初一數學上冊教案(集錦15篇)
作為一名無私奉獻的老師,時常要開展教案準備工作,教案是教學活動的總的組織綱領和行動方案。怎樣寫教案才更能起到其作用呢?以下是小編為大家收集的初一數學上冊教案,希望對大家有所幫助。
初一數學上冊教案1
一、教學目標:
1.知識目標:
使學生理解同類項的概念和合并同類項的意義,學會合并同類項。
2.能力目標:
培養學生觀察、分析、歸納和動手解決問題的能力,初步使學生了解數學的分類思想。
3.情感目標:
借助情感因素,營造親切和諧活潑的課堂氣氛,激勵全體學生積極參與教學活動。培養他們團結協作,嚴謹求實的學習作風和鍥而不舍,勇于創新的精神。
二、教學重點、難點:
重點:同類項的概念和合并同類項的法則
難點:合并同類項
三、教學過程:
(一)情景導入:
1、觀察下面的圖片,并將這些圖片分類:
你是依據什么來進行分類的呢?
生活中,我們常常為了需要把具有相同特征的事物歸為一類。
2、對下列水果進行分類:
(二)新知探究1:
1、對下列八個單項式進行分類:
a,6x2,5,cd,-1,2x2,4a,-2cd
這些被歸為同一類的`項有什么相同的特征?
2、揭示同類項的概念。
同類項:所含字母相同,并且相同字母的指數也相同的項,叫做同類項。另外,所有的常數項都是同類項。
《3.4合并同類項》同步練習
1.已知代數式2a3bn+1與-3am-2b2是同類項,則2m+3n=________.
2.若-4xay+x2yb=-3x2y,則a+b=_______.
3.下面運算正確的是( )
A.3a+2b=5ab B.3a2b-3ba2=0
C.3x2+2x3=5x5 D.3y2-2y2=1
4.已知一個多項式與3x2+9x的和等于3x2+4x-1,則這個多項式是( )
A.-5x-1 B.5x+1
C.-13x-1 D.13x+1
《3.4合并同類項》測試
1.下列說法中,正確的是( )
A.字母相同的項是同類項
B.指數相同的項是同類項
C.次數相同的項是同類項
D.只有系數不同的項是同類項
初一數學上冊教案2
教學目標:
知識能力:理解有理數的概念,掌握有理數的兩種分類方法,能夠按要求對給定的有理數進行分類。
過程與方法:通過本節的學習,培養學生正確的分類討論觀點和分類能力。
情感、態度、價值觀:通過本節課的學習,體驗成功的`喜悅,保持學好數學的信心。
教學重點:掌握有理數的兩種分類方法
教學難點:給定的數字將被填入它所屬的集合中
教學方法:問題導向法
學習方法:自主探究法
一、形勢歸納
小學我們學了整數和分數,上節課我們學了正數和負數。誰能快速提出以下問題?
1.有以下數字:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33
(1)將以上數字填入以下兩組:正整數集{}和負整數集{}。你填完了嗎?
(2)將以上數字填入以下兩個集合:整數集合{}和分數集合{}。你填完了嗎?
稱整數和分數為有理數。(指點題,板書)
二、自學指導
學生自學課本,根據課本尋找自學的機會
提綱中問題的答案;老師先做必要的板書準備,再到學生中巡視指導,并了解掌握學生自學情況,為展示歸納作準備。
附:自學提綱:
1.___________、____、_______統稱為整數,
2._______和_________統稱為分數
3.____ ______統稱為有理數,
4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整數: 、分數:;正整數:、負整數: 、正分數: 、負分數:.
三、展示歸納
1、找有問題的學生逐題展示自學提綱中的問題答案,學生說,老師板書;
2、發動學生進行評價、補充、完善,教師根據每個題目的展示情況進行必要的講解和強調;
3、全部展示完畢后,老師對本段知識做系統梳理,關鍵點予以強調。
四、變式練習
逐題出示,先讓學生獨立完成,再請有問題的學生匯報結果,老師板書,并發動其他學生評價、補充并完善,最后老師根據需要進行重點強調。
1.整數可分為:_____、______和_______,分數可分為:_______和_________.有理數按符號不同可分為正有理數,_______和________.
2.判斷下列說法是否正確,并說明理由。
(1)有理數包括有整數和分數.
(2)0.3不是有理數.
(3)0不是有理數.
(4)一個有理數不是正數就是負數.
(5)一個有理數不是整數就是分數
3.所有的正整數組成正整數集合,所有負整數組成負整數集合,依次類推有正數集合、負數集合、整數集合、分數集合等,把下面的有理數填入它屬于的集合中(大括號內,將各數用逗號分開):
楊桂花:1.2.1有理數教學設計
正數集合:{ …}負數集合:{ …}
正整數集合:{ …}負分數集合:{ …}
4.下列說法正確的是( )
A.0是最小的正整數
B.0是最小的有理數
C.0既不是整數也不是分數
D. 0既不是正數也不是負數
5、下列說法正確的有( )
(1)整數就是正整數和負整數(2)零是整數,但不是自然數(3)分數包括正分數和負分數(4)正數和負數統稱為有理數(5)一個有理數,它不是整數就是分數
五、總結與反思:通過本節課的學習,你有什么收獲?
六、作業:必做題:課本14頁:1、9題
初一數學上冊教案3
(1)常見的幾何體;
(2)構成圖形的基本元素——點、線、面及點、線與平面
圖形的一些簡單性質;點動成線,線動成面,面動成體
(3)棱柱的特征;并注意棱柱和圓柱的聯系與區別
(4)長方體、正方體的表面沿某些棱展開的平面圖形及圓
柱、圓錐的側面展開圖;
(5)用一個平面去截一個幾何體,截面的形狀;
(6)物體的三視圖,立方體及其簡單組合的三視圖;
(7)生活中的平面圖形.
一.填空:
1.這個幾何體的名稱是______;它有_____個面組成;它有____個頂點;經過每個頂點有____條邊。
2.正方體或長方體是一個立體圖形,它是由______個面,______條棱,_____個頂點組成的.
3.在①長方體、②球、③圓錐、④圓柱、⑤三棱柱這五種幾何體中,其主視圖、左視圖、俯視圖都完全相同的是(填上序號即可)
4.一個棱柱有十個頂點,且所有側棱的和為30cm,則每條側棱長為cm.
5.將下面4個圖用紙復制下來,然后沿所畫線折起來,把折成的立體圖形名稱寫在圖的下邊橫線上:
6.如圖是一些相同的正方塊構成的`立體圖形的三視圖,則構成這個立體圖形的小方塊數為.
7.如圖所示,木工師傅把一個長為1.6米的長方體木料鋸成3段后,表面積比原來增加了
80,那么這根木料本來的體積是
8.要把一個長方體的表面剪開展成平面圖形,至少需要剪開________條棱.
9.如圖,截去正方體一角變成一個多面體,這個多面體有____個面,____條棱.
10.若要使圖中平面展開圖按虛線折疊成正方體后,相對面上兩個數之和為6,x=____,y=____.
11.四棱柱按如圖粗線剪開一些棱,展成平面圖形,請畫出平面圖來:
12.薄薄的硬幣在桌面上轉動時,看上去象球,這說明了_____________.
13.右圖中,三角形共有個。
14.如圖是用邊長為1的小正方體擺放成的一個幾何體的三視圖,這個幾何體的表面積為。
第13題主視圖俯視圖左視圖
二:選擇題(每題4分,共24分).
15.桌上擺滿了朋友們送來的禮物,小狗貝貝好奇地想看個究竟.
