1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>八年級數學教案>八年級的數學教案

    八年級的數學教案

    時間:2022-12-15 18:36:42 八年級數學教案 我要投稿

    八年級的數學教案合集15篇

      作為一名教師,往往需要進行教案編寫工作,教案是備課向課堂教學轉化的關節點。那么大家知道正規的教案是怎么寫的嗎?以下是小編整理的八年級的數學教案,僅供參考,歡迎大家閱讀。

    八年級的數學教案合集15篇

    八年級的數學教案1

      一元二次方程根與系數的關系的知識內容主要是以前一單元中的求根公式為基礎的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、2= 得出一元二次方程根與系數的關系,以及以數x1、x2為根的一元二次方程的求方程模型。然后是通過4個例題介紹了利用根與系數的關系簡化一些計算的知識。例如,求方程中的特定系數,求含有方程根的一些代數式的值等問題,由方程的根確定方程的系數的方法等等。

      根與系數的關系也稱為韋達定理(韋達是法國數學家)。韋達定理是初中代數中的一個重要定理。這是因為通過韋達定理的學習,把一元二次方程的研究推向了高級階段,運用韋達定理可以進一步研究數學中的許多問題,如二次三項式的因式分解,解二元二次方程組;韋達定理對后面函數的學習研究也是作用非凡。

      通過近些年的中考數學試卷的分析可以得出:韋達定理及其應用是各地市中考數學命題的熱點之一。出現的題型有選擇題、填空題和解答題,有的將其與三角函數、幾何、二次函數等內容綜合起來,形成難度系數較大的壓軸題。

      通過韋達定理的教學,可以培養學生的創新意識、創新精神和綜合分析數學問題的能力,也為學生今后學習方程理論打下基礎。

      (二)重點、難點

      一元二次方程根與系數的關系是重點,讓學生從具體方程的根發現一元二次方程根與系數之間的關系,并用語言表述,以及由一個已知方程求作新方程,使新方程的根與已知的`方程的根有某種關系,比較抽象,學生真正掌握有一定的難度,是教學的難點。

      (三)教學目標

      1、知識目標:要求學生在理解的基礎上掌握一元二次方程根與系數的關系式,能運用根與系數的關系由已知一元二次方程的一個根求出另一個根與未知數,會求一元二次方程兩個根的倒數和與平方數,兩根之差。

    八年級的數學教案2

      一、學習目標

      1.使學生了解運用公式法分解因式的意義;

      2.使學生掌握用平方差公式分解因式

      二、重點難點

      重點:掌握運用平方差公式分解因式。

      難點:將單項式化為平方形式,再用平方差公式分解因式。

      學習方法:歸納、概括、總結。

      三、合作學習

      創設問題情境,引入新課

      在前兩學時中我們學習了因式分解的定義,即把一個多項式分解成幾個整式的積的.形式,還學習了提公因式法分解因式,即在一個多項式中,若各項都含有相同的因式,即公因式,就可以把這個公因式提出來,從而將多項式化成幾個因式乘積的形式。

      如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢?當然不是,只要我們記住因式分解是多項式乘法的相反過程,就能利用這種關系找到新的因式分解的方法,本學時我們就來學習另外的一種因式分解的方法——公式法。

      1.請看乘法公式

      左邊是整式乘法,右邊是一個多項式,把這個等式反過來就是左邊是一個多項式,右邊是整式的乘積。大家判斷一下,第二個式子從左邊到右邊是否是因式分解?

      利用平方差公式進行的因式分解,第(2)個等式可以看作是因式分解中的平方差公式。

      a2—b2=(a+b)(a—b)

      2.公式講解

      如x2—16

      =(x)2—42

      =(x+4)(x—4)。

      9m2—4n2

      =(3m)2—(2n)2

      =(3m+2n)(3m—2n)。

      四、精講精練

      例1、把下列各式分解因式:

      (1)25—16x2;(2)9a2—b2。

      例2、把下列各式分解因式:

      (1)9(m+n)2—(m—n)2;(2)2x3—8x。

      補充例題:判斷下列分解因式是否正確。

      (1)(a+b)2—c2=a2+2ab+b2—c2。

      (2)a4—1=(a2)2—1=(a2+1)?(a2—1)。

      五、課堂練習

      教科書練習。

      六、作業

      1、教科書習題。

      2、分解因式:x4—16x3—4x4x2—(y—z)2。

      3、若x2—y2=30,x—y=—5求x+y。

    八年級的數學教案3

      教學目標

      1.知識與技能

      領會運用完全平方公式進行因式分解的方法,發展推理能力.

      2.過程與方法

      經歷探索利用完全平方公式進行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.

      3.情感、態度與價值觀

      培養良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應用能力.

      重、難點與關鍵

      1.重點:理解完全平方公式因式分解,并學會應用.

      2.難點:靈活地應用公式法進行因式分解.

      3.關鍵:應用“化歸”、“換元”的思想方法,把問題進行形式上的轉化,達到能應用公式法分解因式的`目的

      教學方法

      采用“自主探究”教學方法,在教師適當指導下完成本節課內容.

      教學過程

      一、回顧交流,導入新知

      【問題牽引】

      1.分解因式:

      (1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;

      (3)x2-0.01y2.

      【知識遷移】

      2.計算下列各式:

      (1)(m-4n)2;(2)(m+4n)2;

      (3)(a+b)2;(4)(a-b)2.

      【教師活動】引導學生完成下面兩道題,并運用數學“互逆”的思想,尋找因式分解的規律.

      3.分解因式:

      (1)m2-8mn+16n2(2)m2+8mn+16n2;

      (3)a2+2ab+b2;(4)a2-2ab+b2.

      【學生活動】從逆向思維的角度入手,很快得到下面答案:

      解:

      (1)m2-8mn+16n2=(m-4n)2;

      (2)m2+8mn+16n2=(m+4n)2;

      (3)a2+2ab+b2=(a+b)2;

      (4)a2-2ab+b2=(a-b)2.

      【歸納公式】完全平方公式a2±2ab+b2=(a±b)2.

      二、范例學習,應用所學

      【例1】把下列各式分解因式:

      (1)-4a2b+12ab2-9b3;

      (2)8a-4a2-4;

      (3)(x+y)2-14(x+y)+49;(4)+n4.

      【例2】如果x2+axy+16y2是完全平方,求a的值.

      【思路點撥】根據完全平方式的定義,解此題時應分兩種情況,即兩數和的平方或者兩數差的平方,由此相應求出a的值,即可求出a3.

      三、隨堂練習,鞏固深化

      課本P170練習第1、2題.

      【探研時空】

      1.已知x+y=7,xy=10,求下列各式的值.

      (1)x2+y2;(2)(x-y)2

      2.已知x+=-3,求x4+的值.

      四、課堂總結,發展潛能

      由于多項式的因式分解與整式乘法正好相反,因此把整式乘法公式反過來寫,就得到多項式因式分解的公式,主要的有以下三個:

      a2-b2=(a+b)(a-b);

      a2±ab+b2=(a±b)2.

      在運用公式因式分解時,要注意:

      (1)每個公式的形式與特點,通過對多項式的項數、次數等的總體分析來確定,是否可以用公式分解以及用哪個公式分解,通常是,當多項式是二項式時,考慮用平方差公式分解;當多項式是三項時,應考慮用完全平方公式分解;(2)在有些情況下,多項式不一定能直接用公式,需要進行適當的組合、變形、代換后,再使用公式法分解;(3)當多項式各項有公因式時,應該首先考慮提公因式,然后再運用公式分解.

      五、布置作業,專題突破

    八年級的數學教案4

      教學目標:

      1、知識目標:

      (1)掌握已知三邊畫三角形的方法;

      (2)掌握邊邊邊公理,能用邊邊邊公理證明兩個三角形全等;

      (3)會添加較明顯的輔助線.

      2、能力目標:

      (1)通過尺規作圖使學生得到技能的訓練;

      (2)通過公理的初步應用,初步培養學生的邏輯推理能力.

      3、情感目標:

      (1)在公理的形成過程中滲透:實驗、觀察、歸納;

      (2)通過變式訓練,培養學生“舉一反三”的學習習慣.

      教學重點:SSS公理、靈活地應用學過的各種判定方法判定三角形全等。

      教學難點:如何根據題目條件和求證的結論,靈活地選擇四種判定方法中最適當的方法判定兩個三角形全等。

      教學用具:直尺,微機

      教學方法:自學輔導

      教學過程:

      1、新課引入

      投影顯示

      問題:有一塊三角形玻璃窗戶破碎了,要去配一塊新的,你最少要對窗框測量哪幾個數據?如果你手頭沒有測量角度的儀器,只有尺子,你能保證新配的`玻璃恰好不大不小嗎?

      這個問題讓學生議論后回答,他們的答案或許只是一種感覺。于是教師要引導學生,抓住問題的本質:三角形的三個元素――三條邊。

      2、公理的獲得

      問:通過上面問題的分析,滿足什么條件的兩個三角形全等?

