是因為在高中數學中,這些知識與其他內容有著密切聯系,它們是學習、掌握和使用數學語言的基礎
例如,下一章講函數的概念與性質,就離不開集合與邏輯。
本節首先從初中代數與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明
然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子。
這節課主要學習全章的引言和集合的基本概念
學習引言是引發學生的學習興趣,使學生認識學習本章的意義
本節課的教學重點是集合的基本概念。
集合是集合論中的原始的、不定義的概念
在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識
教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集
”這句話,只是對集合概念的描述性說明。
教學過程:
一、復習引入:
1.簡介數集的發展,復習最大公約數和最小公倍數,質數與和數;
2.教材中的章頭引言;
3.集合論的創始人——康托爾(德國數學家)(見附錄);
4.“物以類聚”,“人以群分”;
5.教材中例子(P4)。
二、講解新課:
閱讀教材第一部分,問題如下:
(1)有那些概念?是如何定義的?
(2)有那些符號?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有關概念:由一些數、一些點、一些圖形、一些整式、一些物體、一些人組成的.我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集.集合中的每個對象叫做這個集合的元素.
定義:一般地,某些指定的對象集在一起就成為一個集合.
1、集合的概念
(1)集合:某些指定的'對象集在一起就形成一個集合(簡稱集)
(2)元素:集合中每個對象叫做這個集合的元素
2、常用數集及記法
(1)非負整數集(自然數集):全體非負整數的集合,記作N,N={0,1,2,…}
(2)正整數集:非負整數集內排除0的集,記作N*或N+,N*={1,2,3,…}
(3)整數集:全體整數的集合,記作Z ,Z={0,±1,±2,…}
(4)有理數集:全體有理數的集合,記作Q,Q={整數與分數}
(5)實數集:全體實數的集合,記作R,R={數軸上所有點所對應的數}
注:(1)自然數集與非負整數集是相同的,也就是說,自然數集包括數0
(2)非負整數集內排除0的集,記作N*或N+
Q、Z、R等其它數集內排除0的集,也是這樣表示,例如,整數集內排除0的集,表示成Z*
3、元素對于集合的隸屬關系
(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A
(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作aA
4、集合中元素的特性
(1)確定性:按照明確的判斷標準給定一個元素或者在這個集合里,或者不在,不能模棱兩可
(2)互異性:集合中的元素沒有重復
(3)無序性:集合中的元素沒有一定的順序(通常用正常的順序寫出)
5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……
元素通常用小寫的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的開口方向,不能把a∈A顛倒過來寫。
高中數學教案10
第一章:空間幾何體
1.1.1柱、錐、臺、球的結構特征
一、教學目標
1.知識與技能
(1)通過實物操作,增強學生的直觀感知。
(2)能根據幾何結構特征對空間物體進行分類。
(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。
(4)會表示有關于幾何體以及柱、錐、臺的分類。
2.過程與方法
(1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結構特征。
(2)讓學生觀察、討論、歸納、概括所學的知識。
3.情感態度與價值觀
(1)使學生感受空間幾何體存在于現實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。
(2)培養學生的空間想象能力和抽象括能力。
二、教學重點、難點
重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。
難點:柱、錐、臺、球的結構特征的概括。
三、教學用具
(1)學法:觀察、思考、交流、討論、概括。
(2)實物模型、投影儀
四、教學思路
(一)創設情景,揭示課題
1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結構特征如何?引導學生回憶,舉例和相互交流。教師對學生的活動及時給予評價。
2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結構特征的空間物體),你能通過觀察。根據某種標準對這些空間物體進行分類嗎?這是我們所要學習的內容。
(二)、研探新知
1.引導學生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。
2.觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點是什么?它們的共同特點是什么?
3.組織學生分組討論,每小組選出一名同學發表本組討論結果。在此基礎上得出棱柱的主要結構特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4.教師與學生結合圖形共同得出棱柱相關概念以及棱柱的表示。
5.提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據不同對棱柱分類?請列舉身邊具有已學過的幾何結構特征的物體,并說出組成這些物體的幾何結構特征?它們由哪些基本幾何體組成的?