Pqmn
①小狗先是站在地面上看,②然后抬起了前腿看,③唉,還是站到凳子上看吧,④最后,
它終于爬上了桌子………按小狗四次看禮物的順序,四個畫面的順序為()
A.mnpqB.qnmpC.pqmnD.mnqp
16.以下四個平面圖形中,不是正方體的展開圖的是()
ABCD
17.只有蓋的盒子長、寬、高分別為5、5、3cm,如圖所示,有一只螞蟻從A點出
發,沿棱爬行,爬行的路徑不許重復,則螞蟻回到A點時,最多爬行()
A.24cmB.32cmC.34cmD.48cm
18.一個幾何體是由若干個相同的正方體組成的,其主視圖和左視圖
如圖所示,則這個幾何體最多可由多少個這樣的正方體組成()
A.12個B.13個C.14個D.18個
19.把一個正方體截去一個角,剩下的幾何體最多有幾個面()
A.5個面B.6個面C.7個面D.8個面
20.從多邊形一條邊上的一點(不是頂點)發出發,連接各個頂點得
到20xx個三角形,則這個多邊形的邊數為().
A.20xxB.20xxC.20xxD.20xx
21.下列四個圖形折疊后與所得的正方體的各個面上所標數字一致的是()
22.如圖(1)是正方體表面積展開圖,如果將其折回原來的
正方體圖(2)時,與點P重合的兩點應該是()
A.S和ZB.T和Y
C.U和YD.T和V
23.用一個平面去截①圓錐;②圓柱;③球;④五棱柱,能得到截面是圓的圖形是()
A.①②④ B.①②③ C.②③④ D.①③④
24.如圖是正方體的表面展開圖,折疊成正方體后,其中哪兩個完全相同()
A.(1)(2)B.(2)(3)C.(3)(4)D.(2)(4)
25.從多邊形一個頂點處出發,連接各個頂點得到20xx個三角形,
則這個多邊形的邊數為()
A.20xxB.20xxC.20xxD.20xx
初一數學上冊教案4
【學習目標】
1.使學生能說出相反數的意義
2.使學生能求出已知數的相反數
3.使學生能根據相反數的意思進行化簡
【學習過程】
【情景創設】
回憶上節課的情境,小明從學校出發沿東西大街走了0.5千米,在數軸上表示出他的.位置。點A,點B即是小明到達的位置。
觀察A,B兩點位置及共到原點的距離,你有什么發現嗎?
《數軸》專題練習
1.(4)班在一次聯歡活動中,把全班分成5個隊參加活動,游戲結束后,5個隊的得分如下:
A隊:-50分;B隊:150分;C隊:-300分;D隊:0分;E隊:100分.
(1)將5個隊按由低分到高分的順序排序;
(2)把每個隊的得分標在數軸上,并標上代表該隊的字母;
(3)從數軸上看A隊與B隊相差多少分?C隊與E隊呢?
《2.4數軸》同步測試
1下列說法中錯誤的是( )
A.一個正數的絕對值一定是正數
B.任何數的絕對值都是正數
C.一個負數的絕對值一定是正數
D.任何數的絕對值都不是負數
22017·海安縣期中絕對值大于2且不大于5的整數有________個.
3某檢修小組乘坐一輛汽車沿公路檢修供電線路,約定前進為正,后退為負,他們從出發到收工返回時,走過的路程記錄如下(單位:km):+5,-3,+7,-1,-4,+8,-12.求他們從出發到收工返回時,總共行駛的路程.
初一數學上冊教案5
【學習目標】
1.掌握有理數的混合運算法則,并能熟練地進行有理數的加、減、乘、除、乘方的混合運算;
2.通過計算過程的反思,獲得解決問題的經驗,體會在解決問題的過程中與他人合作的重要性;
【學習方法】
自主探究與合作交流相結合。
【學習重難點】
重點:能熟練地按照有理數的運算順序進行混合運算
難點:在正確運算的基礎上,適當地應用運算律簡化運算
【學習過程】
模塊一預習反饋
一、學習準備
1.四則(加減乘除)混合運算的順序:先算_______,再算_______,如有括號,就先算__________.同級運算按照從___往___的順序依次計算。
2.有理數的運算定律:__________________________________________________.
3.請同學們閱讀教材p65—p66,預習過程中請注意:⑴不懂的地方要用紅筆標記符號;⑵完成你力所能及的習題和課后作業。
《2.11有理數的.混合運算》課后作業
9.用符號“>”“<”“=”填空.
42+32________2×4×3;
(-3)2+12________2×ok3w_ads("s002");
《2.11有理數的混合運算》同步練習
5、小亮的爸爸在一家合資企業工作,月工資2500元,按規定:其中800元是免稅的,其余部分要繳納個人所得稅,應納稅部分又要分為兩部分,并按不同稅率納稅,即不超過500元的部分按5%的稅率;超過500元不超過20xx元的部分則按10%的稅率,你能算出小亮的爸爸每月要繳納個人所得稅多少元?
初一數學上冊教案6
初一上冊數學教案,歡迎各位老師和學生參考!
學習目標:1、理解有理數的絕對值和相反數的意義。
2、會求已知數的相反數和絕對值。
3、會用絕對值比較兩個負數的大小。
4、經歷將實際問題數學化的過程,感受數學與生活的聯系。
學習重點:1.會用絕對值比較兩個負數的大小。
2.會求已知數的相反數和絕對值。
學習難點:理解有理數的絕對值和相反數的意義。
學習過程:
一、創設情境
根據絕對值與相反數的意義填空:
1、
2、
-5的相反數是______,-10.5的相反數是______, 的相反數是______;
3、|0|=______,0的相反數是______。
二、探索感悟
1、議一議
(1)任意說出一個數,說出它的絕對值、它的相反數。
(2)一個數的絕對值與這個數本身或它的'相反數有什么關系?
2、想一想
(1)2與3哪個大?這兩個數的絕對值哪個大?
(2)-1與-4哪個大?這兩個數的絕對值哪個大?
(3)任意寫出兩個負數,并說出這兩個負數哪個大?他們的絕對值哪個大?
(4)兩個有理數的大小與這兩個數的絕對值的大小有什么關系?
三.例題精講
例1. 求下列各數的絕對值:
+9,-16,-0.2,0.
求一個數的絕對值,首先要分清這個數是正數、負數還是0,然后才能正確地寫出它的絕對值。
議一議:(1)兩個數比較大小,絕對值大的那個數一定大嗎?
(2)數軸上的點的大小是如何排列的?
例2比較-10.12與-5.2的大小。
例3.求6、-6、14 、-14 的絕對值。
小節與思考:
這節課你有何收獲?
四.練習
1. 填空:
⑴ 的符號是 ,絕對值是 ;
⑵10.5的符號是 ,絕對值是
⑶符號是+號,絕對值是 的數是
⑷符號是-號,絕對值是9的數是 ;
⑸符號是-號,絕對值是0.37的數是 .
2. 正式足球比賽時所用足球的質量有嚴格的規定,下表是6個足球的質量檢測結果(用正數記超過規定質量的克數,用負數記不足規定質量的克數).
請指出哪個足球質量最好,為什么?
第1個第2個第3個第4個第5個第6個
-25-10+20+30+15-40
3.比較下面有理數的大小
(1)-0.7與-1.7 (2) (3) (4)-5與0
五、布置作業:
P25 習題2.3 5
家庭作業:《評價手冊》 《補充習題》
六、學后記/教后記
這篇初一上冊數學教案就為大家分享到這里了。希望對大家有所幫助!