      讓學生粗略地概括出邊邊邊的公理。然后和學生一起畫圖做實驗,根據三角形全等定義對公理進行驗證。(這里用尺規畫圖法)

      公理:有三邊對應相等的兩個三角形全等。

      應用格式: (略)

      強調說明:

      (1)、格式要求:先指出在哪兩個三角形中證全等;再按公理順序列出三個條件,并用括號把它們括在一起;寫出結論。

      (2)、在應用時,怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時圖形中隱含的(如公共邊)

      (3)、此公理與前面學過的公理區別與聯系

      (4)、三角形的穩定性:演示三角形的穩定性與四邊形的不穩定性。在演示中,其實可以去掉組成三角形的一根小木條,以顯示三角形條件不可減少,這也為下面總結“三角形全等需要有3全獨立的條件”做好了準備,進行了溝通。

      (5)說明AAA與SSA不能判定三角形全等。

      3、公理的應用

      (1) 講解例1。學生分析完成,教師注重完成后的點評。

      例1 如圖△ABC是一個鋼架,AB=ACAD是連接點A與BC中點D的支架

      求證:AD⊥BC

      分析:(設問程序)

      (1)要證AD⊥BC只要證什么?

      (2)要證∠1= 只要證什么?

      (3)要證∠1=∠2只要證什么?

      (4)△ABD和△ACD全等的條件具備嗎?依據是什么?

      證明:(略)

      (2)講解例2(投影例2 )

      例2已知:如圖AB=DC,AD=BC

      求證:∠A=∠C

      (1)學生思考、分析、討論,教師巡視,適當參與討論。

      (2)找學生代表口述證明思路。

      思路1:連接BD(如圖)

      證△ABD≌△CDB(SSS)先得∠A=∠C

      思路2:連接AC證△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD

      (3)教師共同討論后,說明思路1較優,讓學生用思路1在練習本上寫出證明,一名學生板書,教師強調解題格式:在“證明”二字的后面,先將所作的輔助線寫出,再證明。

      例3如圖,已知AB=AC,DB=DC

      (1)若E、F、G、H分別是各邊的中點,求證:EH=FG

      (2)若AD、BC連接交于點P,問AD、BC有何關系?證明你的結論。

      學生思考、分析,適當點撥,找學生代表口述證明思路

      讓學生在練習本上寫出證明,然后選擇投影顯示。

      證明:(略)

      說明:證直線垂直可證兩直線夾角等于 ,而由兩鄰補角相等證兩直線的夾角等于 ,又是很重要的一種方法。

      例4 如圖,已知:△ABC中,BC=2AB,AD、AE分別是△ABC、△ABD的中線,

      求證:AC=2AE.

      證明:(略)

      學生口述證明思路,教師強調說明:“中線”條件下的常規作輔助線法。

      5、課堂小結:

      (1)判定三角形全等的方法:3個公理1個推論(SAS、ASA、AAS、SSS)

      在這些方法中,每一個都需要3個條件,3個條件中都至少包含條邊。

      (2)三種方法的綜合運用

      讓學生自由表述,其它學生補充,自己將知識系統化,以自己的方式進行建構。

      6、布置作業:

      a、書面作業P70#11、12

      b、上交作業P70#14 P71B組3

    八年級的數學教案5

      一、課堂導入

      回顧平行四邊的性質定理及定義

      1.什么叫平行四邊形?平行四邊形有什么性質?

      2.將以上的性質定理,分別用命題形式敘述出來。(如果……那么……)

      根據平行四邊形的定義,我們研究了平行四邊形的其它性質,那么如何來判定一個四邊形是平行四邊形呢?除了定義還有什么方法?平行四邊形性質定理的逆命題是否成立?

      二、新課講解

      平行四邊形的判定:

      (定義法):兩組對邊分別平行的四邊形的平邊形。

      幾何語言表達定義法:

      ∵AB∥CD,AD∥BC,∴四邊形ABCD是平行四邊形

      解析:一個四邊形只要其兩組對邊分別互相平行,則可判定這個四邊形是一個平行四邊形。

      活動:用做好的紙條拼成一個四邊形,其中強調兩組對邊分別相等。

      (平行四邊形判定定理):

      (一)兩組對邊分別相等的四邊形是平行四邊形。

      設問:這個命題的前提和結論是什么?

      已知:四邊形ABCD中,AB=CD,BC=DA。

      求證:四邊ABCD是平行四邊形。

      分析:判定平行四邊形的依據目前只有定義,也就是須證明兩組對邊分別平行,當然是借助第三條直線證明角等。連結BD。易證三角形全等。

      板書證明過程。

      小結:用幾何語言表達用定義法和剛才證明為正確的方法證明一個四邊形是平行四邊形的方法為:

      平行四邊形判定定理1:二組對邊分別相等的`四邊形是平行四邊形∵AB=CD,AD=BC,∴四邊形ABCD是平行四邊形

      (二)設問:若一個四邊形有一組對邊平行且相等,能否判定這個四邊形也是平行四邊形呢?

      活動:課本探究內容,并用事準備好的紙條(紙條的長度相等),先將紙條放置不平行位置,讓學生設想若二紙條的端點為四邊形的頂點,則組成的四邊形是不是平行四邊形?若將紙條擺放為平行的位置,則同樣用二紙條的端點為頂點組成的四邊形是不是平行四邊形?

      設問:我們能否用推理的方法證明這個命題是正確的呢?(讓學生找出題設、結論,然后寫出已知、求證及證明過程。)

    八年級的數學教案6

      課題:一元二次方程實數根錯例剖析課

      【教學目的】 精選學生在解一元二次方程有關問題時出現的典型錯例加以剖析,幫助學生找出產生錯誤的原因和糾正錯誤的方法,使學生在解題時少犯錯誤,從而培養學生思維的批判性和深刻性。

      【課前練習】

      1、關于x的方程ax2+bx+c=0,當a_____時,方程為一元一次方程;當 a_____時,方程為一元二次方程。

      2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當△_______時,方程有兩個相等的實數根,當△_______時,方程有兩個不相等的實數根,當△________時,方程沒有實數根。

      【典型例題】

      例1 下列方程中兩實數根之和為2的方程是()

      (A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

      錯答: B

      正解: C

      錯因剖析:由根與系數的關系得x1+x2=2,極易誤選B,又考慮到方程有實數根,故由△可知,方程B無實數根,方程C合適。

      例2 若關于x的方程x2+2(k+2)x+k2=0 兩個實數根之和大于-4,則k的取值范圍是( )

      (A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

      錯解 :B

      正解:D

      錯因剖析:漏掉了方程有實數根的前提是△≥0

      例3(20xx廣西中考題) 已知關于x的一元二次方程(1-2k)x2-2 x-1=0有兩個不相等的實根,求k的取值范圍。

      錯解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2

      錯因剖析:漏掉了二次項系數1-2k≠0這個前提。事實上,當1-2k=0即k= 時,原方程變為一次方程,不可能有兩個實根。

      正解: -1≤k<2且k≠

      例4 (20xx山東太原中考題) 已知x1,x2是關于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個實數根,當x12+x22=15時,求m的值。

      錯解:由根與系數的關系得

      x1+x2= -(2m+1), x1x2=m2+1,

      ∵x12+x22=(x1+x2)2-2 x1x2

      =[-(2m+1)]2-2(m2+1)

      =2 m2+4 m-1

      又∵ x12+x22=15

      ∴ 2 m2+4 m-1=15

      ∴ m1 = -4 m2 = 2

      錯因剖析:漏掉了一元二次方程有兩個實根的前提條件是判別式△≥0。因為當m = -4時,方程為x2-7x+17=0,此時△=(-7)2-4×17×1= -19<0,方程無實數根,不符合題意。

      正解:m = 2

      例5 若關于 x的方程(m2-1)x2-2 (m+2)x+1=0有實數根,求m的取值范圍。

      錯解:△=[-2(m+2)]2-4(m2-1) =16 m+20

      ∵ △≥0

      ∴ 16 m+20≥0,

      ∴ m≥ -5/4

      又 ∵ m2-1≠0,

      ∴ m≠±1

      ∴ m的取值范圍是m≠±1且m≥ -

      錯因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關于未知數x的方程,而未限定方程的次數,所以在解題時就必須考慮m2-1=0和m2-1≠0兩種情況。當m2-1=0時,即m=±1時,方程變為一元一次方程,仍有實數根。

      正解:m的`取值范圍是m≥-

      例6 已知二次方程x2+3 x+a=0有整數根,a是非負數,求方程的整數根。

      錯解:∵方程有整數根,

      ∴△=9-4a>0,則a<2.25

      又∵a是非負數,∴a=1或a=2

      令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2

      ∴方程的整數根是x1= -1, x2= -2

      錯因剖析:概念模糊。非負整數應包括零和正整數。上面答案僅是一部分,當a=0時,還可以求出方程的另兩個整數根,x3=0, x4= -3

      正解:方程的整數根是x1= -1, x2= -2 , x3=0, x4= -3

      【練習】

      練習1、(01濟南中考題)已知關于x的方程k2x2+(2k-1)x+1=0有兩個不相等的實數根x1、x2。

      (1)求k的取值范圍;

      (2)是否存在實數k,使方程的兩實數根互為相反數?如果存在,求出k的值;如果不存在,請說明理由。

      解:(1)根據題意,得△=(2k-1)2-4 k2>0 解得k<

      ∴當k< 時,方程有兩個不相等的實數根。

      (2)存在。

      如果方程的兩實數根x1、x2互為相反數,則x1+ x2=- =0,得k= 。經檢驗k= 是方程- 的解。

      ∴當k= 時,方程的兩實數根x1、x2互為相反數。

      讀了上面的解題過程,請判斷是否有錯誤?如果有,請指出錯誤之處,并直接寫出正確答案。

      解:上面解法錯在如下兩個方面:

      (1)漏掉k≠0,正確答案為:當k< 時且k≠0時,方程有兩個不相等的實數根。

      (2)k= 。不滿足△>0,正確答案為:不存在實數k,使方程的兩實數根互為相反數

      練習2(02廣州市)當a取什么值時,關于未知數x的方程ax2+4x-1=0只有正實數根 ?

