1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>七年級數學教案>七年級下冊數學教案

    七年級下冊數學教案

    時間:2022-12-06 08:38:40 七年級數學教案 我要投稿

    七年級下冊數學教案15篇

      作為一位不辭辛勞的人民教師,往往需要進行教案編寫工作,編寫教案助于積累教學經驗,不斷提高教學質量。教案要怎么寫呢?以下是小編為大家收集的七年級下冊數學教案,歡迎大家借鑒與參考,希望對大家有所幫助。

    七年級下冊數學教案15篇

    七年級下冊數學教案1

      學習目標

      1. 理解有序數對的應用意義,了解平面上確定點的常用方法

      2. 培養用數學的意識,激發學習興趣.

      學習重點: 理解有序數對的意義和作用

      學習難點: 用有序數對表示點的位置

      學習過程

      一.問題導入

      1.一位居民打電話給供電部門:"衛星路第8根電線桿的路燈壞了,"維修人員很快修好了路燈同學們欣賞下面圖案.

      2.地質部門在某地埋下一個標志樁,上面寫著"北緯44.2°,東經125.7°"。

      3.某人買了一張8排6號的電影票,很快找到了自己的座位。

      分析以上情景,他們分別利用那些數據找到位置的.。

      你能舉出生活中利用數據表示位置的例子嗎?

      二.概念確定

      有序數對:用含有兩個數的詞表示一個確定的位置,其中各個數表示不同的含義,我們把這種有順序的兩個數a與b組成的數對,叫做有序數對,記作(a,b)

      利用有序數對,可以很準確地表示出一個位置。

      1.在教室里,根據座位圖,確定數學課代表的位置

      2.教材40頁練習

      三.方法歸類

      常見的確定平面上的點位置常用的方法

      (1)以某一點為原點(0,0)將平面分成若干個小正方形的方格,利用點所在的行和列的位置來確定點的位置。

     。2)以某一點為觀察點,用方位角、目標到這個點的距離這兩個數來確定目標所在的位置。

      1.如圖,A點為原點(0,0),則B點記為(3,1)

      2.如圖,以燈塔A為觀測點,小島B在燈塔A北偏東45,距燈塔3km 處。

      例2 如圖是某次海戰中敵我雙方艦艇對峙示意圖,對我方艦艇來說:

     。1)北偏東方向上有哪些目標?要想確定敵艦B的位置,還需要什么數據?

      (2)距我方潛艇圖上距離為1cm處的敵艦有哪幾艘?

     。3)要確定每艘敵艦的位置,各需要幾個數據?

      [鞏固練習]

      1. 如圖是某城市市區的一部分示意圖,對市政府來說:

      北偏東60的方向有哪些單位?要想確定單位的位置。還需要哪些數據?火車站與學校分別位于市政府的什么方向,怎樣確定他們的位置?

      結合實際問題歸納方法

      學生嘗試描述位置

      2. 如圖,馬所處的位置為(2,3).

     。1) 你能表示出象的位置嗎?

     。2) 寫出馬的下一步可以到達的位置。

      [小結]

      1. 為什么要用有序數對表示點的位置,沒有順序可以嗎?

      2. 幾種常用的表示點位置的方法.

      [作業]

      必做題:教科書44頁:1題

    七年級下冊數學教案2

      教學目標

      1.能夠在實際情境中,抽象概括出所要研究的數學問題,增強學生的數感符號感。

      2.在已有的對冪的知識的了解基礎之上,通過與同伴合作,經歷探索同底數冪乘法運算性質

      過程,進一步體會冪的意義,發展合作交流能力、推理能力和有條理的表達能力。

      3.了解同底數冪乘法的運算性質,并能解決一些實際問題,感受數學與現實生活的密切聯系,

      增強學生的數學應用意識,訓練他們養成學會分析問題、解決問題的良好習慣。

      教學重點

      同底數冪乘法的運算性質,并能解決一些實際問題。

      教學過程

      一、復習回顧

      活動內容:復習七年級上冊數學課本中介紹的有關乘方運算知識:

      二、情境引入

      活動內容:以課本上有趣的天文知識為引例,讓學生從中抽象出簡單的數學模型,實際在列式計算時遇到了同底數冪相乘的形式,給出問題,啟發學生進行獨立思考,也可采用小組合作交流的形式,結合學生現有的有關冪的意義的知識,進行推導嘗試,力爭獨立得出結論。

      三、講授新課

      1.利用乘方的意義,提問學生,引出法則:計算103×102.

      解:103×102=(10×10×10)×(10×10)(冪的意義)

      =10×10×10×10×10(乘法的結合律)=105.

      2.引導學生建立冪的`運算法則:

      將上題中的底數改為a,則有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.

      用字母m,n表示正整數,則有即am·an=am+n.

      3.引導學生剖析法則

      (1)等號左邊是什么運算?(2)等號兩邊的底數有什么關系?

      (3)等號兩邊的指數有什么關系?(4)公式中的底數a可以表示什么

      (5)當三個以上同底數冪相乘時,上述法則是否成立?

      要求學生敘述這個法則,并強調冪的底數必須相同,相乘時指數才能相加.

      四、應用提高

      活動內容:

      1.完成課本“想一想”:a?a?a等于什么?

      2.通過一組判斷,區分“同底數冪的乘法”與“合并同類項”的不同之處。

      3.獨立處理例2,從實際情境中學會處理問題的方法。

      4.處理隨堂練習(可采用小組評分競爭的方式,如時間緊,放于課下完成)。mnp

      五、拓展延伸

      活動內容:計算:(1)-a2·a6(2)(-x)·(-x)3(3)ym·ym+1(4)??7?8?73

     。5)??6??63(6)??5??53???5?。(7)?a?b???a?b?7542

      2(8)?b?a???a?b?(9)x5·x6·x3(10)-b3·b3

      (11)-a·(-a)3(12)(-a)2·(-a)3·(-a)

      六、課堂小結

      活動內容:師生互相交流總結本節課上應該掌握的同底數冪的乘法的特征,教師對課堂上學生掌握不夠牢固的知識進行強調與補充,學生也可談一談個人的學習感受。

      七、布置作業

      1.請你根據本節課學習,把感受最深、收獲最大的方面寫成體會,用于小組交流。

      2.完成課本習題1.4中所有習題。

    七年級下冊數學教案3

      教學目標:

      1.掌握數軸三要素,能正確畫出數軸.