6.以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關的概念,分類以及表示。
7.讓學生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關的概念及圓柱的表示。
8.引導學生以類似的方法思考圓錐、圓臺、球的結構特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。
9.教師指出圓柱和棱柱統稱為柱體,棱臺與圓臺統稱為臺體,圓錐與棱錐統稱為錐體。
10.現實世界中,我們看到的物體大多由具有柱、錐、臺、球等幾何結構特征的物體組合而成。請列舉身邊具有已學過的幾何結構特征的物體,并說出組成這些物體的幾何結構特征?它們由哪些基本幾何體組成的?
(三)質疑答辯,排難解惑,發展思維,教師提出問題,讓學生思考。
1.有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)
2.棱柱的何兩個平面都可以作為棱柱的底面嗎?
3.課本P8,習題1.1A組第1題。
4.圓柱可以由矩形旋轉得到,圓錐可以由直角三角形旋轉得到,圓臺可以由什么圖形旋轉得到?如何旋轉?
5.棱臺與棱柱、棱錐有什么關系?圓臺與圓柱、圓錐呢?
四、鞏固深化
練習:課本P7練習1、2(1)(2)
課本P8習題1.1第2、3、4題
五、歸納整理
由學生整理學習了哪些內容
六、布置作業
課本P8練習題1.1B組第1題
課外練習課本P8習題1.1B組第2題
1.2.1空間幾何體的三視圖(1課時)
一、教學目標
1.知識與技能
(1)掌握畫三視圖的基本技能
(2)豐富學生的空間想象力
2.過程與方法
主要通過學生自己的親身實踐,動手作圖,體會三視圖的作用。
3.情感態度與價值觀
(1)提高學生空間想象力
(2)體會三視圖的作用
二、教學重點、難點
重點:畫出簡單組合體的三視圖
難點:識別三視圖所表示的空間幾何體
三、學法與教學用具
1.學法:觀察、動手實踐、討論、類比
2.教學用具:實物模型、三角板
四、教學思路
(一)創設情景,揭開課題
“橫看成嶺側看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體,這堂課我們主要學習空間幾何體的三視圖。
在初中,我們已經學習了正方體、長方體、圓柱、圓錐、球的三視圖(正視圖、側視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?
(二)實踐動手作圖
1.講臺上放球、長方體實物,要求學生畫出它們的三視圖,教師巡視,學生畫完后可交流結果并討論;
2.教師引導學生用類比方法畫出簡單組合體的三視圖
(1)畫出球放在長方體上的三視圖
(2)畫出礦泉水瓶(實物放在桌面上)的三視圖
學生畫完后,可把自己的作品展示并與同學交流,總結自己的作圖心得。
作三視圖之前應當細心觀察,認識了它的基本結構特征后,再動手作圖。
3.三視圖與幾何體之間的相互轉化。
(1)投影出示圖片(課本P10,圖1.2-3)
請同學們思考圖中的三視圖表示的幾何體是什么?
(2)你能畫出圓臺的三視圖嗎?
(3)三視圖對于認識空間幾何體有何作用?你有何體會?
教師巡視指導,解答學生在學習中遇到的困難,然后讓學生發表對上述問題的看法。
4.請同學們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學交流。
(三)鞏固練習
課本P12練習1、2P18習題1.2A組1
(四)歸納整理
請學生回顧發表如何作好空間幾何體的三視圖
(五)課外練習
1.自己動手制作一個底面是正方形,側面是全等的三角形的棱錐模型,并畫出它的三視圖。
2.自己制作一個上、下底面都是相似的正三角形,側面是全等的等腰梯形的棱臺模型,并畫出它的三視圖。
1.2.2空間幾何體的直觀圖(1課時)
一、教學目標
1.知識與技能
(1)掌握斜二測畫法畫水平設置的平面圖形的直觀圖。
(2)采用對比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點。
2.過程與方法
學生通過觀察和類比,利用斜二測畫法畫出空間幾何體的.直觀圖。
3.情感態度與價值觀
(1)提高空間想象力與直觀感受。
(2)體會對比在學習中的作用。
(3)感受幾何作圖在生產活動中的應用。
二、教學重點、難點
重點、難點:用斜二測畫法畫空間幾何值的直觀圖。
三、學法與教學用具
1.學法:學生通過作圖感受圖形直觀感,并自然采用斜二測畫法畫空間幾何體的過程。
2.教學用具:三角板、圓規
四、教學思路
(一)創設情景,揭示課題
1.我們都學過畫畫,這節課我們畫一物體:圓柱
把實物圓柱放在講臺上讓學生畫。
2.學生畫完后展示自己的結果并與同學交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節主要學習的內容。
(二)研探新知