      解:(1)當a=0時,方程為4x-1=0,∴x=

      (2)當a≠0時,∵△=16+4a≥0 ∴a≥ -4

      ∴當a≥ -4且a≠0時,方程有實數根。

      又因為方程只有正實數根,設為x1,x2,則:

      x1+x2=- >0 ;

      x1. x2=- >0 解得 :a<0

      綜上所述,當a=0、a≥ -4、a<0時,即當-4≤a≤0時,原方程只有正實數根。

      【小結】

      以上數例,說明我們在求解有關二次方程的問題時,往往急于尋求結論而忽視了實數根的存在與“△”之間的關系。

      1、運用根的判別式時,若二次項系數為字母,要注意字母不為零的條件。

      2、運用根與系數關系時,△≥0是前提條件。

      3、條件多面時(如例5、例6)考慮要周全。

      【布置作業】

      1、當m為何值時,關于x的方程x2+2(m-1)x+ m2-9=0有兩個正根?

      2、已知,關于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實數根。

      求證:關于x的方程

      (m-5)x2-2(m+2)x + m=0一定有一個或兩個實數根。

      考題匯編

      1、(20xx年廣東省中考題)設x1、 x2是方程x2-5x+3=0的兩個根,不解方程,利用根與系數的關系,求(x1-x2)2的值。

      2、(20xx年廣東省中考題)已知關于x的方程x2-2x+m-1=0

      (1)若方程的一個根為1,求m的值。

      (2)m=5時,原方程是否有實數根,如果有,求出它的實數根;如果沒有,請說明理由。

      3、(20xx年廣東省中考題)已知關于x的方程x2+2(m-2)x+ m2=0有兩個實數根,且兩根的平方和比兩根的積大33,求m的值。

      4、(20xx年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個根,且x1+x2=6,x12+x22=20,求p和q的值。

    八年級的數學教案7

      一.教學目標:

      1.了解方差的定義和計算公式。

      2.理解方差概念的產生和形成的過程。

      3.會用方差計算公式來比較兩組數據的波動大小。

      二.重點、難點和難點的突破方法:

      1.重點:方差產生的必要性和應用方差公式解決實際問題。

      2.難點:理解方差公式

      3.難點的突破方法:

      方差公式:S = [( - ) +( - ) +…+( - )]比較復雜,學生理解和記憶這個公式都會有一定困難,以致應用時常常出現計算的錯誤,為突破這一難點,我安排了幾個環節,將難點化解。

      (1)首先應使學生知道為什么要學習方差和方差公式,目的不明確學生很難對本節課內容產生興趣和求知欲望。教師在授課過程中可以多舉幾個生活中的小例子,不如選擇儀仗隊隊員、選擇運動員、選擇質量穩定的電器等。學生從中可以體會到生活中為了更好的做出選擇判斷經常要去了解一組數據的波動程度,僅僅知道平均數是不夠的。

      (2)波動性可以通過什么方式表現出來?第一環節中點明了為什么去了解數據的波動性,第二環節則主要使學生知道描述數據,波動性的方法。可以畫折線圖方法來反映這種波動大小,可是當波動大小區別不大時,僅用畫折線圖方法去描述恐怕不會準確,這自然希望可以出現一種數量來描述數據波動大小,這就引出方差產生的必要性。

      (3)第三環節教師可以直接對方差公式作分析和解釋,波動大小指的是與平均數之間差異,那么用每個數據與平均值的差完全平方后便可以反映出每個數據的波動大小,整體的波動大小可以通過對每個數據的波動大小求平均值得到。所以方差公式是能夠反映一組數據的波動大小的一個統計量,教師也可以根據學生程度和課堂時間決定是否介紹平均差等可以反映數據波動大小的其他統計量。

      三.例習題的意圖分析:

      1.教材P125的討論問題的意圖:

      (1).創設問題情境,引起學生的`學習興趣和好奇心。

      (2).為引入方差概念和方差計算公式作鋪墊。

      (3).介紹了一種比較直觀的衡量數據波動大小的方法——畫折線法。

      (4).客觀上反映了在解決某些實際問題時,求平均數或求極差等方法的局限性,使學生體會到學習方差的意義和目的。

      2.教材P154例1的設計意圖:

      (1).例1放在方差計算公式和利用方差衡量數據波動大小的規律之后,不言而喻其主要目的是及時復習,鞏固對方差公式的掌握。

      (2).例1的解題步驟也為學生做了一個示范,學生以后可以模仿例1的格式解決其他類似的實際問題。

      四.課堂引入:

      除采用教材中的引例外,可以選擇一些更時代氣息、更有現實意義的引例。例如,通過學生觀看2004年奧運會劉翔勇奪110米欄冠軍的錄像,進而引導教練員根據平時比賽成績選擇參賽隊員這樣的實際問題上,這樣引入自然而又真實,學生也更感興趣一些。

      五.例題的分析:

      教材P154例1在分析過程中應抓住以下幾點:

      1.題目中“整齊”的含義是什么?說明在這個問題中要研究一組數據的什么?學生通過思考可以回答出整齊即波動小,所以要研究兩組數據波動大小,這一環節是明確題意。

      2.在求方差之前先要求哪個統計量,為什么?學生也可以得出先求平均數,因為公式中需要平均值,這個問題可以使學生明確利用方差計算步驟。

      3.方差怎樣去體現波動大小?

      這一問題的提出主要復習鞏固方差,反映數據波動大小的規律。

      六.隨堂練習:

      1.從甲、乙兩種農作物中各抽取1株苗,分別測得它的苗高如下:(單位:cm)

      甲:9、10、11、12、7、13、10、8、12、8;

      乙:8、13、12、11、10、12、7、7、9、11;

      問:(1)哪種農作物的苗長的比較高?

      (2)哪種農作物的苗長得比較整齊?

      2.段巍和金志強兩人參加體育項目訓練,近期的5次測試成績如下表所示,誰的成績比較穩定?為什么?

      測試次數1 2 3 4 5

      段巍13 14 13 12 13

      金志強10 13 16 14 12

      參考答案:1.(1)甲、乙兩種農作物的苗平均高度相同;(2)甲整齊

      2.段巍的成績比金志強的成績要穩定。

      七.課后練習:

      1.已知一組數據為2、0、-1、3、-4,則這組數據的方差為。

      2.甲、乙兩名學生在相同的條件下各射靶10次,命中的環數如下:

      甲:7、8、6、8、6、5、9、10、7、4

      乙:9、5、7、8、7、6、8、6、7、7

      經過計算,兩人射擊環數的平均數相同,但S S,所以確定去參加比賽。

      3.甲、乙兩臺機床生產同種零件,10天出的次品分別是( )

      甲:0、1、0、2、2、0、3、1、2、4

      乙:2、3、1、2、0、2、1、1、2、1

      分別計算出兩個樣本的平均數和方差,根據你的計算判斷哪臺機床的性能較好?

      4.小爽和小兵在10次百米跑步練習中成績如表所示:(單位:秒)

      小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

      小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

      如果根據這幾次成績選拔一人參加比賽,你會選誰呢?

      答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙機床性能好

      4. =10.9、S =0.02;

      =10.9、S =0.008

      選擇小兵參加比賽。

    八年級的數學教案8

      一、教材的地位和作用

      現實生活中,等腰三角形的應用比比皆是、所以,利用“軸對稱”的知識,進一步研究等腰三角形的特殊性質,不僅是現實生活的需要,而且從思想方法和知識儲備上,為今后研究“四邊形”和“圓”的性質打下堅實的基礎、

      性質“等腰三角形的兩個底角相等”是幾何論證過程中,證明“兩個角相等”的重要方法之一、“等腰三角形底邊上的三條重要線段重合”的性質是今后證明“兩條線段相等” “兩條直線互相垂直”“兩個角相等”等結論的重要理論依據、

      教學重點:

      1、讓學生主動經歷思考和探索的過程、

      2、掌握等腰三角形性質及其應用、

      教學難點:等腰三角形性質的理解和探究過程、

      二、學情分析

      本年級的學生已經研究過一般三角形的性質,積累了一定的經驗,動手能力強,善于與同伴交流,這就為本節課的學習做好了知識、能力、情感方面的準備、不同層次的學生因為基礎不同,在學習中必然會出現相異構想,這也將是我在教學過程中著重關注的一點、