      2.能將已知數在數軸上表示出來,能說出數軸上已知點所表示的數.

      教學重點:

      數軸的概念.

      教學難點:

      從直觀認識到理性認識,從而建立數軸概念.

      教與學互動設計:

      (一)創設情境,導入新課

      課件展示課本P7的“問題”(學生畫圖)

      (二)合作交流,解讀探究

      師:對照大家畫的圖,為了使表達更清楚,我們把0左右兩邊的數分別用正數和負數來表示,即用一直線上的點把正數、負數、0都表示出來,也就是本節要學的內容——數軸.

      【點撥】(1)引導學生學會畫數軸.

      第一步:畫直線,定原點.

      第二步:規定從原點向右的方向為正(左邊為負方向).

      第三步:選擇適當的長度為單位長度(據情況而定).

      第四步:拿出教學溫度計,由學生觀察溫度計的結構和數軸的結構是否有共同之處.

      對比思考原點相當于什么;正方向與什么一致;單位長度又是什么?

      (2)有了以上基礎,我們可以來試著定義數軸:

      規定了原點、正方向和單位長度的直線叫數軸.

      做一做學生自己練習畫出數軸.

      試一試你能利用你自己畫的`數軸上的點來表示數4,1.5,-3,-2,0嗎?

      討論若a是一個正數,則數軸上表示數a的點在原點的什么位置上?與原點相距多少個單位長度?表示-a的點在原點的什么位置上?與原點又相距多少個單位長度?

      小結整數在數軸上都能找到點表示嗎?分數呢?

      可見,所有的都可以用數軸上的點表示;都在原點的左邊,都在原點的右邊.

      (三)應用遷移,鞏固提高

      【例1】下列所畫數軸對不對?如果不對,指出錯在哪里?

      【例2】試一試:用你畫的數軸上的點表示4,1.5,-3,-,0.

      【例3】下列語句:

     、贁递S上的點只能表示整數;②數軸是一條直線;③數軸上的一個點只能表示一個數;④數軸上找不到既不表示正數,又不表示負數的點;⑤數軸上的點所表示的數都是有理數.正確的說法有(  )

      A.1個B.2個C.3個D.4個

      【例4】在數軸上表示-2和1,并根據數軸指出所有大于-2而小于1的整數.

      【例5】數軸上表示整數的點稱為整點,某數軸的單位長度是1cm,若在這個數軸上隨意畫出一條長為20xxcm的線段AB,則線段AB蓋住的整點有(  )

      A.1998個或1999個B.1999個或20xx個

      C.20xx個或20xx個D.20xx個或20xx個

      (四)總結反思,拓展升華

      數軸是非常重要的工具,它使數和直線上的點建立了一一對應的關系.它揭示了數和形的內在聯系,為我們今后進一步研究問題提供了新方法和新思想.大家要掌握數軸的三要素,正確畫出數軸.提醒大家,所有的有理數都可以用數軸上的相關點來表示,但反過來并不成立,即數軸上的點并不都表示有理數.

      (五)課堂跟蹤反饋

      夯實基礎

      1.規定了、     、的直線叫做數軸,所有的有理數都可從用上的點來表示.

      2.P從數軸上原點開始,向右移動2個單位長度,再向左移5個單位長度,此時P點所表示的數是.

      3.把數軸上表示2的點移動5個單位長度后,所得的對應點表示的數是(  )

      A.7 B.-3

      C.7或-3 D.不能確定

      4.在數軸上,原點及原點左邊的點所表示的數是(  )

      A.正數B.負數

      C.不是負數D.不是正數

      5.數軸上表示5和-5的點離開原點的距離是,但它們分別表示.

      提升能力

      6.與原點距離為3.5個單位長度的點有2個,它們分別是和.

      7.畫出一條數軸,并把下列數表示在數軸上:

      +2,-3,0.5,0,-4.5,4,3.

      開放探究

      8.在數軸上與-1相距3個單位長度的點有個,為;長為3個單位長度的木條放在數軸上,最多能覆蓋個整數點.

      9.下列四個數中,在-2到0之間的數是(  )

      A.-1 B.1 C.-3 D.3

    七年級下冊數學教案4

      教學目標:

      1,掌握數軸的概念,理解數軸上的點和有理數的對應關系;

      2,會正確地畫出數軸,會用數軸上的點表示給定的有理數,會根據數軸上的點讀出所表示的有理數;

      3,感受在特定的條件下數與形是可以相互轉化的,體驗生活中的數學。

      教學難點:

      數軸的概念和用數軸上的點表示有理數

      知識重點

      教學過程(師生活動) 設計理念

      設置情境

      引入課題

      教師通過實例、課件演示得到溫度計讀數.

      問題1:溫度計是我們日常生活中用來測量溫度的重要工具,你會讀溫度計嗎?請你嘗試讀出圖中三個溫度計所表示的溫度?

      (多媒體出示3幅圖,三個溫度分別為零上、零度和零下)

      問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3 m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3 m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.

      (小組討論,交流合作,動手操作) 創設問題情境,激發學生的學習熱情,發現生活中的數學。

      探究新知

      教師:由上述兩問題我們得到什么啟發?你能用一條直線上的點表示有理數嗎?

      讓學生在討論的基礎上動手操作,在操作的基礎上歸納出:可以表示有理數的直線必須滿足什么條件?

      從而得出數軸的三要素:原點、正方向、單位長度 體驗數形結合思想;只描述數軸特征即可,不用特別強調數軸三要求。

      從游戲中學數學 做游戲:教師準備一根繩子,請8個同學走上來,把位置調整為等距離,規定第4個同學為原點,由西向東為正方向,每個同學都有一個整數編號,請大家記住,現在請第一排的同學依次發出口令,口令為數字時,該數對應的同學要回答“到”;口令為該同學的名字時,該同學要報出他對應的“數字”,如果規定第3個同學為原點,游戲還能進行嗎? 學生游戲體驗,對數軸概念的理解

      尋找規律

      歸納結論

      問題3:

      1, 你能舉出一些在現實生活中用直線表示數的實際例子嗎?