初一數學上冊教案7
一、知識要點
本章的主要內容可以概括為有理數的概念與有理數的運算兩部分。有理數的概念可以利用數軸來認識、理解,同時,利用數軸又可以把這些概念串在一起。有理數的運算是全章的重點。在具體運算時,要注意四個方面,一是運算法則,二是運算律,三是運算順序,四是近似計算。
基礎知識:
1、大于0的數叫做正數。
2、在正數前面加上負號“-”的數叫做負數。
3、0既不是正數也不是負數。
4、有理數(rationalnumber):正整數、負整數、0、正分數、負分數都可以寫成分數的形式,這樣的數稱為有理數。
5、數軸(numberaxis):通常,用一條直線上的點表示數,這條直線叫做數軸。
數軸滿足以下要求:
(1)在直線上任取一個點表示數0,這個點叫做原點(origin);
(2)通常規定直線上從原點向右(或上)為正方向,從原點向左(或下)為負方向;
(3)選取適當的長度為單位長度。
6、相反數(oppositenumber):絕對值相等,只有負號不同的兩個數叫做互為相反數。
7、絕對值(absolutevalue)一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值。記做|a|。
由絕對值的定義可得:|a-b|表示數軸上a點到b點的距離。
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0.
正數大于0,0大于負數,正數大于負數;兩個負數,絕對值大的反而小。
8、有理數加法法則
(1)同號兩數相加,取相同的符號,并把絕對值相加。
(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0.
(3)一個數同0相加,仍得這個數。
加法交換律:有理數的加法中,兩個數相加,交換加數的位置,和不變。表達式:a+b=b+a。
加法結合律:有理數的加法中,三個數相加,先把前兩個數相加或者先把后兩個數相加,和不變。
表達式:(a+b)+c=a+(b+c)
9、有理數減法法則
減去一個數,等于加這個數的相反數。表達式:a-b=a+(-b)
10、有理數乘法法則
兩數相乘,同號得正,異號得負,并把絕對值相乘。
任何數同0相乘,都得0.
乘法交換律:一般地,有理數乘法中,兩個數相乘,交換因數的位置,積相等。表達式:ab=ba
乘法結合律:三個數相乘,先把前兩個數相乘,或者先把后兩個數相乘,積相等。表達式:(ab)c=a(bc)
乘法分配律:一般地,一個數同兩個的和相乘,等于把這個數分別同這兩個數相乘,再把積相加。
表達式:a(b+c)=ab+ac
11、倒數
1除以一個數(零除外)的商,叫做這個數的倒數。如果兩個數互為倒數,那么這兩個數的積等于1。
12、有理數除法法則:兩數相除,同號得負,異號得正,并把絕對值相除。0除以任何一個不等于0的數,都得0.
13、有理數的乘方:求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪(power)。an中,a叫做底數(basenumber),n叫做指數(exponent)。
根據有理數的乘法法則可以得出:負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何正整數次冪都是0。
14、有理數的混合運算順序
(1)“先乘方,再乘除,最后加減”的順序進行;
(2)同級運算,從左到右進行;
(3)如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行。
15、科學技術法:把一個大于10的數表示成a﹡10n的形式(其中a是整數數位只有一位的數(即0
16、近似數(approximatenumber):
17、有理數可以寫成m/n(m、n是整數,n≠0)的形式。另一方面,形如m/n(m、n是整數,n≠0)的數都是有理數。所以有理數可以用m/n(m、n是整數,n≠0)表示。
拓展知識:
1、數集:把一些數放在一起,就組成一個數的集合,簡稱數集。
一、(1)所有有理數組成的數集叫做有理數集;
二、(2)所有的整數組成的數集叫做整數集。
2、任何有理數都可以用數軸上的一個點來表示,體現了數形結合的數學思想。
3、根據絕對值的幾何意義知道:|a|≥0,即對任何有理數a,它的絕對值是非負數。
4、比較兩個有理數大小的方法有:
(1)根據有理數在數軸上對應的點的位置直接比較;
(2)根據規定進行比較:兩個正數;正數與零;負數與零;正數與負數;兩個負數,體現了分類討論的數學思想;
(3)做差法:a-b>0a>b;
(4)做商法:a/b>1,b>0a>b.
二、基礎訓練
選擇題
1、下列運算中正確的是().
A.a2a3=a6 B.=2 C.|(3-π)|=-π-3 D.32=-9
2、下列各判斷句中錯誤的是()
A.數軸上原點的位置可以任意選定
B.數軸上與原點的距離等于個單位的點有兩個
C.與原點距離等于-2的點應當用原點左邊第2個單位的點來表示
D.數軸上無論怎樣靠近的兩個表示有理數的點之間,一定還存在著表示有理數的點。
3、、是有理數,若>且,下列說法正確的是()
A.一定是正數B.一定是負數C.一定是正數D.一定是負數
4、兩數相加,如果比每個加數都小,那么這兩個數是()
A.同為正數B.同為負數C.一個正數,一個負數D.0和一個負數
5、兩個非零有理數的和為零,則它們的商是()
A.0B.-1C.+1D.不能確定
6、一個數和它的倒數相等,則這個數是()
A.1B.-1C.±1D.±1和0
7、如果|a|=-a,下列成立的是()
A.a>0B.a<0c.a>0或a=0D.a<0或a=0
8、(-2)11+(-2)10的值是()
A.-2B.(-2)21C.0D.-210
9、已知4個礦泉水空瓶可以換礦泉水一瓶,現有16個礦泉水空瓶,若不交錢,最多可以喝礦泉水()
A.3瓶B.4瓶C.5瓶D.6瓶
10、在下列說法中,正確的個數是()
⑴任何一個有理數都可以用數軸上的一個點來表示
⑵數軸上的每一個點都表示一個有理數
⑶任何有理數的絕對值都不可能是負數
⑷每個有理數都有相反數
A、1B、2C、3D、4
11、如果一個數的相反數比它本身大,那么這個數為()
A、正數B、負數
C、整數D、不等于零的有理數
12、下列說法正確的是()
A、幾個有理數相乘,當因數有奇數個時,積為負;
B、幾個有理數相乘,當正因數有奇數個時,積為負;
C、幾個有理數相乘,當負因數有奇數個時,積為負;
D、幾個有理數相乘,當積為負數時,負因數有奇數個;
填空題
1、在有理數-7,,-(-1.43),,0,,-1.7321中,是整數的有_____________是負分數的有_______________。
2、一般地,設a是一個正數,則數軸上表示數a的點在原點的____邊,與原點的距離是____個單位長度;表示數-a的點在原點的____邊,與原點的距離是____個單位長度。
3、如果一個數是6位整數,用科學記數法表示它時,10的指數是_____;用科學記數法表示一個n位整數,其中10的指數是___________.
4、實數a、b、c在數軸上的位置如圖:化簡|a-b|+|b-c|-|c-a|.
5、絕對值大于1而小于4的整數有_____________________________________,其和為___________.
6、若a、b互為相反數,c、d互為倒數,則(a+b)3-3(cd)4=________.
7、1-2+3-4+5-6+……+20xx-2002的值是____________.
8、若(a-1)2+|b+2|=0,那么a+b=_____________________.
9、平方等于它本身的有理數是___________,立方等于它本身的.有理數是_____________.
10、用四舍五入法把3.1415926精確到千分位是,用科學記數法表示302400,應記為,近似數3.0×精確到位。
11、正數–a的絕對值為__________;負數–b的絕對值為________
12、甲乙兩數的和為-23.4,乙數為-8.1,甲比乙大
13、在數軸上表示兩個數,的數總比的大。(用“左邊”“右邊”填空)
14、數軸上原點右邊4.8厘米處的點表示的有理數是32,那么,數軸左邊18厘米處的點表示的有理數是____________。
三、強化訓練
1、計算:1+2+3+…+20xx+2003=__________.