      三、目標分析

      知識與技能

      1、了解等腰三角形的有關概念和掌握等腰三角形的性質

      2、了解等邊三角形的概念并探索其性質

      3、運用等腰三角形的性質解決問題

      過程與方法

      1、通過觀察等腰三角形的對稱性,發展學生的形象思維、

      2、探索等腰三角形的性質時,經歷了觀察、動手實踐、猜想、驗證等數學過程,積累數學活動經驗,發展了學生的歸納推理,類比遷移的能力、在與他人交流的過程中,能運用數學語言合乎邏輯的進行討論和質疑,提高了數學語言表達能力、

      情感態度價值觀:

      1、通過情境創設,使學生感受到等腰三角形就在自己的身邊,從而使學生認識到學習等腰三角形的必要性、

      2、通過等腰三角形的性質的歸納,使學生認識到科學結論的發現,是一個不斷完善的`過程,培養學生堅強的意志品質、

      3、通過小組合作,發展學生互幫互助的精神,體驗合作學習中的樂趣和成就感、

      四、教法分析

      根據學生已有的認知,采取了激疑引趣——猜想探究——應用體驗——建構延伸的教學模式,并利用多媒體輔助教學、

      設計意圖

      同學們,我們在七年級已研究了一般三角形的性質,今天我們一起來探究特殊的三角形:等腰三角形、

      等腰三角形的定義

      有兩條邊相等的三角形叫做等腰三角形、

      等腰三角形中,相等的兩邊都叫做腰,另一邊叫做底邊,兩腰的夾角叫做頂角、腰和底邊的夾角叫做底角、

      提出問題:生活中有哪些現象讓你聯想到等腰三角形?

      首先讓學生明確:本學段的幾何圖形都是按一般的到特殊的順序研究的

      通過學生描述等腰三角形在生活中的應用,讓學生感受到數學就在我們身邊,以及研究等腰三角形的必要性、

      剪紙游戲

      你能利用手中的這個矩形紙片剪出一個等腰三角形嗎?注意安全呦!

      學情分析:

      大部分學生會有自己的想法,根據軸對稱圖形的性質,利用對折紙片,再“剪一刀”就是就得到了兩條“腰”;

      可能還有的同學會利用正方形的折法,獲得特殊的等腰直角三角形;

      可能還有同學先畫圖,再依線條剪得、

      在這個過程中,注重落實三維目標、讓學生在獲取新知的過程中更好的認識自我,建立自信、我不失時機的對學生給予鼓勵和表揚,使活動更加深入,課堂充滿愉悅和溫馨、

      知其然,更重要的是知其所以然、因此,我力求讓學生關注剪法的理性思考、

      我設計了問題:你是如何想到的?為的是剖析學生的思維過程:“折疊”就是為了得到“對稱軸”,“剪一刀”就是就得到了兩條“腰”,由“重合”保證了“等腰”、這樣就建立了“操作”與“證明”的中間橋梁、從實際操作中得到證明的方法,也為發現“三線合一”做了鋪墊、

      提出問題:

      等腰三角形還有什么性質?請提出你的猜想,驗證你的猜想?并填寫在學案上、

      合作小組活動規則:

      1、有主記錄員記錄小組的結論;

      2、定出小組的主發言人(其它同學可作補充);

      3、小組探究出的結論是什么?

      4、說明你們小組所獲得結論的理由、

      等腰三角形的性質:

      性質一:等腰三角形的兩個底角相等(簡稱“等邊對等角”)、

      性質二:等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(簡稱“三線合一”)、

      學情分析:這個環節是本節課的重點,也是教學難點、盡管在教學過程中,因為學生的相異構想,數學猜想的初始敘述不準確,甚至不正確,但我不會立即去糾正他們,而是讓同學們不斷地質疑﹑辨析、研討和歸納,逐漸完善結論、讓他們真正經歷數學知識的形成過程,真正的體現以人為本的教學理念,努力創設和諧的教育教學的生態環境、

      通過設置恰當的動手實踐活動,引導學生經歷觀察、動手實踐、猜想、驗證等數學探究活動,這種探究的學習過程,恰恰是研究幾何圖形性質的一般規律和方法、

      (1)在此環節中,我的教學要充分把握好“四讓”:能讓學生觀察的,盡量讓學生觀察;能讓學生思考的,盡量讓學生思考;能讓學生表達的,盡量讓學生表達;能讓學生作結論的,盡量讓學生作結論、

      這種教學方式,把學習的過程真正還給學生,不怕學生說不好,不怕學生出問題,其實學生說不好的地方、學生出問題的地方都正是我們應該教的地方,是教學的切入點、著眼點、增長點、

      (2)教師在這個過程中,充分聽取和參與學生的小組討論,對有困難的學生,及時指導、

      鞏固知識

      1、等腰三角形頂角為70°,它的另外兩個內角的度數分別為________;

      2、等腰三角形一個角為70°,它的另外兩個內角的度數分別為_____;

      3、等腰三角形一個角為100°,它的另外兩個內角的度數分別為_____、

      內化知識

      1、如圖1,在△ABC中,AB=AC,AD⊥BC,∠BAC=120°你能求出∠BAD的度數嗎?

      知識遷移

      等邊三角形有什么特殊的性質?簡單地敘述理由、

      等邊三角形的性質定理:

      等邊三角形的各角都相等,并且每一個角都等于60°、

      拓展延伸

      如圖2,在△ABC中,AB=AC,點D,E在BC上,AD=AE,你能說明BD=EC?

      由于學生之間存在知識基礎、經驗和能力的差異,我為學生提供了層次分明的反饋練習、將練習從易到難,從簡到繁,以適應不同階段、不同層次的學生的需要、讓學生拾階而上,逐步掌握知識,使學困生達到簡單運用水平,中等生達到綜合運用水平,優等生達到創建水平、

      暢談收獲

      總結活動情況,重在肯定與鼓勵、引導學生從本課學習中所得到的新知識,運用的數學思想方法,新舊知識的聯系等方面進行反思,提高學生自主建構知識網絡、分析解決問題的能力、

      幫助學生梳理知識,回顧探究過程中所用到的從特殊到一般的數學方法,啟發學生更深層次的思考,為學生的下一步學習做好鋪墊、

      反思過程不僅是學生學習過程的繼續,更重要的是一種提高和發展自己的過程、

      基礎性作業:P65習題1、2、3、4

    八年級的數學教案9

      《正方形》教學設計

      教學內容分析:

      ⑴學習特殊的平行四邊形—正方形,它的特殊的性質和判定。

      ⑵前面學習了平行四邊形、矩形菱形,類比他們的性質與判斷,有利于對正方形的研究。

      ⑶對本節的學習,繼續培養學生分類研究的思想,并且建立新舊知識的聯系,類比的基礎上進行歸納,梳理知識,進一步發展學生的推理能力。

      學生分析

      ⑴學生在小學初步認識了正方形,并且本節課之前,學生又學習了幾種平行四邊形,已經具備了觀察研究平行四邊形的經驗與知識基礎。

      ⑵學生在上幾節已有了推理的經歷,但是對于證明,學生的思維能力還不成熟,有待于提高。

      教學目標:

      ⑴知識與技能:了解正方形是特殊的平行四邊形,掌握它的性質和判定,會利用性質與判定進行簡單的說理。

      ⑵過程與方法:通過類比前邊的四邊形的研究,探索并歸納正方形的性質與判定。通過運用提高學生的推理能力。

      ⑶情感態度與價值觀:在學習中體會正方形的完美性,通過活動獲得成功的喜悅與自信。

      重點:掌握正方形的性質與判定,并進行簡單的推理。

      難點:探索正方形的判定,發展學生的推理能

      教學方法:類比與探究

      教具準備:可以活動的四邊形模型。

      一、教學分析

      (一)教學內容分析

      1.教材:義務教育課程標準實驗教科書《數學》九年級上冊(人民教育出版社)

      2.本課教學內容的地位、作用,知識的前后聯系

      《中心對稱圖形》是新人教版九年級數學上冊第二十三章第二單元第二節課的內容。本節教材屬于圖形變換的內容,是在學習了“軸對稱和軸對稱圖形”、“旋轉和中心對稱”后的一種對稱圖形,因此涉及歸納、類比等思想方法,對激發學生探索精神和創新意識等方面都有重要意義。

      3.本課教學內容的特點,重點分析體現新課程理念的特點

      本節課主要介紹中心對稱圖形的概念、中心對稱圖形的識別、中心對稱圖形與軸對稱圖形與中心對稱的比較、中心對稱圖形的性質。為使學生感受、理解知識的產生和發展過程,培養學生的抽象思維,我將通過:(1)例舉日常生活中的一些旋轉對稱圖形引出中心對稱圖形的概念;(2)引導學生觀察、猜想、實驗、歸納、類比等方法探究中心對稱圖形的性質,(3)通過多媒體演示使學生對中心對稱圖形的性質有直觀的表象。我認為這環環相扣、層層深入、循序漸進的活動過程,符合新課程標準理念和學生建構知識的規律,有利于激發學生的學習情趣。

      (二)教學對象分析

      1.學生所在地區、學校及班級的特色

      我授課的班級是西安市閻良區振興中學九年級一班,作為九年級的學生,在圖形的對稱方面已經積累一些經驗,已經具有一定的觀察、猜想、實驗、歸納、類比等研究圖形對稱變換的能力;班級學生具有個性活潑,思維活躍,對各種事物充滿好奇,學習情緒易于調動,學習積極性高的特點,但學生的抽象思維能力個體差異較大,并且班級中已出現分化現象。

      2.學生的年齡特點和認知特點

      班級學生的年齡大多在15歲到17歲間。他們已具備了一定的獨立分析、解決問題的能力,表現欲望較為強烈,喜好發表個人見解并且具有一定的合作交流、共同探討的意識與經驗,因此在課程內容的安排中,適當地創設一些具有一定思維深度的問題,加強學生在學習過程中自主探索與合作交流的緊密結合,促使學生在探究的過程中,更多地獲得成功的體驗,感受學習思考的樂趣。

      教學過程

      一:復習鞏固,建立聯系

      【教師活動

      問題設置:①平行四邊形、矩形,菱形各有哪些性質?