      2, 如果給你一些數,你能相應地在數軸上找出它們的準確位置嗎?如果給你數軸上的點,你能讀出它所表示的數嗎?

      3, 哪些數在原點的左邊,哪些數在原點的右邊,由此你會發現什么規律?

      4, 每個數到原點的距離是多少?由此你會發現了什么規律?

      (小組討論,交流歸納)

      歸納出一般結論,教科書第12的歸納。 這些問題是本節課要求學會的技能,教學中要以學生探究學習為主來完成,教師可結合教科書給學生適當指導。

      鞏固練習

      教科書第12頁練習

      小結與作業

      課堂小結

      請學生總結:

      1, 數軸的三個要素;

      2, 數軸的`作以及數與點的轉化方法。

      本課作業

      1, 必做題:教科書第18頁習題1.2第2題

      2,選做題:教師自行安排

      本課教育評注(課堂設計理念,實際教學效果及改進設想)

      1, 數軸是數形轉化、結合的重要媒介,情境設計的原型來源于生活實際,學生易于體驗和接受,讓學生通過觀察、思考和自己動手操作、經歷和體驗數軸的形成過程,加深對數軸概念的理解,同時培養學生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規律。

      2, 教學過程突出了情竟到抽象到概括的主線,教學方法體了特殊到一般,數形結合的數學思想方法。

      3, 注意從學生的知識經驗出發,充分發揮學生的主體意識,讓學生主動參與學習活,并引導學生在課堂上感悟知識的生成,發展與變化,培養學生自主探索的學習方法。

    七年級下冊數學教案5

      教學目標:

      1.理解有理數的意義.

      2.能把給出的有理數按要求分類.

      3.了解0在有理數分類中的作用.

      教學重點:

      會把所給的各數填入它所在的數集圖里.

      教學難點:

      掌握有理數的兩種分類.

      教與學互動設計:

      (一)創設情境,導入新課

      討論交流現在,同學們都已經知道除了我們小學里所學的數之外,還有另一種形式的數,即負數.大家討論一下,到目前為止,你已經認識了哪些類型的數.

      (二)合作交流,解讀探究

      3,5.7,-7,-9,-10,0, , ,-3 , -7.4,5.2…

      議一議你能說說這些數的特點嗎?

      學生回答,并相互補充:有小學學過的正整數、0、分數,也有負整數、負分數.

      說明我們把所有的`這些數統稱為有理數.

      試一試你能對以上各種類型的數作出一張分類表嗎?

      有理數

      做一做以上按整數和分數來分,那可不可以按性質(正數、負數)來分呢,試一試.

      有理數

      數的集合

      把所有正數組成的集合,叫做正數集合.

      試一試試著歸納總結,什么是負數集合、整數集合、分數集合、有理數集合.

      (三)應用遷移,鞏固提高

      【例1】把下列各數填入相應的集合內:

      ,3.1416,0,20xx,- ,-0.23456,10%,10.1,0.67,-89

      【例2】以下是兩位同學的分類方法,你認為他們分類的結果正確嗎?為什么?

      有理數有理數

      (四)總結反思,拓展升華

      提問:今天你獲得了哪些知識?

      由學生自己小結,然后教師總結:今天我們學習了有理數的定義和兩種分類的方法.我們要能正確地判斷一個數屬于哪一類,要特別注意“0”的正確說法.

      下面兩個圈分別表示負數集合和分數集合,你能說出兩個圖的重疊部分表示什么數的集合嗎?

      (五)課堂跟蹤反饋

      夯實基礎

      1.把下列各數填入相應的大括號內:

      -7,0.125, ,-3 ,3,0,50%,-0.3

      (1)整數集合{};

      (2)分數集合{};

      (3)負分數集合{ };

      (4)非負數集合{ };

      (5)有理數集合{ }.

      2.下列說法中正確的是(  )

      A.整數就是自然數

      B. 0不是自然數

      C.正數和負數統稱為有理數

      D. 0是整數,而不是正數

      提升能力

      3.字母a可以表示數,在我們現在所學的范圍內,你能否試著說明a可以表示什么樣的數?

      2

    七年級下冊數學教案6

      教學目標

      1,通過對數“零”的意義的探討,進一步理解正數和負數的概念;

      2,利用正負數正確表示相反意義的量(規定了指定方向變化的量)

      3,進一步體驗正負數在生產生活實際中的廣泛應用,提高解決實際問題的能力,激發學習數學的興趣。

      教學難點

      深化對正負數概念的理解

      知識重點

      正確理解和表示向指定方向變化的量

      教學過程(師生活動)

      設計理念

      知識回顧與深化

      回顧:上一節課我們知道了在實際生產和生活中存在著兩種不同意義的量,為了區分這兩種量,我們用正數表示其中一種意義的量,那么另一種意義的量就用負數來表示.這就是說:數的范圍擴大了(數有正數和負數之分).那么,有沒有一種既不是正數又不是負數的數呢?

      問題1:有沒有一種既不是正數又不是負數的數呢?學生思考并討論.(數0既不是正數又不是負數,是正數和負數的分界,是基準.這個道理學生并不容易理解,可視學生的討論情況作些啟發和引導,下面的例子供參考)

      例如:在溫度的表示中,零上溫度和零下溫度是兩種不同意義的量,通常規定零上溫度用正數來表示,零下溫度用負數來表示。那么某一天某地的溫度是零上7℃,最低溫度是零下5℃時,就應該表示為+7℃和-5℃,這里+7℃和-5℃就分別稱為正數和負數.那么當溫度是零度時,我們應該怎樣表示呢?(表示為0℃),它是正數還是負數呢?由于零度既不是零上溫度也不是零下溫度,所以,0既不是正數也不是負數?

      問題2:引入負數后,數按照“兩種相反意義的量”來分,可以分成幾類? “數0耽不是正數,也不是負數”也應看作是負數定義的一部分.在引入負數后,0除了表示一個也沒有以外,還是正數和負數的分界.了解。的這一層意義,也有助于對正負數的理解;且對數的順利擴張和有理毅概念的建立都有幫助。所舉的例子,要考慮學生的可接受性.“數0既不是正數,也不是負數”應從相反意義的1這個角度來說明.這個問題只要初步認識即可,不必深究.