2、已知:若(a,b均為整數)則a+b=
3、觀察下列等式,你會發現什么規律:,,,。。。請將你發現的規律用只含一個字母n(n為正整數)的等式表示出來
4、已知,則___________
5、已知是整數,是一個偶數,則a是(奇,偶)
6、已知1+2+3+…+31+32+33==17×33,求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值。
7、在數1,2,3,…,50前添“+”或“-”,并求它們的和,所得結果的最小非負數是多少?請列出算式解答。
8、如果有理數a,b滿足∣ab-2∣+(1-b)2=0,試求+…+的值。
9、如果規定符號“*”的意義是a*b=ab/(a+b),求2*(-3)*4的值。
10、已知|x+1|=4,(y+2)2=4,求x+y的值。
11、投資股票是一種很重要的投資方式,但股市的風云變化又牽動了股民的心。
例:某股民在上星期五買進某種股票500股,每股60元,下表是本周每日該股票的漲跌情況(單位:元):
星期一二三四五
每股漲跌+4+4.5-1-2.5-6
第1章(1)星期三收盤時,每股是多少元?
第2章(2)本周內最高價是每股多少元?最低價是多少元?
第3章(3)已知買進股票是付了1.5‰的手續費,賣出時需付成交額1.5‰的手續費和1‰的交易費,如果在星期五收盤前將全部股票一次性地賣出,他的收益情況如何?
第4章(4)以買進的股價為0點,用折線統計圖表示本周該股的股價情況。
四、競賽訓練:
1、最小的非負有理數與最大的非正有理數的和是
2、乘積=
3、比較大小:A=,B=,則A B
4、滿足不等式104≤A≤105的整數A的個數是x×104+1,則x的值是( )
A、9 B、8 C、7 D、6
5、最小的一位數的質數與最小的兩位數的質數的積是( )
A、11 B、22 C、26 D、33
6、比較
7、計算:
8、計算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).xkb1.com
9、計算:
10、計算
11、計算1+3+5+7+…+1997+1999的值
12、計算1+5+52+53+…+599+5100的值.
13、有理數均不為0,且設試求代數式20xx之值。
14、已知a、b、c為實數,且,求的值。
15、已知:。
16、解方程組。
17、若a、b、c為整數,且,求的值。
1.2.1有理數
七年級上(1.1正數和負數,1.2有理數)
1.2有理數
初一數學上冊教案8
(一)知識點目標:
1.了解正數和負數是怎樣產生的。 2.知道什么是正數和負數。 3.理解數0表示的量的意義。
(二)能力訓練目標:
1.體會數學符號與對應的思想,用正、負數表示具有相反意義的量的符號化方法。
2.會用正、負數表示具有相反意義的量。
(三)情感與價值觀要求: 通過師生合作,聯系實際,激發學生學好數學的熱情。
教學重點:
知道什么是正數和負數,理解數0表示的量的意義。
教學難點:
理解負數,數0表示的量的意義。
教學方法:
師生互動與教師講解相結合。
教具準備:
地圖冊(中國地形圖)。
教學過程:
引入新課:
1.活動:由兩組各派兩名同學進行如下活動:一名按老師的指令表演,另一名在黑板上速記,看哪一組記得最快、最好? 內容:老師說出指令: 向前兩步,向后兩步;
向前一步,向后三步; 向前兩步,向后一步; 向前四步,向后兩步。 如果學生不能引入符號表示,教師可和一個小組合作,用符號表示出+2、-2、+1、-3、+2、-1、+4、-2等。
[師]其實,在我們的生活中,運用這樣的符號的地方很多,這節課,我們就來學習這種帶有特殊符號、表示具有實際意義的數-----正數和負數。
講授新課:
1.自然數的產生、分數的產生。 2.章頭圖。問題見教材。讓學生思考-3~3℃、凈勝球數與排名順序、±、-9的意義。
3、正數、負數的定義:我們把以前學過的0以外的'數叫做正數,在這些數的前面帶有“一”時叫做負數。根據需要有時在正數前面也加上“十”(正號)表示正數。
舉例說明:3、2、
3 1 等是正數(也可加上“十”) -3、-2、
-3 1等是負數。 4、數0既不是正,也不是負數,0是正數和負數的分界。 0℃是一個確定的溫度,海拔為0的高度是海平面的平均高度,0的意義已不僅表示“沒有”。 5、讓學生舉例說明正、負數在實際中的應用。展示圖片(又見教材P5圖)讓學生觀察地形圖上的標注和記錄支出、存入信息的
鞏固提高:練習:課本P5練習 課時小結:這節課我們學習了哪些知識?你能說一說嗎?
課后作業:課本P7習題的第1、2、4、5題。 活動與探究:在一次數學測驗中,某班的平均分為85分,把高于平均分的高出部分記為正數。
(1)美美得95分,應記為多少?
(2)多多被記作一12分,他實際得分是多少?
課后反思:
初一數學上冊教案9
教學目標
1、會進行簡單的整式加、減運算、
2、能說明整式加、減中每一步運算的算理,逐步發展有條理的思考和表述的能力、
重、難點
會進行簡單的整式加、減運算、
教學過程
一、情境創設
1、操作:
(1)準備三張如下圖所示的卡片
(2)思考:
用它們拼成各種形狀不同的四邊形,并計算拼成的四邊形的周長、
二、探索活動
活動一:
1、整式的加減運算要進行哪些步驟?
進行整式的加減運算時,____________________________________________
《3、6整式的.加減》同步測試
1、三個小隊植樹,第一隊種x棵,第二隊種的樹比第一隊種的樹的2倍還多8棵,第三隊種的樹比第二隊種的樹的一半少6棵,三隊共種樹________棵、
2、甲倉庫有煤1500噸,乙倉庫有煤800噸,從甲倉庫每天運出煤5噸,從乙倉庫每天運出煤2噸,求m天后,甲、乙兩倉庫一共還有多少噸煤,并求出當m=30時,甲、乙兩倉庫一共存煤的數量?
3、6整式的加減:測試
1、已知三角形的第一邊長為2a+b,第二邊比第一邊長a-b,第三邊比第二邊短a,求這個三角形的周長?
2、某同學做了一道數學題:“已知兩個多項式為A,B,B=3x﹣2y,求A﹣B的值、”他誤將“A﹣B”看成了“A+B”,結果求出的答案是x﹣y,那么原來的A﹣B的值應該是( )
A、4x﹣3y B、﹣5x+3y C、﹣2x+y D、2x﹣y
初一數學上冊教案10
《1.2有理數》教學設計
【學習目標】:
1、掌握有理數的 概念,會對有理數按一定標準進行分類,培養分類能力;
2、了解分類的標準 與集合的含義;
3、體驗分類是數學上常用的處理問題方法;
【學習重點】:正確理解有理數的概念
【學習難點】:正確理解分類的標準和按照一定標準分類
《1.2.1有理數》同步練習含答案
5.對-3.14,下面說法正確的`是(B)
A.是負數,不是分數
B.是負數,也是分數
C.是分數,不是有理數
D.不是分數,是有理數
《1.2有理數》同步練習含答案解析
8.如果a與1互為相反數,則|a|=( )
A.2 B.﹣2 C.1 D.﹣1
【考點】絕對值;相反數.
【分析】根據互為相反數的定義,知a=﹣1,從而求解.
互為相反數的定義:只有符號不同的兩個數叫互為相反數.
【解答】解:根據a與1互為相反數,得
a=﹣1.
所以|a|=1.
故選C.
【點評】此題主要是考查了相反數的概念和絕對值的性質.
9.若|1﹣a|=a﹣1,則a的取值范圍是( )
A.a>1 B.a≥1 C.a<1 D.a≤1
【考點】絕對值.
【分析】根據|1﹣a|=a﹣1得到1﹣a≤0,從而求得答案.
【解答】解:∵|1﹣a|=a﹣1,
∴1﹣a≤0,
∴a≥1,
故選B.
【點評】本題考查了絕對值的求法,解題的關鍵是了解非正數的絕對值是它的相反數,難度不大.