      ②()的四邊形是平行四邊形。()的平行四邊形是矩形。()的平行四邊形是菱形。()的四邊形是矩形。()的四邊形是菱形。

      【學生活動

      學生回憶,并舉手回答,對于填空題,讓更多的學生參與,說出更多的答案。

      【教師活動

      評析學生的結果,給予表揚。

      總結性質從邊角對角線考慮,在填空時也考慮這幾方面之外,還應該考慮三者之間的聯系與區別。

      演示平行四邊形變為矩形菱形的過程。

      二:動手操作,探索發現

      活動一:拿出一張矩形紙片,拉起一角,使其寬AB落在長AD邊上,如下圖所示,沿著B′E剪下,能得到什么圖形?

      【學生活動

      學生拿出自備矩形紙片,動手操作,不難發現它是正方形。

      設置問題:①什么是正方形?

      觀察發現,從活動中體會。

      【教師活動】:演示矩形變為正方形的過程,菱形變為正方形的過程。

      【學生活動】認真觀察變化過程,思考之間的聯系,舉手回答設置問題。

      設置問題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?

      【學生活動】

      小組討論,分組回答。

      【教師活動】

      總結板書:㈠(一組鄰邊相等)的矩形是正方形,(一個角是直角)的菱形是正方形。

      設置問題③正方形有那些性質?

      【學生活動】

      小組討論,舉手搶答。

      【教師活動

      表揚學生發言,板書學生發現,㈡正方形每一條對角線平分一組對角

      活動二:拿出活動一得到的正方形折一折,正方形是軸對稱圖形嗎?有幾條對稱軸?

      學生活動

      折紙發現,說出自己的發現。得到正方形的又一性質。正方形是軸對稱圖形。

      教師活動

      演示從平行四邊形變為正方形的過程,擦去板書㈠中的括號內容,出示一下問題:你還可以怎樣填空?

      ()的菱形是正方形,()的矩形是正方形,()的平行四邊形是正方形,()的四邊形是正方形。

      學生活動

      小組充分交流,表達不同的意見。

      教師活動

      評析活動,總結發現:

      一組鄰邊相等的矩形是正方形,對角線互相平分的矩形是正方形;

      有一個角是直角的菱形是正方形,對角線相等的菱形是正方形,;

      有一組鄰邊相等且有一個角是直角的平行四邊形是正方形,對角線相等且互相平分的平行四邊形是正方形;

      四邊相等且有一角是直角的四邊形是正方形,對角線相等且互相垂直平分的四邊形是正方形。

      以上是正方形的判定方法。

      正方形是一個多么完美的平行四邊形呀?大家互相說一說,它的完美體現在哪里?生活中有哪些利用正方形的例子?

      學生交流,感受正方形

      三,應用體驗,推理證明。

      出示例一:正方形ABCD的兩條對角線AC,BD交與O,AB長4cm,求AC,AO長,及的`度數。

      方法一解:∵四邊形ABCD是正方形

      ∴∠ABC=90°(正方形的四個角是直角)

      BC=AB=4cm(正方形的四條邊相等)

      ∴=45°(等腰直角三角形的底角是45°)

      ∴利用勾股定理可知,AC===4cm

      ∵AO=AC(正方形的對角線互相平分)

      ∴AO=×4=2cm

      方法二:證明△AOB是等腰直角三角形,即可得證。

      學生活動

      獨立思考,寫出推理過程,再進行小組討論,并且各小組指派代表寫在黑板上,共同交流。

      教師活動

      總結解題方法,從正方形的性質全面考慮,準確利用條件,減少麻煩。評析解題步驟,表揚突出學生。

      出示例二:在正方形ABCD中,E、F、G、H分別在它的四條邊上,且AE=BF=CG=DH,四邊形EFGH是什么特殊的四邊形,你是如何判斷的?

      學生活動

      小組交流,分析題意,整理思路,指名口答。

      教師活動

      說明思路,從已知出發或者從已有的判定加以選擇。

      四,歸納新知,梳理知識。

      這一節課你有什么收獲?

      學生舉手談論自己的收獲。

      請把平行四邊形,矩形,菱形,正方形分別填寫在下圖的ABCDC處,說明它們的關系。

      發表評論

      教學目標:

      情意目標:培養學生團結協作的精神,體驗探究成功的樂趣。

      能力目標:能利用等腰梯形的性質解簡單的幾何計算、證明題;培養學生探究問題、自主學習的能力。

      認知目標:了解梯形的概念及其分類;掌握等腰梯形的性質。

      教學重點、難點

      重點:等腰梯形性質的探索;

      難點:梯形中輔助線的添加。

      教學課件:PowerPoint演示文稿

      教學方法:啟發法、

      學習方法:討論法、合作法、練習法

      教學過程:

      (一)導入

      1、出示圖片,說出每輛汽車車窗形狀(投影)

      2、板書課題:5梯形

      3、練習:下列圖形中哪些圖形是梯形?(投影)

      結梯形概念:只有4、總結梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。

      5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)

      6、特殊梯形的分類:(投影)

      (二)等腰梯形性質的探究

      【探究性質一】

      思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)

      猜想:由此你能得到等腰梯形的內角有什么樣的性質?(學生操作、討論、作答)

      如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C

      想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?

      等腰梯形性質:等腰梯形的同一條底邊上的兩個內角相等。

      【操練】

      (1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)

      (2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E.(投影)

      【探究性質二】

      如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學生操作、討論、作答)

      如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)

      等腰梯形性質:等腰梯形的兩條對角線相等。

      【探究性質三】

      問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學生操作、作答)

      問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)

      等腰梯形性質:同以底上的兩個內角相等,對角線相等

      (三)質疑反思、小結

      讓學生回顧本課教學內容,并提出尚存問題;

      學生小結,教師視具體情況給予提示:性質(從邊、角、對角線、對稱性等角度總結)、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。

    八年級的數學教案10

      一、內容和內容解析

      1.內容

      二次根式的性質。

      2.內容解析

      本節教材是在學生學習二次根式概念的基礎上,結合二次根式的概念和算術平方根的概念,通過觀察、歸納和思考得到二次根式的兩個基本性質.

      對于二次根式的性質,教材沒有直接從算術平方根的意義得到,而是考慮學生的年齡特征,先通過 “探究”欄目中給出四個具體問題,讓學生學生根據算術平方根的意義,就具體數字進行分析得出結果,再分析這些結果的共同特征,由特殊到一般地歸納出結論.基于以上分析,確定本節課的教學重點為:理解二次根式的性質.

      二、目標和目標解析

      1.教學目標

      (1)經歷探索二次根式的性質的過程,并理解其意義;

      (2)會運用二次根式的性質進行二次根式的化簡;

      (3)了解代數式的概念.

      2.目標解析

      (1)學生能根據具體數字分析和算術平方根的意義,由特殊到一般地歸納出二次根式的性質,會用符號表述這一性質;

      (2)學生能靈活運用二次根式的性質進行二次根式的化簡;

      (3)學生能從已學過的各種式子中,體會其共同特點,得出代數式的概念.

      三、教學問題診斷分析

      二次根式的性質是二次根式化簡和運算的重要基礎.學生根據二次根式的概念和算術平方根的意義,由特殊到一般地得出二次根式的性質后,重在能靈活運用二次根式的性質進行二次根式的化簡和解決一些綜合性較強的問題.由于學生初次學習二次根式的性質,對二次根式性質的靈活運用存在一定的困難,突破這一難點需要教師精心設計好每一道習題,讓學生在練習中進一步掌握二次根式的性質,培養其靈活運用的能力.

      本節課的教學難點為:二次根式性質的靈活運用.

      四、教學過程設計

      1.探究性質1

      問題1 你能解釋下列式子的含義嗎?

      師生活動:教師引導學生說出每一個式子的含義.

      【設計意圖】讓學生初步感知,這些式子都表示一個非負數的算術平方根的平方.

      問題2 根據算術平方根的意義填空,并說出得到結論的依據.

      師生活動 學生獨立完成填空后,讓學生展示其思維過程,說出得到結論的依據.

      【設計意圖】學生通過計算或根據算術平方根的意義得出結論,為歸納二次根式的性質1作鋪墊.

      問題3 從以上的結論中你能發現什么規律?你能用一個式子表示這個規律嗎?

      師生活動:引導學生歸納得出二次根式的性質: ( ≥0).

      【設計意圖】讓學生經歷從特殊到一般的過程,概括出二次根式的性質1,培養學生抽象概括的能力.