1.例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學生閱讀理解,并思考斜二測畫法的關鍵步驟,學生發表自己的見解,教師及時給予點評。
畫水平放置的多邊形的直觀圖的關鍵是確定多邊形頂點的位置,因為多邊形頂點的位置一旦確定,依次連結這些頂點就可畫出多邊形來,因此平面多邊形水平放置時,直觀圖的畫法可以歸結為確定點的位置的畫法。強調斜二測畫法的步驟。
練習反饋
根據斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學生獨立完成后,教師檢查。
2.例2,用斜二測畫法畫水平放置的圓的直觀圖
教師引導學生與例1進行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點,由于不能像多邊那樣直接以頂點為代表點,因此需要自己構造出一些點。
教師組織學生思考、討論和交流,如何構造出需要的一些點,與學生共同完成例2并詳細板書畫法。
3.探求空間幾何體的直觀圖的畫法
(1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體ABCD-A’B’C’D’的直觀圖。
教師引導學生完成,要注意對每一步驟提出嚴格要求,讓學生按部就班地畫好每一步,不能敷衍了事。
(2)投影出示幾何體的三視圖、課本P15圖1.2-9,請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學生思考,討論和交流完成,教師巡視幫不懂的同學解疑,引導學生正確把握圖形尺寸大小之間的關系。
4.平行投影與中心投影
投影出示課本P17圖1.2-12,讓學生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點。
5.鞏固練習,課本P16練習1(1),2,3,4
三、歸納整理
學生回顧斜二測畫法的關鍵與步驟
四、作業
1.書畫作業,課本P17練習第5題
2.課外思考課本P16,探究(1)(2)
高中數學教案11
一、教學目標
【知識與技能】
掌握三角函數的單調性以及三角函數值的取值范圍。
【過程與方法】
經歷三角函數的單調性的探索過程,提升邏輯推理能力。
【情感態度價值觀】
在猜想計算的過程中,提高學習數學的興趣。
二、教學重難點
【教學重點】
三角函數的'單調性以及三角函數值的取值范圍。
【教學難點】
探究三角函數的單調性以及三角函數值的取值范圍過程。
三、教學過程
(一)引入新課
提出問題:如何研究三角函數的單調性
(四)小結作業
提問:今天學習了什么?
引導學生回顧:基本不等式以及推導證明過程。
課后作業:
思考如何用三角函數單調性比較三角函數值的大小。
高中數學教案12
教學目標:
(1)理解子集、真子集、補集、兩個集合相等概念;
(2)了解全集、空集的意義。
(3)掌握有關子集、全集、補集的符號及表示方法,會用它們正確表示一些簡單的集合,培養學生的符號表示的能力;
(4)會求已知集合的子集、真子集,會求全集中子集在全集中的補集;
(5)能判斷兩集合間的包含、相等關系,并會用符號及圖形(文氏圖)準確地表示出來,培養學生的數學結合的數學思想;
(6)培養學生用集合的觀點分析問題、解決問題的能力。
教學重點:
子集、補集的概念
教學難點:
弄清元素與子集、屬于與包含之間的區別
教學用具:
幻燈機
教學過程設計
(一)導入新課
上節課我們學習了集合、元素、集合中元素的三性、元素與集合的關系等知識。
【提出問題】(投影打出)
已知xx,xx,xx,問:
1、哪些集合表示方法是列舉法。
2、哪些集合表示方法是描述法。
3、將集M、集從集P用圖示法表示。
4、分別說出各集合中的元素。
5、將每個集合中的元素與該集合的關系用符號表示出來、將集N中元素3與集M的關系用符號表示出來。
6、集M中元素與集N有何關系、集M中元素與集P有何關系。
【找學生回答】
1、集合M和集合N;(口答)
2、集合P;(口答)
3、(筆練結合板演)
4、集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1、(口答)
5、xx,xx,xx,xx,xx,xx,xx,xx(筆練結合板演)
6、集M中任何元素都是集N的元素、集M中任何元素都是集P的元素、(口答)
【引入】在上面見到的集M與集N;集M與集P通過元素建立了某種關系,而具有這種關系的兩個集合在今后學習中會經常出現,本節將研究有關兩個集合間關系的問題、
(二)新授知識
1、子集
(1)子集定義:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,我們就說集合A包含于集合B,或集合B包含集合A。
記作:xx讀作:A包含于B或B包含A
當集合A不包含于集合B,或集合B不包含集合A時,則記作:AxxB或BxxA、
性質:①xx(任何一個集合是它本身的子集)
②xx(空集是任何集合的子集)
【置疑】能否把子集說成是由原來集合中的部分元素組成的集合?