      問題3:教科書第6頁例題

      說明:這是一個用正負數描述向指定方向變化情況的例子,通常向指定方向變化用正數表示;向指定方向的相反方向變化用負數表示。這種描述在實際生活中有廣泛的應用,應予以重視。教學中,應讓學生體驗“增長”和“減少”是兩種相反意義的量,要求寫出“體重的增長值”和“進出口額的增長率”,就暗示著用正數來表示增長的量。

      歸納:在同一個問題中,分別用正數和負數表示的量具有相反的意義(教科書第6頁).

      類似的例子很多,如:水位上升-3m,實際表示什么意思呢?收人增加-10%,實際表示什么意思呢?等等?梢暯虒W中的實際情況進行補充.

      這種用正負數描述向指定方向變化情況的例子,在實際生活中有廣泛的應用,按題意找準哪種意義的量應該用正數表示是解題的關健.這種描述具有相反數的影子,例如第(1)題中小明的體重可說成是減少-2kg,但現在不必向學生提出.

      鞏固練習教科書第6頁練習

      閱讀思考

      教科書第8頁閱讀與思考是正負數應用的很好例子,要花時間讓學生討論交流

      小結與作業

      課堂小結以問題的形式,要求學生思考交流:

      1,引人負數后,你是怎樣認識數0的,數0的'意義有哪些變化?

      2,怎樣用正負數表示具有相反意義的量?(用正數表示其中一種意義的量,另一種量用負數表示;特別地,在用正負數表示向指定方向變化的量時,通常把向指定方向變化的量規定為正數,而把向指定方向的相反方向變化的量規定為負數.)

      本課作業1,必做題:教科書第7頁習題1.1第3,6,7,8題

      3,選做題:教師自行安排

      本課教育評注(課堂設計理念,實際教學效果及改進設想)

      1,本課主要目的是加深對正負數概念的理解和用正負數表示實際生產生活中的向指

      定方向變化的量。

      2,“數0既不是正數,也不是負數,’(要從0不屬于兩種相反意義的量中的任何一種上來理解)也應看作是負數定義的一部分.在引人負數后,除了表示一個也沒有以外,還是正數和負數的分界。了解0的這一層意義,也有助于對正負數的理解,且對數的順利擴張和有理數概念的建立都有幫助.由于上節課的重點是建立兩種相反意義量的概念,考慮到學生的可接受性,所以作為知識的回顧和深化而放到本課.

      3,教科書的例子是用正負數表示(向指定方向變化的)量的實際應用,用這種方式描述的例子很多,要盡量使學生理解.

      4,本設計體現了學生自主學習、交流討論的教學理念,教學中要讓學生體驗數學知識在實際中的合理應用,在體驗中感悟和深化知識.通過實際例子的學習激發學生學習數學的興趣.

    七年級下冊數學教案7

      一、教學目標

      1、知識目標:掌握數軸三要素,會畫數軸。

      2、能力目標:能將已知數在數軸上表示,能說出數軸上的點表示的數,知道有理數都可以用數軸上的點表示;

      3、情感目標:向學生滲透數形結合的思想。

      二、教學重難點

      教學重點:數軸的三要素和用數軸上的點表示有理數。

      教學難點:有理數與數軸上點的對應關系。

      三、教法

      主要采用啟發式教學,引導學生自主探索去觀察、比較、交流。

      四、教學過程

     。ㄒ唬﹦撛O情境激活思維

      1。學生觀看鐘祥二中相關背景視頻

      意圖:吸引學生注意力,激發學生自豪感。

      2。聯系實際,提出問題。

      問題1:鐘祥二中學校大門南75米是鐘祥市統計局,100米是中國建設銀行,在她北75米是海韻藝術學校,200米處是中百倉儲,請同學們畫圖表示這一情景。

      師生活動:學生思考解決問題的方法,學生代表畫圖演示。

      學生畫圖后提問:

      1。馬路用什么幾何圖形代表?(直線)

      2。文中相關地點用什么代表?(直線上的點)

      3。學校大門起什么作用?(基準點、參照物)

      4。你是如何確定問題中各地點的位置的?(方向和距離)

      設計意圖:“三要素”為定向,用直線、點、方向、距離等幾何符號表示實際問題,這是實際問題的第一次數學抽象。

      問題2:上面的問題中,“南”和“北”具有相反意義。我們知道,正數和負數可以表示兩種具有相反意義的量,我們能不能直接用數來表示這些地理位置和學校大門的相對位置關系呢?

      師生活動:

      學生思考后回答解決方法,學生代表畫圖。

      學生畫圖后提問:

      1。0代表什么?

      2。數的符號的實際意義是什么?

      3。—75表示什么?100表示什么?

      設計意圖:繼續以三要素為定向,將點用數表示,實現第二次抽象,為定義數軸概念提供直觀基礎。

      問題3:生活中常見的溫度計,你能描述一下它的結構嗎?

      設計意圖:借助生活中的常用工具,說明正數和負數的作用,引導學生用三要素表達,為定義數軸的概念提供直觀基礎。

      問題4:你能說說上述2個實例的共同點嗎?

      設計意圖:進一步明確“三要素”的意義,體會“用點表示數”和“用數表示點的思想方法,為定義數軸概念提供又一個直觀基礎。

      (二)自主學習探究新知

      學生活動:帶著以下問題自學課本第8頁:

      1。什么樣的直線叫數軸?它具備什么條件。

      2。如何畫數軸?

      3。根據上述實例的經驗,“原點”起什么作用?

      4。你是怎么理解“選取適當的長度為單位長度”的?

      師生活動:

      學生自學完后,請代表上黑板畫一條數軸,講解畫數軸的一般步驟。

      設計意圖:明確畫數軸的步驟,使數軸的三要素在同學們的頭腦中留下更深刻的印象,同時得到數軸的定義。

      至此,學生已會畫數軸,師生共同歸納總結(板書)

     、贁递S的定義。

      ②數軸三要素。

      練習:(媒體展示)

      1。判斷下列圖形是否是數軸。

      2?诖穑簲递S上各點表示的數。

      3。在數軸上描出下列各點:1。5,—2,—2。5,2,2。5,0,—1。5。

     。ㄈ┬〗M合作交流展示

      問題:觀察數軸上的點,你有什么發現?