      例2 計算

      (1) ;(2) .

      師生活動:學生獨立完成,集體訂正.

      【設計意圖】鞏固二次根式的性質1,學會靈活運用.

      2.探究性質2

      問題4 你能解釋下列式子的含義嗎?

      師生活動:教師引導學生說出每一個式子的含義.

      【設計意圖】讓學生初步感知,這些式子都表示一個數的平方的算術平方根.

      問題5 根據算術平方根的`意義填空,并說出得到結論的依據.

      師生活動 學生獨立完成填空后,讓學生展示其思維過程,說出得到結論的依據.

      【設計意圖】學生通過計算或根據算術平方根的意義得出結論,為歸納二次根式的性質2作鋪墊.

      問題6 從以上的結論中你能發現什么規律?你能用一個式子表示這個規律嗎?

      師生活動:引導學生歸納得出二次根式的性質: ( ≥0)

      【設計意圖】讓學生經歷從特殊到一般的過程,概括出二次根式的性質2,培養學生抽象概括的能力.

      例3 計算

      (1) ;(2) .

      師生活動:學生獨立完成,集體訂正.

      【設計意圖】鞏固二次根式的性質2,學會靈活運用.

      3.歸納代數式的概念

      問題7 回顧我們學過的式子,如, ( ≥0),這些式子有哪些共同特征?

      師生活動:學生概括式子的共同特征,得出代數式的概念.

      【設計意圖】學生通過觀察式子的共同特征,形成代數式的概念,培養學生的概括能力.

      4.綜合運用

      (1)算一算:

      【設計意圖】設計有一定綜合性的題目,考查學生的靈活運用的能力,第(2)、(3)、(4)小題要特別注意結果的符號.

      (2)想一想: 中, 的取值范圍是什么?當 ≥0時, 等于多少?當 時, 又等于多少?

      【設計意圖】通過此問題的設計,加深學生對 的理解,開闊學生的視野,訓練學生的思維.

      (3)談一談你對 與 的認識.

      【設計意圖】加深學生對二次根式性質的理解.

      5.總結反思

      (1)你知道了二次根式的哪些性質?

      (2)運用二次根式性質進行化簡需要注意什么?

      (3)請談談發現二次根式性質的思考過程?

      (4)想一想,到現在為止,你學習了哪幾類字母表示數得到的式子?說說你對代數式的認識.

      6.布置作業:教科書習題16.1第2,4題.

      五、目標檢測設計

      1. ; ; .

      【設計意圖】考查對二次根式性質的理解.

      2.下列運算正確的是( )

      A. B. C. D.

      【設計意圖】考查學生運用二次根式的性質進行化簡的能力.

      3.若 ,則 的取值范圍是 .

      【設計意圖】考查學生對一個數非負數的算術平方根的理解.

      4.計算: .

      【設計意圖】考查二次根式性質的靈活運用.

    八年級的數學教案11

      第11章平面直角坐標系

      11。1平面上點的坐標

      第1課時平面上點的坐標(一)

      教學目標

      【知識與技能】

      1。知道有序實數對的概念,認識平面直角坐標系的相關知識,如平面直角坐標系的構成:橫軸、縱軸、原點等。

      2。理解坐標平面內的點與有序實數對的一一對應關系,能寫出給定的平面直角坐標系中某一點的坐標。已知點的坐標,能在平面直角坐標系中描出點。

      3。能在方格紙中建立適當的平面直角坐標系來描述點的位置。

      【過程與方法】

      1。結合現實生活中表示物體位置的例子,理解有序實數對和平面直角坐標系的作用。

      2。學會用有序實數對和平面直角坐標系中的點來描述物體的位置。

      【情感、態度與價值觀】

      通過引入有序實數對、平面直角坐標系讓學生體會到現實生活中的問題的解決與數學的發展之間有聯系,感受到數學的價值。

      重點難點

      【重點】

      認識平面直角坐標系,寫出坐標平面內點的坐標,已知坐標能在坐標平面內描出點。

      【難點】

      理解坐標系中的坐標與坐標軸上的數字之間的關系。

      教學過程

      一、創設情境、導入新知

      師:如果讓你描述自己在班級中的位置,你會怎么說?

      生甲:我在第3排第5個座位。

      生乙:我在第4行第7列。

      師:很好!我們買的電影票上寫著幾排幾號,是對應某一個座位,也就是這個座位可以用排號和列號兩個數字確定下來。

      二、合作探究,獲取新知

      師:在以上幾個問題中,我們根據一個物體在兩個互相垂直的方向上的數量來表示這個物體

      的位置,這兩個數量我們可以用一個實數對來表示,但是,如果(5,3)表示5排3號的話,那么(3,5)表示什么呢?

      生:3排5號。

      師:對,它們對應的不是同一個位置,所以要求表示物體位置的這個實數對是有序的。誰來說說我們應該怎樣表示一個物體的位置呢?

      生:用一個有序的實數對來表示。

      師:對。我們學過實數與數軸上的點是一一對應的,有序實數對是不是也可以和一個點對應起來呢?

      生:可以。

      教師在黑板上作圖:

      我們可以在平面內畫兩條互相垂直、原點重合的數軸。水平的數軸叫做x軸或橫軸,取向右為

      正方向;豎直的數軸叫做y軸或縱軸,取向上為正方向;兩軸交點為原點。這樣就構成了平面直角坐標系,這個平面叫做坐標平面。

      師:有了平面直角坐標系,平面內的點就可以用一個有序實數對來表示了。現在請大家自己動手畫一個平面直角坐標系。

      學生操作,教師巡視。教師指正學生易犯的'錯誤。

      教師邊操作邊講解:

      如圖,由點P分別向x軸和y軸作垂線,垂足M在x軸上的坐標是3,垂足N在y軸上的坐標是5,我們就說P點的橫坐標是3,縱坐標是5,我們把橫坐標寫在前,縱坐標寫在后,(3,5)就是點P的坐標。在x軸上的點,過這點向y軸作垂線,對應的坐標是0,所以它的縱坐標就是0;在y軸上的點,過這點向x軸作垂線,對應的坐標是0,所以它的橫坐標就是0;原點的橫坐標和縱坐標都是0,即原點的坐標是(0,0)。

      教師多媒體出示:

      師:如圖,請同學們寫出A、B、C、D這四點的坐標。

      生甲:A點的坐標是(—5,4)。

      生乙:B點的坐標是(—3,—2)。

      生丙:C點的坐標是(4,0)。

      生丁:D點的坐標是(0,—6)。

      師:很好!我們已經知道了怎樣寫出點的坐標,如果已知一點的坐標為(3,—2),怎樣在平面直角坐標系中找到這個點呢?

      教師邊操作邊講解:

      在x軸上找出橫坐標是3的點,過這一點向x軸作垂線,橫坐標是3的點都在這條直線上;在y軸上找出縱坐標是—2的點,過這一點向y軸作垂線,縱坐標是—2的點都在這條直線上;這兩條直線交于一點,這一點既滿足橫坐標為3,又滿足縱坐標為—2,所以這就是坐標為(3,—2)的點。下面請同學們在方格紙中建立一個平面直角坐標系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)這幾個點。

      學生動手作圖,教師巡視指導。

      三、深入探究,層層推進

      師:兩個坐標軸把坐標平面劃分為四個區域,從x軸正半軸開始,按逆時針方向,把這四個區域分別叫做第一象限、第二象限、第三象限和第四象限。注意:坐標軸不屬于任何一個象限。在同一象限內的點,它們的橫坐標的符號一樣嗎?縱坐標的符號一樣嗎?

      生:都一樣。

      師:對,由作垂線求坐標的過程,我們知道第一象限內的點的橫坐標的符號為+,縱坐標的符號也為+。你能說出其他象限內點的坐標的符號嗎?

      生:能。第二象限內的點的坐標的符號為(—,+),第三象限內的點的坐標的符號為(—,—),第四象限內的點的坐標的符號為(+,—)。

      師:很好!我們知道了一點所在的象限,就能知道它的坐標的符號。同樣的,我們由點的坐標也能知道它所在的象限。一點的坐標的符號為(—,+),你能判斷這點是在哪個象限嗎?

      生:能,在第二象限。

      四、練習新知

      師:現在我給出幾個點,你們判斷一下它們分別在哪個象限。

      教師寫出四個點的坐標:A(—5,—4),B(3,—1),C(0,4),D(5,0)。

      生甲:A點在第三象限。

      生乙:B點在第四象限。

      生丙:C點不屬于任何一個象限,它在y軸上。

      生丁:D點不屬于任何一個象限,它在x軸上。

      師:很好!現在請大家在方格紙上建立一個平面直角坐標系,在上面描出這些點。

      學生作圖,教師巡視,并予以指導。

      五、課堂小結

      師:本節課你學到了哪些新的知識?