【解疑】不能把A是B的子集解釋成A是由B中部分元素所組成的集合。
因為B的子集也包括它本身,而這個子集是由B的全體元素組成的空集也是B的子集,而這個集合中并不含有B中的元素、由此也可看到,把A是B的子集解釋成A是由B的部分元素組成的'集合是不確切的。
(2)集合相等:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,記作A=B。
例:xx,可見,集合xx,是指A、B的所有元素完全相同。
(3)真子集:對于兩個集合A與B,如果xx,并且xx,我們就說集合A是集合B的真子集,記作:xx(或xx),讀作A真包含于B或B真包含A。
【思考】能否這樣定義真子集:“如果A是B的子集,并且B中至少有一個元素不屬于A,那么集合A叫做集合B的真子集。”
集合B同它的真子集A之間的關系,可用文氏圖表示,其中兩個圓的內部分別表示集合A,B。
【提問】
(1)xx寫出數集N,Z,Q,R的包含關系,并用文氏圖表示。
(2)xx判斷下列寫法是否正確
①xxAxx②xxAxx③xx④AxxA
性質:
(1)空集是任何非空集合的真子集。若xxAxx,且A≠xx,則xxA;
(2)如果xx,xx,則xx。
例1xx寫出集合xx的所有子集,并指出其中哪些是它的真子集、
解:集合xx的所有的子集是xx,xx,xx,xx,其中xx,xx,xx是xx的真子集。
【注意】(1)子集與真子集符號的方向。
(2)易混符號
①“xx”與“xx”:元素與集合之間是屬于關系;集合與集合之間是包含關系。如xxR,{1}xx{1,2,3}
②{0}與xx:{0}是含有一個元素0的集合,xx是不含任何元素的集合。
如:xx{0}。不能寫成xx={0},xx∈{0}
例2xx見教材P8(解略)
例3xx判斷下列說法是否正確,如果不正確,請加以改正、
(1)xx表示空集;
(2)空集是任何集合的真子集;
(3)xx不是xx;
(4)xx的所有子集是xx;
(5)如果xx且xx,那么B必是A的真子集;
(6)xx與xx不能同時成立、
解:(1)xx不表示空集,它表示以空集為元素的集合,所以(1)不正確;
(2)不正確、空集是任何非空集合的真子集;
(3)不正確、xx與xx表示同一集合;
(4)不正確、xx的所有子集是xx;
(5)正確
(6)不正確、當xx時,xx與xx能同時成立、
例4xx用適當的符號(xx,xx)填空:
(1)xx;xx;xx;
(2)xx;xx;
(3)xx;
(4)設xx,xx,xx,則AxxBxxC、
解:(1)0xx0xx;
(2)xx=xx,xx;
(3)xx,xx∴xx;
(4)A,B,C均表示所有奇數組成的集合,∴A=B=C、
【練習】教材P9
用適當的符號(xx,xx)填空:
(1)xx;xx(5)xx;
(2)xx;xx(6)xx;
(3)xx;xx(7)xx;
(4)xx;xx(8)xx、
解:(1)xx;(2)xx;(3)xx;(4)xx;(5)=;(6)xx;(7)xx;(8)xx、
提問:見教材P9例子
(二)xx全集與補集
1、補集:一般地,設S是一個集合,A是S的一個子集(即xx),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集),記作xx,即
、
A在S中的補集xx可用右圖中陰影部分表示、
性質:xxS(xxSA)=A
如:(1)若S={1,2,3,4,5,6},A={1,3,5},則xxSA={2,4,6};
(2)若A={0},則xxNA=N;
(3)xxRQ是無理數集。
2、全集:
如果集合S中含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集,全集通常用xx表示。
注:xx是對于給定的全集xx而言的,當全集不同時,補集也會不同。
例如:若xx,當xx時,xx;當xx時,則xx。
例5xx設全集xx,xx,xx,判斷xx與xx之間的關系。
解:
練習:見教材P10練習