      數軸上表示3的點在原點的哪一側?與原點的距離是多少個單位長度?表示—2的點在原點的哪一側?與原點的距離是多少個單位長度?設a是一個正數,對表示a的點和—a的點進行同樣的`討論。

      設計意圖:通過從特殊到一般的方法歸納出數軸上不同位置點的特點,培養學生的抽象概括能力。

      (四)歸納總結反思提高

      師生共同回顧本節課所學主要內容,回答以下問題:

      1。什么是數軸?

      2。數軸的“三要素”各指什么?

      3。數軸的畫法。

      設計意圖:梳理本節課內容,掌握本節課的核心――數軸“三要素”。

     。ㄎ澹┠繕藱z測設計

      1。下列命題正確的是()

      A。數軸上的點都表示整數。

      B。數軸上表示4與—4的點分別在原點的兩側,并且到原點的距離都等于4個單位長度。

      C。數軸包括原點與正方向兩個要素。

      D。數軸上的點只能表示正數和零。

      2。畫數軸,在數軸上標出—5和+5之間的所有整數,列舉到原點的距離小于3的所有整數。

      3。畫數軸,表示下列有理數數的點中,觀察數軸,在原點左邊的點有_______個。4。在數軸上點A表示—4,如果把原點O向負方向移動1。5個單位,那么在新數軸上點A表示的數是________。

      五、板書

      1。數軸的定義。

      2。數軸的三要素(圖)。

      3。數軸的畫法。

      4。性質。

      六、課后反思

      附:活動單

      活動一:畫一畫

      鐘祥二中學校大門南75米是鐘祥市統計局,100米是中國建設銀行,在她北75米是海韻藝術學校,200米處是中百倉儲,請同學們畫圖表示這一情景。

      思考:如何簡明地用數表示這些地理位置與學校大門的相對位置關系?

      活動二:讀一讀

      帶著以下問題閱讀教科書P8頁:

      1。什么樣的直線叫數軸?

      定義:規定了_________、________、_________的直線叫數軸。

      數軸的三要素:_________、_________、__________。

      2。畫數軸的步驟是什么?

      3。“原點”起什么作用?__________

      4。你是怎么理解“選取適當的長度為單位長度”的?

      練習:

      1。畫一條數軸

      2。在你畫好的數軸上表示下列有理數:1。5,—2,—2。5,2,2。5,0,—1。5

      活動三:議一議

      小組討論:觀察你所畫的數軸上的點,你有什么發現?

      歸納:一般地,設a是一個正數,則數軸上表示數a在原點的____邊,與原點的距離是____個單位長度;表示數—a的點在原點的____邊,與原點的距離是____個單位長度。

      練習:

      1。數軸上表示—3的點在原點的_______側,距原點的距離是______;表示6的點在原點的______側,距原點的距離是______;兩點之間的距離為_______個單位長度。

      2。距離原點距離為5個單位的點表示的數是________。

      3。在數軸上,把表示3的點沿著數軸負方向移動5個單位長度,到達點B,則點B表示的數是________。

      附:目標檢測

      1。下列命題正確的是()

      A。數軸上的點都表示整數。

      B。數軸上表示4與—4的點分別在原點的兩側,并且到原點的距離都等于4個單位長度。

      C。數軸包括原點與正方向兩個要素。

      D。數軸上的點只能表示正數和零。

      2。畫數軸,在數軸上標出—5和+5之間的所有整數。列舉到原點的距離小于3的所有整數。

      3。畫數軸,觀察數軸,在原點左邊的點有_______個。

      4。在數軸上點A表示—4,如果把原點O向負方向移動1。5個單位,那么在新數軸上點A表示的數是________。

    七年級下冊數學教案8

      教學目標:

      1、知識與技能

      (1)通過實例,感受引入負數的必要性和合理性,能應用正負數表示生活中具有相反意義的量。

     。2)理解有理數的意義,體會有理數應用的廣泛性。

      2、過程與方法

      通過實例的引入,認識到負數的產生是來源于生產和生活,會用正、負數表示具有相反意義的量,能按要求對有理數進行分類。

      重點、難點:

      1、重點:正數、負數有意義,有理數的意義,能正確對有理數進行分類。

      2、難點:對負數的理解以及正確地對有理數進行分類。

      教學過程:

      一、創設情景,導入新課

      大家知道,數學與數是分不開的,現在我們一起來回憶一下,小學里已經學過哪些類型的數?

      學生答后,教師指出:小學里學過的數可以分為三類:自然數(正整數)、分數和零(小數包括在分數之中),它們都是由于實際需要而產生的

      為了表示一個人、兩只手、……,我們用到整數1,2,……

      為了表示“沒有人”、“沒有羊”、……,我們要用到0。

      但在實際生活中,還有許多量不能用上述所說的自然數、零或分數、小數表示。

      二、合作交流,解讀探究

      1、某市某一天的溫度是零上5℃,最低溫度是零下5℃。要表示這兩個溫度,如果只用小學學過的數,都記作5℃,就不能把它們區別清楚。它們是具有相反意義的兩個量。

      現實生活中,像這樣的相反意義的量還有很多……例如,珠穆朗瑪峰高于海平面8848米,吐魯番盆地低于海平面155米,“高于”和“低于”其意義是相反的。“運進”和“運出”,其意義是相反的。

      同學們能舉例子嗎?

      學生回答后,教師提出:怎樣區別相反意義的量才好呢?