      生:認識了平面直角坐標系,會寫出坐標平面內點的坐標,已知坐標能描點,知道了四個象限以及四個象限內點的符號特征。

      教師補充完善。

      教學反思

      物體位置的說法和表述物體的位置等問題,學生在實際生活中經常遇到,但可能沒有想到這些問題與數學的聯系。教師在這節課上引導學生去想到建立一個平面直角坐標系來表示物體的位置,讓學生參與到探索獲取新知的活動中,主動學習思考,感受數學的魅力。在教學中我讓學生由生活中的實例與坐標的聯系感受坐標的實用性,增強了學生學習數學的興趣。

      第2課時平面上點的坐標(二)

      教學目標

      【知識與技能】

      進一步學習和應用平面直角坐標系,認識坐標系中的圖形。

      【過程與方法】

      通過探索平面上的點連接成的圖形,形成二維平面圖形的概念,發展抽象思維能力。

      【情感、態度與價值觀】

      培養學生的合作交流意識和探索精神,體驗通過二維坐標來描述圖形頂點,從而描述圖形的方法。

      重點難點

      【重點】

      理解平面上的點連接成的圖形,計算圍成的圖形的面積。

      【難點】

      不規則圖形面積的求法。

      教學過程

      一、創設情境,導入新知

      師:上節課我們學習了平面直角坐標系的概念,也學習了已知點的坐標,怎樣在平面直角坐標系中把這個點表示出來。下面請大家在方格紙上建立一個平面直角坐標系,并在上面標出A(5,1),B(2,1),C(2,—3)這三個點。

      學生作圖。

      教師邊操作邊講解:

      二、合作探究,獲取新知

      師:現在我們把這三個點用線段連接起來,看一下得到的是什么圖形?

      生甲:三角形。

      生乙:直角三角形。

      師:你能計算出它的面積嗎?

      生:能。

      教師挑一名學生:你是怎樣算的呢?

      生:AB的長是5—2=3,BC的長是1—(—3)=4,所以三角形ABC的面積是×3×4=6。

      師:很好!

      教師邊操作邊講解:

      大家再描出四個點:A(—1,2),B(—2,—1),C(2,—1),D(3,2),并將它們依次連接起來看看形成的是什么

      圖形?

      學生完成操作后回答:平行四邊形。

      師:你能計算它的面積嗎?

      生:能。

      教師挑一名學生:你是怎么計算的呢?

      生:以BC為底,A到BC的垂線段AE為高,BC的長為4,AE的長為3,平行四邊形的面積就是4×3=12。師:很好!剛才是已知點,我們將它們順次連接形成圖形,下面我們來看這樣一個連接成的圖形:

      教師多媒體出示下圖:

    八年級的數學教案12

      【教學目標】

      知識目標:

      解單項式乘以多項式的意義,理解單項式與多項式的乘法法則,會進行單項式與多項式的乘法運算。

      能力目標:

      (1)經歷探索乘法運算法則的過程,發展觀察、歸納、猜測、驗證等能力;

      (2)體會乘法分配律的作用與轉化思想,發展有條理的思考及語言表達能力。

      情感目標:

      充分調動學生學習的積極性、主動性

      【教學重點】

      單項式與多項式的乘法運算

      【教學難點】

      推測整式乘法的運算法則。

      【教學過程】

      一、復習引入

      通過對已學知識的復習引入課題(學生作答)

      1.請說出單項式與單項式相乘的法則:

      單項式與單項式相乘,把它們的系數、相同字母的冪分別相乘,對于只在一個單項式里出現的字母,則連同它的指數作為積的一個因式。

      (系數×系數)×(同字母冪相乘)×單獨的冪

      例如:( 2a2b3c) (-3ab)

      解:原式=[2· (-3) ] · (a2·a) · (b3 · b) · c

      = -6a3b4c

      2.說出多項式2x2-3x-1的`項和各項的系數項分別為:2x2、-3x、-1系數分別為:2、-3、-1

      問:如何計算單項式與多項式相乘?例如:2a2· (3a2 - 5b)該怎樣計算?

      這便是我們今天要研究的問題。

      二、新知探究

      已知一長方形長為(a+b+c),寬為m,則面積為:m(a+b+c)

      現將這個長方形分割為寬為m,長分別為a、b、c的三個小長方形,其面積之和為ma+mb+mc因為分割前后長方形沒變所以m(a+b+c)=ma+mb+mc

      上一等式根據什么規律可以得到?從中可以得出單項式與多項式相乘的運算法則該如何表述?(學生分組討論:前后座為一組;找個別同學作答,教師作評)

      結論單項式與多項式相乘的運算法則:

      用單項式分別去乘多項式的每一項,再把所得的積相加。

      用字母表示為:m(a+b+c)=ma+mb+mc

      運算思路:單×多

      轉化

      分配律

      單×單

      三、例題講解

      例計算:(1)(-2a2)· (3ab2– 5ab3)

      (2)(- 4x) ·(2x2+3x-1)

      解:(1)原式= (-2a2)· 3ab2+ (-2a2)·(– 5ab3) ①=-6a3b2+ 10a3b3 ②

      (2)原式=(- 4x) ·2x2+(- 4x) ·3x+(- 4x) ·(-1) ①

    八年級的數學教案13

      一、學生起點分析

      學生已經了勾股定理,并在先前其他內容學習中已經積累了一定百度一下的逆向思維、逆向研究的經驗,如:已知兩直線平行,有什么樣的結論?

      反之,滿足什么條件的兩直線是平行?因而,本課時由勾股定理出發逆向思考獲得逆命題,學生應該已經具備這樣的意識,但具體研究中

      可能要用到反證等思路,對現階段學生而言可能還具有一定困難,需要教師適時的引導。

      二、學習任務分析

      本節課是北師大版數學八年級(上)第一章《勾股定理》第2節。教學任務有:探索勾股定理的逆定理

      并利用該定理根據邊長判斷一個三角形是否是直角三角形,利用該定理解決一些簡單的實際問題;通過具體的數,增加對勾股數的直觀體驗。為此確定教學目標:

      ● 知識與技能目標

      1.理解勾股定理逆定理的具體內容及勾股數的概念;

      2.能根據所給三角形三邊的條件判斷三角形是否是直角三角形。

      ● 過程與方法目標

      1.經歷一般規律的探索過程,發展學生的抽象思維能力;

      2.經歷從實驗到驗證的過程,發展學生的數學歸納能力。

      ● 情感與態度目標

      1.體驗生活中的數學的應用價值,感受數學與人類生活的密切聯系,激發學生學數學、用數學的興趣;

      2.在探索過程中體驗成功的喜悅,樹立學習的自信心。

      教學重點

      理解勾股定理逆定理的具體內容。

      三、教法學法

      1.教學方法:實驗猜想歸納論證

      本節課的教學對象是初二學生,他們的參與意識較強,思維活躍,對通過實驗獲得數學結論已有一定的體驗

      但數學思維嚴謹的同學總是心存疑慮,利用邏輯推理的方式,讓同學心服口服顯得非常迫切,為了實現本節課的教學目標,我力求從以下三個方面對學生進行引導:

      (1)從創設問題情景入手,通過知識再現,孕育教學過程;

      (2)從學生活動出發,通過以舊引新,順勢教學過程;

      (3)利用探索,研究手段,通過思維深入,領悟教學過程。

      2.課前準備

      教具:教材、電腦、多媒體課件。

      學具:教材、筆記本、課堂練習本、文具。

      四、教學過程設計

      本節課設計了七個環節。第一環節:情境引入;第二環節:合作探究;第三環節:小試牛刀;第四環節:

      登高望遠;第五環節:鞏固提高;第六環節:交流小結;第七環節:布置作業。

      第一環節:情境引入

      內容:

      情境:1.直角三角形中,三邊長度之間滿足什么樣的關系?

      2.如果一個三角形中有兩邊的平方和等于第三邊的平方,那么這個三角形是否就是直角三角形呢?

      意圖:

      通過情境的創設引入新課,激發學生探究熱情。

      效果:

      從勾股定理逆向思維這一情景引入,提出問題,激發了學生的求知欲,為下一環節奠定了良好的基礎。

      第二環節:合作探究

      內容1:探究

      下面有三組數,分別是一個三角形的三邊長 ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個問題:

      1.這三組數都滿足 嗎?

      2.分別以每組數為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學生分為4人活動小組,每個小組可以任選其中的一組數。

      意圖:

      通過學生的合作探究,得出若一個三角形的三邊長 ,滿足 ,則這個三角形是直角三角形這一結論;在活動中體驗出數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律。

      效果:

      經過學生充分討論后,匯總各小組實驗結果發現:①5,12,13滿足 ,可以構成直角三角形;②7,24,25滿足 ,可以構成直角三角形;③8,15,17滿足 ,可以構成直角三角形。

      從上面的分組實驗很容易得出如下結論:

      如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

      內容2:說理

      提問:有同學認為測量結果可能有誤差,不同意這個發現。你認為這個發現正確嗎?你能給出一個更有說服力的理由嗎?

      意圖:讓學生明確,僅僅基于測量結果得到的結論未必可靠,需要進一步通過說理等方式使學生確信結論的可靠性,同時明晰結論:

      如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

      滿足 的三個正整數,稱為勾股數。

      注意事項:為了讓學生確認該結論,需要進行說理,有條件的班級,還可利用幾何畫板動畫演示,讓同學有一個直觀的認識。

      活動3:反思總結

      提問:

      1.同學們還能找出哪些勾股數呢?

      2.今天的結論與前面學習勾股定理有哪些異同呢?