1、填空:
xx,xx,那么xx,xx。
解:xx,
2、填空:
(1)如果全集xx,那么N的補集xx;
(2)如果全集,xx,那么xx的補集xx(xx)=xx、
解:(1)xx;(2)xx。
(三)小結:本節課學習了以下內容:
1、五個概念(子集、集合相等、真子集、補集、全集,其中子集、補集為重點)
2、五條性質
(1)空集是任何集合的子集。ΦxxA
(2)空集是任何非空集合的真子集。ΦxxAxx(A≠Φ)
(3)任何一個集合是它本身的子集。
(4)如果xx,xx,則xx、
(5)xxS(xxSA)=A
3、兩組易混符號:(1)“xx”與“xx”:(2){0}與
(四)課后作業:見教材P10習題1、2
高中數學教案13
1. 該生能以校規班規嚴格要求自己。有較強的集體榮譽感,學習態度認真,能吃苦,肯下功夫,成績穩定。生活艱苦樸素,待人熱情大方,是個基礎扎實,品德兼優的好學生。
2. 該生能嚴格遵守學校的規章制度。尊敬師長,團結同學。熱愛集體,積極配合其他同學搞好班務工作,勞動積極肯干。學習刻苦認真,勤學好問,學習成績穩定,學風和工作作風都較為踏實,堅持出滿勤,并能積極參加社會實踐和文體活動,勞動積極。是一位發展全面的好學生。
3. 你是同學擁護、老師信任的班委,乖巧懂事、伶俐開朗、自信大方、樂觀合群,是同學們學習的榜樣。你愛護集體榮譽,有很強的工作能力,總是及時協助老師完成班務工作,是老師的得力幫手。你心性坦蕩,個性鮮明,能大膽說出自己的想法,難能可貴。而你在運動場上的爆發力更讓老師同學們驚嘆!潛力深厚,希望在高中時期能逐漸發掘出來!
4. 你是個做事小心翼翼,感情細膩豐富的女孩,每次看你認真的樣子老師都很感動。你也是幸運的,周邊有很多人都在關愛著你,所以,對他們,尤其是父母,記得不要太莽撞,不要太任性,要學著體諒,學著換位思考,學著懂事。另外,今后要多運動、多鍛煉,有健康才能成就美好未來!
5. 你堅強勇敢、樂觀大方的性格讓老師非常欣賞。學習上始終保持著上進好學的決心和韌性,生活中始終能做到豁達開朗,還有著良好的審美和繪畫的專長,令人欽佩!以入世的態度做事,以出世的態度做人,這是我送你的一句話,希望你保持好心態,迎接新的學習生活。
6. 最有希望得成功者,并不是才干出眾的人,而是那些最善于利用時機去努力開創的人。你是很有才華的孩子,老師希望你能把握好機會,求得上進。你聰明,但也有著許多人共同的毛病——粗心大意和缺乏毅力,若能集中精力持之以恒,堅定目標致力于學習,定能大限度地發揮你的聰明才智!
7. 該生遵紀守法,積極參加社會實踐和文體活動,集體觀念強,勞動積極肯干。是一位誠實守信,思想上進,尊敬老師,團結同學,熱心助人,積極參加班集體活動,有體育特長,學習認真,具有較好綜合素質的優秀學生。
8. 你聰穎活潑,渾身洋溢青春氣息。你愛好廣泛,善鉆精思,具備一定能力,潛質無限。但是在有些時候,在面臨一些問題的時候,你總表現得太過緊張,其實,征服畏懼、建立自信的最快最確實的方法,就是大膽地去做你認為害怕的事,直到你獲得成功的經驗。繼續努力!
9. 你是對3班這個集體的成長貢獻很大的孩子,是老師的得力幫手。你干練沉穩,堅強隱忍,能從大局出發考慮問題,在很多時候能獨當一面。你獨立能力強,能夠吃苦,但在進入高中的學習上卻顯得有些吃力。其實你還有很深的潛力尚未挖掘,找對方法,好好加油,世上沒有絕望的處境,只有對處境絕望的人,請樂觀一點,踏實地走好接下來的每一步!
10. 你是個能獨立、有主見的女孩,有自己的想法,有一定的決斷力。但是獨立不代表乖張,有想法不代表恣意妄為。令人高興的是,你在這點上做的還是不錯的。晟君,老師希望你能一如既往地關注于學習而不懈怠,能堅持懷揣著平和感恩的心態簡單快樂地生活。
11. 你給我的第一印象是有些沉默,其實和朋友在一起時還是很有自己想法的對吧?你看,你布置的新年教室多么出彩!請繼續秀出真實而精彩的你!這半個學期的學習有點力不從心,請保持謹慎和細心,保持好的學習習慣,及時彌補所缺漏的環節,大步向前進!