初一數學上冊教案11
一、等式的概念和性質
1.等式的概念,用等號“=”來表示相等關系的式子,叫做等式. 在等式中,等號左、右兩邊的式子,分別叫做這個等式的左邊、右邊.等式可以是數字算式,可以是公式、方程,也可以是用式子表示的運算律、運算法則.
2.等式的類型楷體五號
(1)恒等式:無論用什么數值代替等式中的字母,等式總能成立.如:數字算式 .
(2)條件等式:只能用某些數值代替等式中的字母,等式才能成立.方程 需要 才成立.
(3)矛盾等式:無論用什么數值代替等式中的字母,等式都不能成立.如 , .
注意:等式由代數式構成,但不是代數式.代數式沒有等號.體五號
3.等式的性質五號
等式的性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式.若 ,則 ;
等式的性質2:等式兩邊都乘以(或除以)同一個數(除數不能是0)或同一個整式,所得結果仍是等式.若 ,則 , .
注意:
(1)在對等式變形過程中,等式兩邊必須同時進行.即:同時加或同時減,同時乘以或同時除以,不能漏掉某一邊.
(2)等式變形過程中,兩邊同加或同減,同乘或同除以的數或整式必須相同.
(3)在等式變形中,以下兩個性質也經常用到:
①等式具有對稱性,即:如果 ,那么 .
②等式具有傳遞性,即:如果 , ,那么 .黑體小四
二、方程的相關概念黑體小四
1.方程,含有未知數的等式叫作方程. 注意:定義中含有兩層含義,即:方程必定是等式,即是用等號連接而成的式子;方程中必定有一個待確定的數即未知的字母.二者缺一不可.楷體五號
2.方程的次和元 方程中未知數的最高次數稱為方程的次,方程中不同未知數的個數稱為元.楷體五號
3.方程的已知數和未知數楷體五號
已知數:一般是具體的數值,如 中( 的系數是1,是已知數.但可以不說).5和0是已知數,如果方程中的已知數需要用字母表示的話,習慣上有等表示.
未知數:是指要求的數,未知數通常用 、 、 等字母表示.如:關于 、 的方程 中, 、 、 是已知數, 、 是未知數.楷體五號
4.方程的解 使方程左、右兩邊相等的未知數的值,叫做方程的解.楷體五號
5.解方程 求得方程的解的過程.
注意:解方程與方程的解是兩個不同的概念,后者是求得的結果,前者是求出這個結果的過程.
6.方程解的檢驗楷體要驗證某個數是不是一個方程的解,只需將這個數分別代入方程的左邊和右邊,如果左、右兩邊數值相等,那么這個數就是方程的解,否則就不是.黑體小四
三、一元一次方程的定義體小四
1.一元一次方程的概念 只含有一個未知數,并且未知數的最高次數是1,系數不等于0的方程叫做一元一次方程,這里的“元”是指未知數,“次”是指含未知數的項的最高次數.楷體五號
2.一元一次方程的形式楷體五號
標準形式: (其中 , , 是已知數)的形式叫一元一次方程的標準形式.
最簡形式:方程 ( , , 為已知數)叫一元一次方程的最簡形式.
注意:(1)任何一元一次方程都可以轉化為最簡形式或標準形式,所以判斷一個方程是不是一元一次方程,可以通過變形為最簡形式或標準形式來驗證.如方程 是一元一次方程.如果不變形,直接判斷就出會現錯誤.
(2)方程 與方程 是不同的,方程 的解需要分類討論完成.黑體小四
四、一元一次方程的解法
1.解一元一次方程的一般步驟五號
(1)去分母:在方程的兩邊都乘以各分母的最小公倍數. 注意:不要漏乘不含分母的項,分子是個整體,含有多項式時應加上括號.
(2)去括號:一般地,先去小括號,再去中括號,最后去大括號. 注意:不要漏乘括號里的項,不要弄錯符號.
(3)移項:把含有未知數的項都移到方程的一邊,不含未知數的.項移到方程的另一邊. 注意:①移項要變號;②不要丟項.
(4)合并同類項:把方程化成 的形式. 注意:字母和其指數不變.
(5)系數化為1:在方程的兩邊都除以未知數的系數 ,得到方程的解 . 注意:不要把分子、分母搞顛倒.體五號
2.解一元一次方程常用的方法技巧 解一元一次方程常用的方法技巧有:整體思想、換元法、裂項、拆添項以及運用分式的恒等變形等.
3.關于x的方程 ax b 解的情況 ⑴當a 0時,x ⑵當a ,b 0時,方程有無數多個解 ⑶當a 0,b 0時,方程無解
練習1、等式的概念和性質
1.下列說法不正確的是
A.等式兩邊都加上一個數或一個等式,所得結果仍是等式.
B.等式兩邊都乘以一個數,所得結果仍是等式. C.等式兩邊都除以一個數,所得結果仍是等式.
D.一個等式的左、右兩邊與另一個等式的左、右兩邊分別相加,所得結果仍是等式.
2.根據等式的性質填空.
(1) ,則 ; (2) ,則 ;
(3) ,則 ; (4) ,則 .
練習2、方程的相關概念
1.列各式中,哪些是等式?哪些是代數式,哪些是方程?
① ;② ;③ ;④ ;⑤ ;⑥ ;
⑦ ;⑧ ;⑨ .
2.判斷題.
(1)所有的方程一定是等式.
(2)所有的等式一定是方程.
(3) 是方程.
(4) 不是方程.
(5) 不是等式,因為 與 不是相等關系.
(6) 是等式,也是方程.
(7)“某數的3倍與6的差”的含義是 ,它是一個代數式,而不是方程.
練習3、一元一次方程的定義
1.在下列方程中哪些是一元一次方程?哪些不是?說明理由:
(1)3x+5=12; (2) + =5; (3)2x+y=3; (4)y2+5y-6=0; (5) =2.
2.已知 是關于 的一元一次方程,求 的值.
3.已知方程 是關于x的一元一次方程,則m=_________
4.已知方程 是一元一次方程,則 ; .
練習4、一元一次方程的解與解法
1)一元一次方程的解 一)、根據方程解的具體數值來確定
1.若關于x的方程 的解是 ,則代數式 的值是_________。
2.若 是方程 的一個解,則 .
3.某同學在解方程 ,把 處的數字看錯了,解得 ,該同學把 看成了 .
二)、根據方程解的個數情況來確定楷體五號
1.關于 的方程 ,分別求 , 為何值時,原方程:
(1)有唯一解;(2)有無數多解;(3)無解.
2.已知關于 的方程 有無數多個解,那么 , .
3.已知方程 有兩個不同的解,試求 的值.
三)、根據方程定解的情況來確定楷體五號
1.若 , 為定值,關于 的一元一次方程 ,無論 為何值時,它的解總是 ,求 和 的值.
2.當 取符合 的任意數時,式子 的值都是一個定值,其中 ,求 , 的值.
五號
四)、根據方程整數解的情況來確定楷體五號
1.已知 為整數,關于 的方程 的解為正整數,求 的值.
2.已知關于 的方程 有整數解,那么滿足條件的所有整數 =
3.若方程 有一個正整數解,則 取的最小正數是多少?并求出相應方程的解.
號
五)、根據方程公共解的情況來確定
1.若 和 是關于 的同解方程,則 的值是 .
2.已知關于 的方程 ,和方程 有相同的解,求這個相同的解.
3.已知關于 的方程 僅有正整數解,并且和關于 的方程 是同解方程.若 , ,求出這個方程可能的解.
2)一元一次方程的解法 一)、基本類型的一元一次方程的解法
1.解方程:(1) (2) - =1- (3)
二)、分式中含有小數的一元一次方程的解法楷體五號
1.解方程:(1) (2)
(3) (4)
三)、含有多層括號的一元一次方程的解法體五號
1.解方程:(1) (2) (3)
四)、一元一次方程的技巧解法
1.解方程:(1) (2)
(3) (4)
一、填空題.(每小題3分,共24分)
1.已知4x2n-5+5=0是關于x的一元一次方程,則n=_______.