      待學生思考后,請學生回答、評議、補充。

      教師小結:同學們成了發明家。甲同學說,用不同顏色來區分,比如,紅色5℃表示零下5℃,黑色5℃表示零上5℃;乙同學說,在數字前面加不同符號來區分,比如,△5℃表示零上5℃,×5℃表示零下5℃……。其實,中國古代數學家就曾經采用不同的顏色來區分,古時叫做“正算黑,負算赤”。如今這種方法在記賬的時候還使用。所謂“赤字”,就是這樣來的。

      現在,數學中采用符號來區分,規定零上5℃記作+5℃(讀作正5℃)或5℃,把零下5℃記作—5℃(讀作負5℃)。這樣,只要在小學里學過的數前面加上“+”或“—”號,就把兩個相反意義的量簡明地表示出來了。

      讓學生用同樣的方法表示出前面例子中具有相反意義的量:

      高于海平面8848米,記作+8848米;低于海平面155米,記作—155米;

      教師講解:什么叫做正數?什么叫做負數?強調,數0既不是正數,也不是負數,它是正、負數的界限,表示“基準”的數,零不是表示“沒有”,它表示一個實際存在的.數量。并指出,正數,負數的“+”“—”的符號是表示性質相反的量,符號寫在數字前面,這種符號叫做性質符號。

      2、給出新的整數、分數概念

      引進負數后,數的范圍擴大了。過去我們說整數只包括自然數和零,引進負數后,我們把自然數叫做正整數,自然數前加上負號的數叫做負整數,因而整數包括正整數(自然數)、負整數和零,同樣分數包括正分數、負分數。

      3、給出有理數概念

      整數和分數統稱為有理數。

      4、有理數的分類

      為了便于研究某些問題,常常需要將有理數進行分類,需要不同,分類的方法也常常不同根據有理數的定義可將有理數分成兩類:整數和分數。有理數還有沒有其他的分類方法?

      待學生思考后,請學生回答、評議、補充。

      教師小結:按有理數的符號分為三類:正有理數、負有理數和零。在有理數范圍內,正數和零統稱為非負數。向學生強調:分類可以根據不同需要,用不同的分類標準,但必須對討論對象不重不漏地分類。

      三、總結反思

      引導學生回答如下問題:本節課學習了哪些基本內容?學習了什么數學思想方法?應注意什么問題?

      由于實際生活中存在著許多具有相反意義的量,因此產生了正數與負數。正數是大于0的數,負數就是在正數前面加上“—”號的數,負數小于0。0既不是正數,也不是負數,0可以表示沒有,也可以表示一個實際存在的數量,如0℃。

      四、課后作業:課本P5習題1。1A第1、2、4題。

    七年級下冊數學教案9

      一、教學內容分析

      1。2有理數1。2。2數軸。這一節是初中數學中非常重要的內容,從知識上講,數軸是數學學習和研究的重要工具,它主要應用于絕對值概念的理解,有理數運算法則的推導,及不等式的求解。同時,也是學習直角坐標系的基礎,從思想方法上講,數軸是數形結合的起點,而數形結合是學生理解數學、學好數學的方法。日常生活中帶見的用溫度計度量溫度,已為學習數軸概念打下了一定的基礎。通過問題情境類比得到數軸的概念,是這節課的主要學習方法。同時,數軸又能將數的分類直觀的表現出來,是學生領悟分類思想的基礎。

      二、學生學習情況分析

     。1)知識掌握上,七年級的學生剛剛學習有理數中的正負數,對正負數的概念理解不一定很深刻,許多學生容易造成知識遺忘,所以應全面系統的去講述;

     。2)學生學習本節課的知識障礙。學生對數軸概念和數軸的三要素,學生不易理解,容易造成畫圖中掉三落四的現象,所以教學中教師應予以簡單明白、深入淺出的分析;

     。3)由于七年級學生的理解能力和思維特征和生理特征,學生的好動性,注意力容易分散,愛發表見解,希望得到老師的表揚等特點,所以在教學中應抓住學生這一生理心理特點,一方面要運用直觀生動的形象,一發學生的興趣,使他們的注意力始終集中在課堂上;另一方面要創造條件和機會,讓學生發表見解,發揮學生的主動性。

      三、設計思想

      從學生已有知識、經驗出發研究新問題,是我們組織教學的一個重要原則。小學里曾學過利用射線上的點來表示數,為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數?伴以溫度計為模型,引出數軸的概念。教學中,數軸的三要素中的每一要素都要認真分析它的作用,使學生從直觀認識上升到理性認識。直線、數軸都是非常抽象的數學概念,當然對初學者不宜講的過多,但適當引導學生進行抽象的思維活動還是可行的。例如,向學生提問:在數軸上對應一億萬分之一的點,你能畫出來嗎?它是不是存在等。

      四、教學目標

     。ㄒ唬┲R與技能

      1、掌握數軸的三要素,能正確畫出數軸。

      2、能將已知數在數軸上表示出來,能說出數軸上已知點所表示的數。

     。ǘ┻^程與方法

      1、使學生受到把實際問題抽象成數學問題的訓練,逐步形成應用數學的意識。

      2、對學生滲透數形結合的思想方法。

     。ㄈ┣楦、態度與價值觀

      1、使學生初步了解數學來源于實踐,反過來又服務于實踐的辯證唯物主義觀點。

      2、通過畫數軸,給學生以圖形美的教育,同時由于數形的結合,學生會得到和諧美的享受。

      五、教學重點及難點

      1、重點:正確掌握數軸畫法和用數軸上的點表示有理數。

      2、難點:有理數和數軸上的點的對應關系。

      六、教學建議

      1、重點、難點分析

      本節的重點是初步理解數形結合的思想方法,正確掌握數軸畫法和用數軸上的點表示有理數,并會比較有理數的大小。難點是正確理解有理數與數軸上點的對應關系。數軸的概念包含兩個內容,一是數軸的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規定的。另外應該明確的是,所有的有理數都可用數軸上的點表示,但數軸上的點所表示的數并不都是有理數。通過學習,使學生初步掌握用數軸解決問題的方法,為今后充分利用“數軸”這個工具打下基礎。

      2、知識結構

      有了數軸,數和形得到了初步結合,這有利于對數學問題的研究,數形結合是理解數學、學好數學的方法,本課知識要點如下:

      定義規定了原點、正方向、單位長度的直線叫數軸

      三要素原點正方向單位長度

      應用數形結合

      七、學法引導

      1、教學方法:根據教師為主導,學生為主體的原則,始終貫穿“激發情趣—手腦并用—啟發誘導—反饋矯正”的.教學方法。

      2、學生學法:動手畫數軸,動腦概括數軸的三要素,動手、動腦做練習。

      八、課時安排

      1課時

      九、教具學具準備

      電腦、投影儀、三角板

      十、師生互動活動設計

      講授新課

     。ǔ鍪就队1)

      問題1:三個溫度計。其中一個溫度計的液面在0上2個刻度,一個溫度計的液面在0下5個刻度,一個溫度計的液面在0刻度。

      師:三個溫度計所表示的溫度是多少?