12. 該生認真遵守學校的規章制度,積極參加社會實踐和文體活動,集體觀念強,勞動積極肯干。尊敬師長,團結同學。學習態度認真,能吃苦,肯下功夫,成績穩定上升。是有理想有抱負,基礎扎實,心理素質過硬、全面發展的優秀學生。
13. 你是一個真誠待人、溫柔可愛的女生。也許是因為你有些不緊不慢的性格,所以在學習上有時候行動力不夠堅決,造成了學習成績的不穩定。請多利用假期時間好好補缺補漏,向上的姿態才是最重要的!
14. 老師同學們都在說你是個很有責任心和上進心的孩子,在班級需要的時候,你承擔了勞動委員的重任,經常最后一個離開,就為了班級能有個整潔的環境。老師很感謝你!而更可貴的是,你懂得安排自己的時間,在工作的空隙抓緊時間做作業。希望下學期你的學習成績也能隨你的毅力和執著步步攀升,加油,羽騰!
15. 其實你擁有你自己都不確知的才華,從你的文字中可以讀出這樣的信息:你時常沉醉在自己的小世界中,做自己喜歡做的事情。老師希望你能敞開心扉,多與旁人交流你快樂的體驗和想法,不要吝嗇展示自己!還有,成功需要成本,時間也是一種成本,對時間的珍惜就是對成本的節約。請務必抓緊每寸光陰,努力學習!
16. 你知道嗎?在世界上那些最容易的事情中,拖延時間是最不費力的。而學習卻是艱辛的勞動過程。表面安靜的你其實心里有著自己的想法和煩憂。于是在不經意間,精力被不自覺地轉移到一些瑣事上,卻總無法完全集中心智于學業。也許你也已經意識到,也有了些許進步,那么請千萬記住要持之以恒,要付出比別人更多倍的`努力!
17. 你是班級的數學科代表,老師很高興選擇你擔任這個職務,不僅能促進自己的進步,而且也展現了你負責工作的一面。但是學習是要和工作一樣,需要一絲不茍的態度,包括上課的聽講是否及時而有效,包括功課的完成是否嚴謹而認真。下學期,愿看到一個更加全神貫注更加專心致志的你!
18. 我一直難忘在運動會上你擔任前導牌的樣子,為班級添光增彩了不少!你有著繪畫的特長,是個善良、真誠的女孩,有著細膩豐富的內心,也許只需一點鼓勵,你便會勇敢走下去,希望能在平時多聽見你爽朗的笑聲!
19. 可愛、熱情、謹小慎微,這都是你的代名詞。你略為靦腆的微笑讓人印象深刻。老師一直認為你是能夠認真仔細地作好每一件事情、成就每一個細節的,因此,希望你能珍惜時間,提高效率,在學習上狠狠加油!
20. 其實,任何事都是有重量的,那么,就看你把它變成壓力還是重力了。在這個方面,我很高興地看到你做的很好,你學習自覺,成績便是努力的證明。老師安排你做物理科代表就是希望能多培養你的責任意識、大局意識和管理能力,希望以后在這方面能看到你更加出色的表現!
21. 你是個可愛善良,懂事乖巧的女孩。作為語文科代表,兢兢業業,一絲不茍。你對人也是特別真誠熱情,偶爾透露出的憂郁是旁人不易察覺的。但是你知道,成長就是破蛹成蝶的過程,高中是人生的重要階段,勇敢地邁好每一步吧,享受成長帶來的所有痛苦和快樂!
22. 你很有能力,也很潛力,但欠缺的卻是耐力和毅力。君子厚積而薄發,希望你能振作精神,跟上進度,迎頭趕上,期待你獲得更大的進步!
23. 你曾經和我說過你的理想,但你對理想的憧憬和你所付出的努力程度卻總是難成正比。若現在你覺得有障礙擋在前行之路上,那就說明你還沒有把目標看的足夠清楚。寧在事前心力交瘁的努力,事后悠然自得;也不要在事前悠然自得,而在臨事時無法適從。你現在欠缺的就是對自己發狠奮進的恒心,柏宇,“要想人前顯貴,必定人后受罪”,成功要靠實踐去爭取,而不是光靠幾句好聽的決心話!