2.若x=-1是方程2x-3a=7的解,則a=_______.
3.當x=______時,代數式 x-1和 的值互為相反數.
4.已知x的 與x的3倍的和比x的2倍少6,列出方程為________.
5.在方程4x+3y=1中,用x的代數式表示y,則y=________.
6.某商品的進價為300元,按標價的六折銷售時,利潤率為5%,則商品的標價為____元.
7.已知三個連續的偶數的和為60,則這三個數是________.
8.一件工作,甲單獨做需6天完成,乙單獨做需12天完成,若甲、乙一起做,則需________天完成.
二、選擇題.(每小題3分,共30分)
9.方程2m+x=1和3x-1=2x+1有相同的解,則m的值為.
A.0 B.1 C.-2 D.-
10.方程│3x│=18的解的情況是.
A.有一個解是6 B.有兩個解,是±6
C.無解 D.有無數個解
11.若方程2ax-3=5x+b無解,則a,b應滿足.
A.a≠ ,b≠3 B.a= ,b=-3
C.a≠ ,b=-3 D.a= ,b≠-3
12.解方程 時,把分母化為整數,得。
A、 B、 C、 D、
13.在800米跑道上有兩人練中長跑,甲每分鐘跑300米,乙每分鐘跑260米,兩人同地、同時、同向起跑,t分鐘后第一次相遇,t等于.
A.10分 B.15分 C.20分 D.30分
14.某商場在統計今年第一季度的銷售額時發現,二月份比一月份增加了10%,三月份比二月份減少了10%,則三月份的銷售額比一月份的銷售額.
A.增加10% B.減少10% C.不增也不減 D.減少1%
15.在梯形面積公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,則b=( )厘米.
A.1 B.5 C.3 D.4
16.已知甲組有28人,乙組有20人,則下列調配方法中,能使一組人數為另一組人數的一半的是.
A.從甲組調12人去乙組 B.從乙組調4人去甲組
C.從乙組調12人去甲組 D.從甲組調12人去乙組,或從乙組調4人去甲組
17.足球比賽的規則為勝一場得3分,平一場得1分,負一場是0分,一個隊打了14場比賽,負了5場,共得19分,那么這個隊勝了場.
A.3 B.4 C.5 D.6
18.如圖所示,在甲圖中的左盤上將2個物品取下一個,則在乙圖中右盤上取下幾個砝碼才能使天平仍然平衡?
A.3個 B.4個 C.5個 D.6個
三、解答題.(19,20題每題6分,21,22題每題7分,23,24題每題10分,共46分)
19.解方程:2(x-3)+3(2x-1)=5(x+3)
20.解方程:
21.如圖所示,在一塊展示牌上整齊地貼著許多資料卡片,這些卡片的大小相同,卡片之間露出了三塊正方形的空白,在圖中用斜線標明.已知卡片的短邊長度為10厘米,想要配三張圖片來填補空白,需要配多大尺寸的圖片.
22.一個三位數,百位上的數字比十位上的數大1,個位上的數字比十位上數字的3倍少2.若將三個數字順序顛倒后,所得的三位數與原三位數的和是1171,求這個三位數.
23.據了解,火車票價按“ ”的方法來確定.已知A站至H站總里程數為1500千米,全程參考價為180元.下表是沿途各站至H站的里程數:
車站名 A B C D E F G H
各站至H站
里程數(米) 1500 1130 910 622 402 219 72 0
例如:要確定從B站至E站火車票價,其票價為 =87.36≈87(元).
(1)求A站至F站的火車票價(結果精確到1元).
(2)旅客王大媽乘火車去女兒家,上車過兩站后拿著車票問乘務員:“我快到站了嗎?”乘務員看到王大媽手中的票價是66元,馬上說下一站就到了.請問王大媽是在哪一站下的車(要求寫出解答過程).
24.某公園的門票價格規定如下表:
購票人數 1~50人 51~100人 100人以上
票 價 5元 4.5元 4元
某校初一甲、乙兩班共103人(其中甲班人數多于乙班人數)去游該公園,如果兩班都以班為單位分別購票,則一共需付486元.
(1)如果兩班聯合起來,作為一個團體購票,則可以節約多少錢?
(2)兩班各有多少名學生?(提示:本題應分情況討論)
初一數學上冊教案12
教學目標
1、知道有理數混合運算的運算順序,能正確進行有理數的混合運算;
2、會用計算器進行較繁雜的有理數混合運算。
教學重點
1、有理數的混合運算;
2、運用運算律進行有理數的混合運算的簡便計算。
教學難點
運用運算律進行有理數的混合運算的簡便計算。
有理數的混合運算的運算順序
也就是說,在進行含有加、減、乘、除的混合運算時,應按照運算級別從高到低進行,因為乘方是比乘除高一級的運算,所以像這樣的有理數的混合運算,有以下運算順序:
先乘方,再乘除,最后加減。如果有括號,先進行括號內的運算。
你會根據有理數的運算順序計算上面的算式嗎?
2、8有理數的混合運算:同步練習
1、有依次排列的3個數:2,9,7,對任意相鄰的'兩個數,都用右邊的數減去左邊的數,所得之差寫在這兩個數之間,可產生一個新數串:2,7,9,—2,7,這稱為第一次操作。做第二次同樣的操作后也可產生一個新數串:2,5,7,2,9,—11,—2,9,7,繼續依次操作下去,問:從數串2,9,7開始操作第一百次以后所產生的那個新數串的所有數之和是。
《2、8有理數的混合運算》課后訓練
1、興旺肉聯廠的冷藏庫能使冷藏食品每小時降溫3 ℃,每開庫一次,庫內溫度上升4 ℃,現有12 ℃的肉放入冷藏庫,2小時后開了一次庫,再過3小時后又開了一次庫,再關上庫門4小時后,肉的溫度是多少攝氏度?