      生:2℃,—5℃,0℃。

      問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3m和7。5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4。8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境。(小組討論,交流合作,動手操作)

      師:我們能否用類似的圖形表示有理數呢?

      師:這種表示數的圖形就是今天我們要學的內容—數軸(板書課題)。

      師:與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀

      數,用直線上的點表示正數、負數和零。具體方法如下

     。ㄟ呎f邊畫):

      1。畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數,也可偏向左邊)用這點表示0(相當于溫度計上的0℃);

      2。規定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);

      3。選取適當的長度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為—1,—2,—3,…

      師問:我們能不能用這條直線表示任何有理數?(可列舉幾個數)

      讓學生觀察畫好的直線,思考以下問題:

      (出示投影2)

     。1)原點表示什么數?

     。2)原點右方表示什么數?原點左方表示什么數?

     。3)表示+2的點在什么位置?表示—1的點在什么位置?

     。4)原點向右0。5個單位長度的A點表示什么數?

      原點向左1。5個單位長度的B點表示什么數?

      根據老師畫圖的步驟,學生思考在一條水平的直線上都畫出什么?然后歸納出數軸的定義。

      師:在此基礎上,給出數軸的定義,即規定了原點、正方向和單

      位長度的直線叫做數軸。

      進而提問學生:在數軸上,已知一點P表示數—5,如果數軸上的原點不選在原來位置,而改選在另一位置,那么P對應的數是否還是—5?如果單位長度改變呢?如果直線的正方向改變呢?

      通過上述提問,向學生指出:數軸的三要素——原點、正方向和單位長度,缺一不可。

      【教法說明】通過“觀察—類比—思考—概括—表達”展現知識的形成是從感性認識上升到理性認識的過程,讓學生在獲取知識的過程中,領會數學思想和思維方法,并有意識地訓練學生歸納概括和口頭表達能力。

      師生同步畫數軸,學生概括數軸三要素,師出示投影,生動手動腦練習

      嘗試反饋,鞏固練習

      (出示投影3)。畫出數軸并表示下列有理數:

      1、1。5,—2。2,—2。5,,,0。

      2。寫出數軸上點A,B,C,D,E所表示的數:

      請大家回答下列問題:

     。ǔ鍪就队4)

      (1)有人說一條直線是一條數軸,對不對?為什么?

     。2)下列所畫數軸對不對?如果不對,指出錯在哪里?

      【教法說明】此組練習的目的是鞏固數軸的概念。

      十一、小結

      本節課要求同學們能掌握數軸的三要素,正確地畫出數軸,在此還要提醒同學們,所有的有理數都可用數軸上的點來表示,但是反過來不成立,即數軸上的點并不是都表示有理數,至于數軸上的哪些點不能表示有理數,這個問題以后再研究。

      十二、課后練習習題1。2第2題

      十三、教學反思

      1、數軸是數形轉化、結合的重要媒介,情境設計的原型來源于生活實際,學生易于體驗和接受,讓學生通過觀察、思考和自己動手操作、經歷和體驗數軸的形成過程,加深對數軸概念的理解,同時培養學生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規律。

      2、教學過程突出了情竟到抽象到概括的主線,教學方法體了特殊到一般,數形結合的數學思想方法。

      3、注意從學生的知識經驗出發,充分發揮學生的主體意識,讓學生主動參與學習活,并引導學生在課堂上感悟知識的生成,發展與變化,培養學生自主探索的學習方法。

    七年級下冊數學教案10

      教學目標:1.能夠在實際情境中,抽象概括出所要研究的數學問題,增強學生的數感符號感。

      2.在已有的對冪的知識的了解基礎之上,通過與同伴合作,經歷探索同底數冪乘法運算性質

      過程,進一步體會冪的意義,發展合作交流能力、推理能力和有條理的表達能力。

      3.了解同底數冪乘法的運算性質,并能解決一些實際問題,感受數學與現實生活的密切聯系,

      增強學生的數學應用意識,訓練他們養成學會分析問題、解決問題的良好習慣。

      教學重點:同底數冪乘法的運算性質,并能解決一些實際問題。

      教學過程

      一、復習回顧

      活動內容:復習七年級上冊數學課本中介紹的有關乘方運算知識:

      二、情境引入

      活動內容:以課本上有趣的天文知識為引例,讓學生從中抽象出簡單的數學模型,實際在列式計算時遇到了同底數冪相乘的形式,給出問題,啟發學生進行獨立思考,也可采用小組合作交流的形式,結合學生現有的.有關冪的意義的知識,進行推導嘗試,力爭獨立得出結論。

      三、講授新課

      1.利用乘方的意義,提問學生,引出法則:計算103×102.

      解:103×102=(10×10×10)×(10×10)(冪的意義)

      =10×10×10×10×10(乘法的結合律)=105.

      2.引導學生建立冪的運算法則:

      將上題中的底數改為a,則有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.

      用字母m,n表示正整數,則有即am·an=am+n.

      3.引導學生剖析法則

      (1)等號左邊是什么運算?(2)等號兩邊的底數有什么關系?

      (3)等號兩邊的指數有什么關系?(4)公式中的底數a可以表示什么

      (5)當三個以上同底數冪相乘時,上述法則是否成立?

      要求學生敘述這個法則,并強調冪的底數必須相同,相乘時指數才能相加.

      三、應用提高

      活動內容:1.完成課本“想一想”:a?a?a等于什么?