24. 你乖巧大方,組織能力一流,但在學習上總顯得有些力不從心。快馬加鞭迎頭趕上固然是必需,但也別太心急,要知道,欲速則不達,只要踏實努力,不懂就問,采用適合自己的學習方法,就會看到進步。也許剛開始的時候進步很小,小到你看不見,但是不要灰心,萬事開頭難!將事前的憂慮,換為事前的思考和計劃,徹底放松,加強鍛煉,養足精神再迎戰!你能做到的,蔡煒,加油!
25. 該生能遵守校紀班規,尊敬師長,能與同學和睦相處,勤學好問,有較強的獨立鉆研能力,分析問題比較深入、全面,在某些問題上有獨特的見解,學習成績在班上一直能保持前茅,樂于助人,能幫助學習有困難的同學。
26. 不論在體育場還是教室里,看到你神采奕奕的樣子,總讓人聯想到“英姿颯爽”這四個字。這確是一個高中生應該有的精神面貌。你做事認真,顧全大局,真的非常難得。希望能保持這樣良好的狀態,繼續前進!也希望能夠多和老師同學交流,多提些對班集體建設的好建議!
27. 該生能以校規班規嚴格要求自己,積極參加社會實踐和文體活動。尊敬師長,團結同學。集體觀念強,勞動積極肯干。積極參加各種集體活動和社會實踐活動。學習目的明確,刻苦認真,成績穩定,是一個有理想、有抱負,基礎扎實,心理素質過硬,全面發展的優秀學生。
28. 我很高興看到你是個有上進心,有責任感,能夠讓家人、師長寬慰的孩子。有努力就有回報,你下半學期的表現不就證明了這一點嗎?進步是隨著時間節節上升的,不要太過急躁,要知道,若你不給自己設限,則人生中就沒有限制你發揮的藩籬。新學期要重整旗鼓,再接再勵!
29. ××× 獨立性較強,對自己的能力也有準確的定位。建議今后學習上要養成勤思愛問的習慣,不能做井底之蛙,滿足于現狀,要充分利用他人的智慧,最后達到“好風憑借力,送我上青云”的目的。
30. ××× 每天在教室,都能看到你埋頭苦讀的身影,可見讀書的態度很端正;而你每一次考試的成績雖然不拔尖,卻是在穩步前進,可見讀書的效率還不錯。請繼續保持這種虛心求學、穩步前進的態勢,相信一年半以后的高考,你必將嶄露頭角,脫穎而出。
高中數學教案14
教學準備
教學目標
熟悉兩角和與差的正、余公式的`推導過程,提高邏輯推理能力。
掌握兩角和與差的正、余弦公式,能用公式解決相關問題。
教學重難點
熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。
教學過程
復習
兩角差的余弦公式
用- B代替B看看有什么結果?
高中數學教案15
教學目的:
掌握圓的標準方程,并能解決與之有關的問題
教學重點:
圓的標準方程及有關運用
教學難點:
標準方程的'靈活運用
教學過程:
一、導入新課,探究標準方程
二、掌握知識,鞏固練習
練習:
1、說出下列圓的方程
⑴圓心(3,—2)半徑為5
⑵圓心(0,3)半徑為3
2、指出下列圓的圓心和半徑
⑴(x—2)2+(y+3)2=3
⑵x2+y2=2
⑶x2+y2—6x+4y+12=0
3、判斷3x—4y—10=0和x2+y2=4的位置關系
4、圓心為(1,3),并與3x—4y—7=0相切,求這個圓的方程
三、引伸提高,講解例題
例1、圓心在y=—2x上,過p(2,—1)且與x—y=1相切求圓的方程(突出待定系數的數學方法)
練習:1、某圓過(—2,1)、(2,3),圓心在x軸上,求其方程。
2、某圓過A(—10,0)、B(10,0)、C(0,4),求圓的方程。
例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。
例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓練思維)
四、小結練習P771,2,3,4
五、作業P811,2,3,4
【高中數學教案】相關文章:
高中數學教案08-16
高中數學教案模板02-02
【熱門】高中數學教案02-01
高中數學教案【精】02-01
【薦】高中數學教案01-31
【精】高中數學教案01-25
高中數學教案【薦】01-25
高中數學教案【熱】01-25
【推薦】高中數學教案01-25