      3.到今天為止,你能用哪些方法判斷一個三角形是直角三角形呢?

      4.通過今天同學們合作探究,你能體驗出一個數學結論的發現要經歷哪些過程呢?

      意圖:進一步讓學生認識該定理與勾股定理之間的關系

      第三環節:小試牛刀

      內容:

      1.下列哪幾組數據能作為直角三角形的三邊長?請說明理由。

      ①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22

      解答:①②

      2.一個三角形的三邊長分別是 ,則這個三角形的面積是( )

      A 250 B 150 C 200 D 不能確定

      解答:B

      3.如圖1:在 中, 于 , ,則 是( )

      A 等腰三角形 B 銳角三角形

      C 直角三角形 D 鈍角三角形

      解答:C

      4.將直角三角形的三邊擴大相同的`倍數后, (圖1)

      得到的三角形是( )

      A 直角三角形 B 銳角三角形

      C 鈍角三角形 D 不能確定

      解答:A

      意圖:

      通過練習,加強對勾股定理及勾股定理逆定理認識及應用

      效果

      每題都要求學生獨立完成(5分鐘),并指出各題分別用了哪些知識。

      第四環節:登高望遠

      內容:

      1.一個零件的形狀如圖2所示,按規定這個零件中 都應是直角。工人師傅量得這個零件各邊尺寸如圖3所示,這個零件符合要求嗎?

      解答:符合要求 , 又 ,

      2.一艘在海上朝正北方向航行的輪船,航行240海里時方位儀壞了,憑經驗,船長指揮船左傳90,繼續航行70海里,則距出發地250海里,你能判斷船轉彎后,是否沿正西方向航行?

      解答:由題意畫出相應的圖形

      AB=240海里,BC=70海里,,AC=250海里;在△ABC中

      =(250+240)(250-240)

      =4900= = 即 △ABC是Rt△

      答:船轉彎后,是沿正西方向航行的。

      意圖:

      利用勾股定理逆定理解決實際問題,進一步鞏固該定理。

      效果:

      學生能用自己的語言表達清楚解決問題的過程即可;利用三角形三邊數量關系 判斷一個三角形是直角三角形時,當遇見數據較大時,要懂得將 作適當變形( ),以便于計算。

      第五環節:鞏固提高

      內容:

      1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個直角三角形,你是如何判斷的?與你的同伴交流。

      解答:4個直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF

      2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?

      圖4 圖5

      解答:④⑤是直角三角形,①②③⑥不是直角三角形

      意圖:

      第一題考查學生充分利用所學知識解決問題時,考慮問題要全面,不要漏解;第二題在于考查學生如何利用網格進行計算,從而解決問題。

      效果:

      學生在對所學知識有一定的熟悉度后,能夠快速做答并能簡要說明理由即可。注意防漏解及網格的應用。

      第六環節:交流小結

      內容:

      師生相互交流總結出:

      1.今天所學內容①會利用三角形三邊數量關系 判斷一個三角形是直角三角形;②滿足 的三個正整數,稱為勾股數;

      2.從今天所學內容及所作練習中總結出的經驗與方法:①數學是源于生活又服務于生活的;②數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律;③利用三角形三邊數量關系 判斷一個三角形是直角三角形時,當遇見數據較大時,要懂得將 作適當變形, 便于計算。

      意圖:

      鼓勵學生結合本節課的學習談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應用及它們的悠久歷史;敢于面對數學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經驗,進一步體會數學的應用價值,發展運用數學的信心和能力,初步形成積極參與數學活動的意識。

      效果:

      學生暢所欲言自己的切身感受與實際收獲,總結出利用三角形三邊數量關系 判斷一個三角形是直角三角形從古至今在實際生活中的廣泛應用。

      第七環節:布置作業

      課本習題1.4第1,2,4題。

      五、教學反思:

      1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個三角形的三邊長 ,滿足 ,是否能得到這個三角形是直角三角形的問題;充分引用教材中出現的例題和練習。

      2.注重引導學生積極參與實驗活動,從中體驗任何一個數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律。

      3.在利用今天所學知識解決實際問題時,引導學生善于對公式變形,便于簡便計算。

      4.注重對學習新知理解應用偏困難的學生的進一步關注。

      5.對于勾股定理的逆定理的論證可根據學生的實際情況做適當調整,不做要求。

      由于本班學生整體水平較高,因而本設計教學容量相對較大,教學中,應注意根據自己班級學生的狀況進行適當的刪減或調整。

      附:板書設計

      能得到直角三角形嗎

      情景引入 小試牛刀: 登高望遠

    八年級的數學教案14

      教學目標:

      1、掌握平均數、中位數、眾數的概念,會求一組數據的平均數、中位數、眾數。

      2、在加權平均數中,知道權的差異對平均數的影響,并能用加權平均數解釋現實生活中一些簡單的現象。

      3、了解平均數、中位數、眾數的差別,初步體會它們在不同情境中的應用。

      4、能利和計算器求一組數據的算術平均數。

      教學重點:

      體會平均數、中位數、眾數在具體情境中的意義和應用。

      教學難點:

      對于平均數、中位數、眾數在不同情境中的應用。

      教學方法:

      歸納教學法。

      教學過程:

      一、知識回顧與思考

      1、平均數、中位數、眾數的概念及舉例。

      一般地對于n個數X1……Xn把(X1+X2+…Xn)叫做這n個數的算術平均數,簡稱平均數。

      如某公司要招工,測試內容為數學、語文、外語三門文化課的綜合成績,滿分都為100分,且這三門課分別按25%、25%、50%的比例計入總成績,這樣計算出的成績為數學,語文、外語成績的加權平均數,25%、25%、50%分別是數學、語文、外語三項測試成績的權。

      中位數就是把一組數據按大小順序排列,處在最中間位置的數(或最中間兩個數據的平均數)叫這組數據的中位數。

      眾數就是一組數據中出現次數最多的那個數據。

      如3,2,3,5,3,4中3是眾數。

      2、平均數、中位數和眾數的特征:

      (1)平均數、中位數、眾數都是表示一組數據“平均水平”的`平均數。

      (2)平均數能充分利用數據提供的信息,在生活中較為常用,但它容易受極端數字的影響,且計算較繁。

      (3)中位數的優點是計算簡單,受極端數字影響較小,但不能充分利用所有數字的信息。

      (4)眾數的可靠性較差,它不受極端數據的影響,求法簡便,當一組數據中個別數據變動較大時,適宜選擇眾數來表示這組數據的“集中趨勢”。

      3、算術平均數和加權平均數有什么區別和聯系:

      算術平均數是加權平均數的一種特殊情況,加權平均數包含算術平均數,當加權平均數中的權相等時,就是算術平均數。

      4、利用計算器求一組數據的平均數。

      利用科學計算器求平均數的方法計算平均數。

      二、例題講解:

      某校規定:學生的平時作業、期中練習、期末考試三項成績分別按40%、20%、40%的比例計入學期總評成績,小亮的平時作業、期中練習、期末考試的數學成績依次為90分,92分,85分,小亮這學期的數學總評成績是多少?

      三、課堂練習:

      復習題A組

      四、小結:

      1、掌握平均數、中位數與眾數的概念及計算。

      2、理解算術平均數與加權平均數的聯系與區別。

      五、作業:

      復習題B組、C組(選做)

    八年級的數學教案15

      一、教學目標:

      1、理解極差的定義,知道極差是用來反映數據波動范圍的一個量.

      2、會求一組數據的極差.

      二、重點、難點和難點的突破方法

      1、重點:會求一組數據的極差.

      2、難點:本節課內容較容易接受,不存在難點.

      三、課堂引入:

      下表顯示的是上海20xx年2月下旬和20xx年同期的每日最高氣溫,如何對這兩段時間的氣溫進行比較呢?

      從表中你能得到哪些信息?

      比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法.

      經計算可以看出,對于2月下旬的這段時間而言,20xx年和20xx年上海地區的平均氣溫相等,都是12度.

      這是不是說,兩個時段的氣溫情況沒有什么差異呢?

      根據兩段時間的氣溫情況可繪成的`折線圖.

      觀察一下,它們有區別嗎?說說你觀察得到的結果.

      用一組數據中的最大值減去最小值所得到的差來反映這組數據的變化范圍.用這種方法得到的差稱為極差(range).

      四、例習題分析

      本節課在教材中沒有相應的例題,教材P152習題分析

      問題1可由極差計算公式直接得出,由于差值較大,結合本題背景可以說明該村貧富差距較大.問題2涉及前一個學期統計知識首先應回憶復習已學知識.問題3答案并不唯一,合理即可。

    【八年級的數學教案】相關文章:

    八年級的數學教案12-14

    八年級數學教案06-18

    八年級的數學教案15篇12-14

    八年級下冊數學教案01-01

    八年級數學教案人教版01-03

    八年級數學教案【熱】11-29

    八年級數學教案【薦】12-06

    【推薦】八年級數學教案12-05

    八年級數學教案【熱門】12-03

    【精】八年級數學教案12-04

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      伊人大杳蕉久久动漫 | 在线观看中文字幕dvd播放 | 日本三级手机在线播放线观看 | 最新在线日韩欧美中文字幕 | 揄拍手机视频在线 | 亚洲v欧美v国产v在线观看 |