初一數學上冊教案13
教學目標
1。使學生理解正數與負數的概念,并會判斷一個給定的數是正數還是負數;
2。會初步應用正負數表示具有相反意義的量;
3。使學生初步了解有理數的意義,并能將給出的有理數進行分類;
4。培養學生逐步樹立分類討論的思想;
5。通過本節課的教學,滲透對立統一的辯證思想。
教學建議
一、重點、難點分析
本課的重點是了解正數與負數是由實際需要產生的以及有理數包括哪些數。難點是學習負數的必要性及有理數的分類。關鍵是要能準確地舉出具有相反意義的量的典型例子以及要明確有理數分類的標準。
正、負數的引入,有各種不同的方法。教材是由學生熟知的兩個實例:溫度與海拔高度引入的。比0℃高5攝氏度記作5℃,比0℃低5攝氏度,記作—5℃;比海平面高8848米,記作8848米,比海平面低155米記作—155米。由這兩個實例很自然地,把大于0的數叫做正數,把加“—”號的數叫做負數;0既不是正數也不是負數,是一個中性數,表示度量的“基準”。這樣引入正、負數,不僅有利于學生正確使用正、負數表示具有相反意義的量,而且還將幫助學生理解有理數的大小性質。把負數理解為小于0的數。教材中,沒有出現“具有相反意義的量”的概念。這是有意回避或淡化這個概念。目的是,從正、負數引入一開始就能較深刻的揭示正、負數和零的性質,幫助學生正確理解正、負數的概念。
關于有理數的分類要明確的是:分類標準不同,分類結果也不同,分類結果應是不重不漏,即每一個數必須屬于某一類,又不能同時屬于不同的兩類。
二、教法建議
這節課是在小學里學過的數的基礎上,從表示具有相反意義的量引進負數的。從內容上講,負數比非負數要抽象、難理解。因此在教學方法和教學語言的選擇上,盡可能注意中小學的銜接,既不違反科學性,又符合可接受性原則。例如,在講解有理數的概念時,讓學生清楚地認識有理數與算術數的根本區別,有理數是由兩部分組成:符號部分和數字部分(即算術數)。這樣,在理解算術數和負數的基礎上,對有理數的概念的`理解就簡便多了。
為了使學生掌握必要的數學思想和方法,在明確有理數的分類時,可以有意識地滲透分類討論的思想方法,理解分類的標準、分類的結果,以及它們的相互聯系。通過正數、負數都統一于有理數,可以將對立統一的辯證思想的逐步樹立滲透到日常教學中。
三、正數與負數概念的理解
1﹒對于正數和負數的概念,不能簡單的理解為:帶“+”號的數是正數,帶“—”號的數是負數。
2﹒引入負數后,數的范圍擴大為有理數,奇數和偶數的外延也由自然數擴大為整數,整數也可以分為奇數和偶數兩類,能被2整除的數是偶數,如…—6,—4,—2,0,2,4,6…,不能被2整除的數是奇數,如…—5,—4,—2,1,3,5…
3﹒到現在為止,我們學過的數細分有五類:正整數、正分數、0、負整數、負分數,但研究問題時,通常把有理數分為三類:正數、0、負數,進行討論。
4﹒通常把正數和0統稱為非負數,負數和0統稱為非正數,正整數和0稱為非負整數;負整數和0統稱為非正整數。
四、有理數的分類
整數和分數統稱為有理數。1)正整數、零、負整數統稱為整數;正分數、負分數統稱為分數。
2)整數也可以看作分母為1的分數,但為了研究方便,本章中分數是指不包括整數的分數。
3)注意概念中所用“統稱”二字,它與說“整數和分數是有理數”的意思不大一樣。前者回避了分數是否包括整數的問題,即使把整數包括在分數范圍內,說“統稱”還是不錯,而用后一種說法就欠妥了。
4)分數和小數的區別:
分數(既約分數)都可表示成小數,但不是所有的小數都能表示成分數的。
5)到目前為止,所學過的數(除π外)都是有理數。
初一數學上冊教案14
一、學生情況分析
本期擔任七年級數學,該班共有學生46人。七年級學生往往對課程增多、課堂學習容量加大不適應,顧此失彼,精力分散,使聽課效率下降,要重視聽法的指導。學習離不開思維,善思則學得活,效率高,不善思則學得死,效果差。七年級學生常常固守小學算術中的思維定勢,思路狹窄、呆滯,不利于后繼學習,要重視對學生進行思法指導。學生在解題時,在書寫上往往存在著條理不清、邏輯混亂的問題,要重視對學生進行寫法指導。學生是否掌握良好的記憶方法與其學業成績的好壞相關,七年級學生由于正處在初級的邏輯思維階段,識記知識時機械記憶的成份較多,理解記憶的成份較少,這就不能適應七年級教學的新要求,要重視對學生進行記法指導。
二、教材及課標分析
第一章《有理數》
1.本章的主要內容:
對正、負數的認識;有理數的概念及分類;相反數與絕對值的概念及求法;數軸的概念、畫法及其與相反數與絕對值的關系;比較兩個有理
數大小的方法;有理數加、減、乘、除、乘方運算法則及相關運算律;科學計數法、近似數、有效數字的概念及求法。
重點:有理數加、減、乘、除、乘方運算
難點:混合運算的運算順序,對結果符號的確定及對科學計數法、有效數字的
理解。
2.本章的地位及作用:
本章的知識是本冊教材乃至整個初中數學知識體系的基礎,它一方面是算術到代數的過渡,另一方面是學好初中數學及與之相關學科的關
鍵,尤其有理數的運算在整個數學及相關學科中占有極為重要的地位,可以說這一章內容是構建“數學大廈”的地基。
3.本章涉及到的主要數學思想及方法:
a.分類討論的思想:主要體現在有理數的分類及絕對值一節課的教學中。
b.數形結合的思想:主要體現在數軸一節課的學習上,用數字表示數軸(圖形)的形態,反過來用數軸(圖形)反映數字的具體意義,達到數字與圖形微觀與宏觀的統一,具體與抽象的結合,即用數說明圖形的形象,用圖形說明數字的具體,尤其利用數軸比較有理數的大小,理解相反數與絕對值的幾何意義,更是形象直觀。
c.化歸轉化的思想:主要體現在有理數的減法轉化為有理數的加法,有理數的乘法轉化為有理數的除法。
d.類比法:對于有理數加、減、乘、除、乘方運算可類比小學學過的加、減、乘、除、混合運算等內容學習,總的來說計算方法不變,只是把數字的范圍擴大了,增加了負數。在學習過程中要時時考慮符號問題。用類比的方法去學習會對新知識有“似曾相識”之感,不會覺得陌生,學起來自然會輕松的多。
4.教法建議(僅供參考)
a.在學完數軸一節課后,把利用數軸比較有理數的大小補充進來,提前講解,在講完絕對值后,在利用絕對值比較兩個負數的大小,這樣做既可以體會到數軸的用途,也可以避免兩種方法放在一起給學生造成的混亂,而利用絕對值比較有理數的大小,寫法上學生一般情況下掌握不好,這樣可以著重訓練學生的寫法,分散難點。
b.注重聯系實際:這本教材的編排更注重了知識來源于生活,反過來又應用到生活中去的思想。充分體現了生活中處處有數學,人人都學有用的數學的理念。因此,在每課的“創設情境”這一環節中,要充分注意這一點,充分利用生活實例引入新知識,使學生充分體現到學好數學是有用的,因而提高學生學習數學的興趣。
c.對于絕對值一課的教法建議:對于絕對值的代數意義的理解,學生往往感到困難,教者可以告訴學生:兩棍中間夾著一個人(整體),當它是正數和零時,兩棍一扒拉,直接走出來,當它是負數時,兩棍一扒拉,拄著拐棍走出來,比較形象,使學生容易理解,在《整式的加減》一章中,才可以順利去掉絕對值符號,進行化簡。
d.注重本章的選學內容:一個是第6頁的“用正負數表示加工允許誤差”,另一個是第40頁的“翻牌游戲中的數學定到理”
第二章《整式的加減》
1.本章的主要內容:
列代數式,單項式及其有關概念,多項式及其有關概念,去括號法則,整式的加減,合并同類項,求代數式的值。
重點:去括號,合并同類項。
難點:對單項式系數,次數,多項式次數的理解與應用。
2.本章的地位及作用:
整式是簡單代數式的一種形式,在日常生活中經常要用整式表示有關的量,體現了變量與常量之間的關系,加深了對數的理解。本章中列代
數式,去括號及合并同類項是后面學習一元一次方程的基礎,求代數式的值在中考命題中占有重要的地位。
3.本章涉及到的主要數學思想及方法:
a.整體數思想:主要體現在式子的化簡求值問題中,有些題目采用整體代人的解題策略,可使計算簡便。有些題目只有從整體考慮才能解決問
題。例如:已知:a-b=-3,c+d=2,求(b+c)-(a-d)的值
b.從“特殊到一般”,又從“一般到特殊”的數學思想:這主要體現在本章的習題中,都是根據實際問題列出式子,然后再根據具體數值求式子的值中。
c.對比思想:本章出現了單項式,多項式,同類項等概念,為了正確掌握這些概念,可在比較辨析中加深對概念的理解。
4.教法建議(僅供參考)
a.在講多項式一節的內容中,增加多項式的升(降)冪排列的內容,為下一節對合并同類項的結果的整理提前做好準備。
b.注重本章的數學活動:第43頁的'數學活動,我認為很有價值,有一定的趣味性,也有較強的探索性,對于學生思維邏輯性的培養是很有價值
的,應給予學生充分的時間進行學習。
c.本章概念較多,應使學生首先牢記概念,在解決問題時,才能有意識地聯系這些概念,以此為依據完成相關題目。
d.在求多項式的值的相關題目中,注意解題格式的要求,學生初次接觸,往往不注意解題格式的寫法。
第三章《一元一次方程》
1.本章的主要內容:
列方程,一元一次方程的概念及解法,列一元一次方程解應用題。
重點:列方程,一元一次方程的解法,
難點:解有分母的一元一次方程和應用一元一次方程解決實際問題。
2.本章的地位及作用:
一元一次方程是數學中的主要內容之一,它不僅是學習其它方程的基礎,而且是一種重要的數學思想——方程思想,利用方程思想可以使許
多實際問題變得直接易懂,體會方程是刻畫現實世界的一個有效的數學模型。更深刻地體會數學的應用價值。
3.本章涉及到的主要數學思想及方法:
a.轉化思想:主要體現在利用方程的同解原理,將復雜的方程轉化為簡單的方程,直至求出它的解。
b.整體思想:例如:解方程3/2(3x+1)—1/2(3x+1)=5運用整體思想可以使解題步驟簡捷,思路清晰。
c.數學建模思想:它是在對問題深入地思考、分析、抽象的基礎上,用數學方法去解決實際問題,建立數學模型。方程是刻畫現實世界的一個有效的數學模型。本章中的列方程解應用題就是培養學生的數學建模思想。
d.數形結合思想:這主要體現在列方程解應用題時,尤其是對行程問題的分析解決中。
4.教法建議(僅供參考)
a.本冊教材為了更好地體現數學與生活的聯系,在講一元一次方程的解法時,都是先通過一道生活實際問題引入的,然后探討方程的解法,我的建議是,對于引例的講解,可以先用算術法,大部分學生習慣這種解法,再引導學生用方程的方法,從而使學生逐步認識到代數方法的優越
性。在列出方程后,引導學生探討完方程的每一步驟后,熟練了應用這一步驟解方程后,在開始下一步驟的學習。
b.注重幾種基本題型的應用題:商品利潤問題,儲蓄問題,行程問題,行船問題,工程問題,調配問題,比例分配問題,數字問題,等積變形問題。這是一些經典題型。同時注意一些圖表型應用題,閱讀理解型等新穎的應用題。
c.關注教材第95頁的實驗與探究:無限循環小數化分數,使學生意識到可以利用一元一次方程的知識將無限循環小數化分數,進一步體會方程
的應用。
第四章《圖形認識初步》
1.本章的主要內容、地位及作用:
本章主要介紹了多姿多彩的圖形(立體圖形、平面圖形),以及最基本的圖形——點、線、角等,并在自主探究的過程中,結合豐富的實
例,探索“兩點確定一條直線”和“兩點間線段最短”的性質,認識角以及角的表示方法,角的度量,角的畫法,角的比較及余角,補角等,探索了比較線段長短的方法及線段中點。本章中的直線,射線,線段以及角等,都是我們認識復雜圖形的基礎,因此,本章在初中數學中占有重要的地位。
2.教學重點與難點
教學重點:(1)角的比較與度量。
(2)余角、補角的概念和性質。
(3)直線、射線、線段和角的概念和性質
教學難點:(1)用幾何語言正確表達概念和性質。
(2)空間觀念的建立。
3.本章涉及到的主要數學思想及方法:
a.分類討論思想:本章經常遇到直線上的點點位置不確定的問題,或者從公共端點出發的一條射線在角內或角外的不確定問題,這時往往需要用分類討論思想來解決。
b.方程的思想:在涉及線段和角度的計算中,把線段的長度或角的度數設為一個未知數,并根據所求線段或角與與其他線段或角之間的關系列方程求解,能清楚簡捷地表示出幾何圖形中的數量關系,是解決幾何計算題的一種重要方法。
c.由特殊到一般的思想:主要體現在依靠圖形尋找規律的習題中。
4.教法建議(僅供參考)
a.在講“幾何圖形”一節中,注意利用實物和幾何模型進行教學,讓學生通過認真觀察、想象、思考加強對圖形的直觀認識和感受,從中抽象出幾何圖形,從而更好地掌握知識。
b.在講立體圖形平面展開圖中,我建議讓學生準備好粉筆盒等其它實物,親自動手操作,全班集體歸納總結出正方體的11種平面展開圖,
培養學生的空間想象能力,鍛煉學生不用動手折疊,就能通過觀察展開圖,想象出立體圖形的形狀的能力。
c.在講“直線、射線、線段”一節中,注重培養學生依據幾何語言畫圖的能力,注意補充一部分“根據語句畫出圖形”的習題。
d.在涉及有關線段角的計算題時,大部分學生不是求不出結果,利用小學學的算術方法往往能給出答案。但不能很好地寫出解題過程。因此對于這部分內容要逐步訓練學生的簡單說理能力。
初一數學上冊教案15
教學內容
角的初步認識
第38、39頁練習八1、2、3
第三單元
第1課時
教學
目標
1.結合生活情境及操作活動,使學生初步認識角,會判斷角,知道角的各部分名稱。
2.初步學會用直尺畫角。3.培養學生的動手操作能力和團結合作的精神。
教學
準備
教學課件、師生的三角尺、活動角、吸管等
教
學
過
程
教 學 活 動
教 師
學 生
一、創設情景,引入新課
1、 師播放多媒體:把實物抽象成圖形,再把角拉出來。
2、 揭示課題。角的初步認識。
二、聯系實際感知角
1. 第38頁主題圖校園一角,引導學生觀察三角板、大剪刀、球門的框、球場的角等。
2. 在生活中還有許多這樣的例子,投影出示例1
3. 小結:這些物品中都有角。
4. 引導學生尋找生活中的角。
5. 師引導學生創造一個角
三、操作感知,探究新知,認識角的組成部分
(1)師變魔術引出活動角。
邊
頂點
邊
學生說出所看到的圖形名稱,并指出各有幾個角。
生觀察。
生在教室里找角,同桌互相說一說。
生用手中的紙折一個角、用兩只鉛筆搭一個角……等。
2、生從自己折的角中探索出角的頂點和邊。
教
學
過
程
教 師
學 生
(2)出示不同的角,你們能指出這些角的頂點和邊嗎?
小結:一個角有一個頂點和兩條邊。
(2)畫角
五、鞏固練習
1.練習第1題判斷。要求學生出2和4為什么不是角的.原因。
2.練習第2題,數角。
3.練習第3題,比角的大小。
小結:角的大小與邊的長短無關。
6. 出示活動角。
小結:角的大小與兩條邊的張開的大下有關。
六、拓展、游戲:
1. 用三根小棒可以擺幾個角?有幾種擺法?
2. 有一個長方形,用剪刀剪一刀,剪去一個角后,還剩幾個角?
七、課后小結
這節課我們認識了什么?你有哪些收獲?
1.生探索畫角的過程。自學。
2.生說畫角過程。
3.觀看多媒體畫角過程。
4.生再次畫角。
用自己喜歡的方法比較兩個角的大小。
生玩活動角:慢慢地張開,慢慢地合攏。
學生動手做一做,小組合作,說一說。
【初一數學上冊教案】相關文章:
初一的數學上冊教案11-09
初一數學上冊的教案12-23
初一數學上冊教案12-18
初一上冊的數學教案11-13
初一數學上冊教案12-13
初一的數學上冊教案15篇11-10
初一的數學上冊教案精選15篇11-11
初一上冊數學教案01-04
初一的數學上冊教案(15篇)11-11
初一數學上冊教案15篇12-21