      2.通過一組判斷,區分“同底數冪的乘法”與“合并同類項”的不同之處。

      3.獨立處理例2,從實際情境中學會處理問題的方法。

      4.處理隨堂練習(可采用小組評分競爭的方式,如時間緊,放于課下完成)。mnp

      四、拓展延伸

      活動內容:計算:(1)-a2·a6(2)(-x)·(-x)3(3)ym·ym+1(4)??7?8?73

     。5)??6??63(6)??5??53???5?.(7)?a?b???a?b?7542

      2(8)?b?a???a?b?(9)x5·x6·x3(10)-b3·b3

      (11)-a·(-a)3(12)(-a)2·(-a)3·(-a)

      五、課堂小結

      活動內容:師生互相交流總結本節課上應該掌握的同底數冪的乘法的特征,教師對課堂上學生掌握不夠牢固的知識進行強調與補充,學生也可談一談個人的學習感受。

      六、布置作業

      1.請你根據本節課學習,把感受最深、收獲最大的方面寫成體會,用于小組交流。

      2.完成課本習題1.4中所有習題。

      1.2冪的乘方與積的乘方(一)

    七年級下冊數學教案11

      一、教材分析

      1、教材的地位和作用

      課題學習《從數據談節水》,是人教實驗版數學八年級(上)教材第十一章《數據的描述》的第三節。這一節是在學習了用統計圖表描述數據以后的一節活動課,它是對七年級第四章《數據的收集與整理》及本章數據的描述等知識的鞏固和深化,是對所學的有關數據處理知識的綜合運用。在這一活動中讓學生感受統計與實際生活的聯系以及在解決實際問題中的作用,促使學生掌握基本的統計方法,通過對數據的直觀描述盡可能多地獲取有用的信息,同時增強學生的節水意識及環保意識。

      2、教學目標

      根據學生的學習內容、新課程理念和認知水平,特制定如下目標:

      (1)知識與技能:進一步鞏固處理數據的基本步驟和方法,能靈活選用統計圖對具體問題的數據進行清晰、有效地描述,并獲取有用信息并作出合理決策。

      (2)過程與方法:讓學生親身經歷獨立思考、動手操作、團結合作、互相交流的學習過程,積累數學活動的經驗,學會合理處理信息,發展數學應用意識。

      (3)情感與態度:使學生感受統計在生產生活中的作用;培養學生的數感;使學生樂于接觸社會環境中的數學信息,激發學生的節水及環保意識。

      3、重點和難點

      (1)重點:培養學生的數感和統計觀念。

      (2)難點:能根據具體問題選擇適當的統計圖描述數據并獲取有用的信息,并作出合理的判斷和預測。

      二、學情分析

      我今天所授課的班級,應該說學生的數學素質參差不齊,有部分學生在課堂上樂于參與數學活動,而另一部分學生則學習基礎較差,會被動參與,因此應激發學生參與活動學習的興趣,使之獲得成就感。

      三、教法和學法分析

      枯燥的數據是令人乏味的,首先可采用激趣法:恰當收集選取圖片和視頻資料,為課題學習營造學生熟悉的生活情境,吸引學生,巧妙設疑,激發學生的活動興趣。分層安排活動,能力強的學生自主思考,獨立完成,能力差的學生分組分工合作完成,然后全班交流。例外,提供更多的學習擴展資料供學生瀏覽。這樣可讓所有學生有信心、能積極主動地參與活動,盡可能為每個學生提供獲取知識的空間,讓他們在活動中獲得的成功,讓每個學生的能力都能得到提高,讓他們體驗學習的快樂、獲得成就感。

      四、教學形式和課前準備

      本課題在多媒體教室進行學習。學生在課前也收集了一些有關水資源的資料,準備直尺、鉛筆、圓規、量角器等作圖工具。

      五、教學過程分析

      教學過程設計意圖說明

      新課引入

      資料展示(投影)當前世界淡水資源及我國有關缺水的形勢的資料圖片問題:(1)看了這些圖片,你有哪些感受?

      (2)你了解世界及我國有關水資源的現狀嗎?借助圖片展示,是學生對我國國有資源現狀有直觀感受,觸發他們的節水意識!

      探究新知活動一:

      閱讀課本80頁的“背景資料”,從中收集數據,畫出統計圖,并回答下列問題:

      (1)地球上的水資源和淡水資源分布情況怎么樣?

      (2)我國農業和工業耗水量情況怎么樣?

      (3)我國不同年份城市生活用水的變化趨勢怎么樣?

      (4)根據國外的經驗,一個國家的用水量超過其可利用水資源的20%,就有可能發生“水危機”,依據這個標準,我國1990年是否曾出現“水危機”?

      學生閱讀資料,通過小組合作、討論的形式完成活動一。

      活動二:收集全班同學各家人均月用水量,用頻數分布直方圖和頻數折線圖描述這些數據,并回答下列問題:

      (1)家庭人均月用水量在哪個范圍的家庭最多?這個范圍的家庭占全班家庭的百分之幾?

      (2)家庭人均月用水量最多和最少的各有多少家庭?各占全班家庭的百分之幾?

      (3)全班同學家庭人均日用水量的平均數是多少?按生活基本日均需水量(BWR)50升的.用水標準,這個平均數是否超過用水標準?

      (4)如果每人節約用水10升,按13億人口計算,一天可以節約多少噸水?按BWR標準計算,這些水可提供給1個人多少年的生活用水?

      (5)你還可以得到哪些信息?

      (教師巡視,指導各小組開展調查實驗活動)

      活動三:資料展示:(投影)我國水資源利用情況的有關資料,討論工農業生產及生活節約用水的好辦法。

      課堂小結:

      1.當前水資源狀況,

      2.節約水資源帶來的價值,

      3.節約水資源的辦法

      布置作業

      整理本節課內容,統計相關數據;查找有關“節約水資源”的課題報告;并分析課題報告的寫法。

      通過具體數據使學生了解水資源現狀,更深刻體會節水的重要性!

      來源于同學們身邊的數據更有說服力,同時讓同學感受到節水應從我做起。

      自由發言,各抒己見;把數學和生活聯系起來,是學生體會到學有所用,體會到數學的應用價值。

      引導學生思考、交流、梳理所學知識,培養理性思維能力,加深對資源現狀的理解。

      學會整理、歸納所學知識;分析課題報告。

      六、自我評價

      這個課題學習,應該用比較長的時間,運用所學知識對生活問題進行學習、探究。這需要學生的充分準備,然后可安排學生一起進行探討、交流。在多媒體教室進行這個課題學習,可以充分調動學生的學習興趣,發揮學生的各方面才能,培養學生合作學習的能力。

    七年級下冊數學教案12

      一、素質教育目標

      (一)知識教學點

      1.了解有理數除法的定義.

      2.理解倒數的意義.

      3.掌握有理數除法法則,會進行運算.

      (二)能力訓練點

      1.通過有理數除法法則的導出及運算,讓學生體會轉化思想.

      2.培養學生運用數學思想指導思維活動的能力.

      (三)德育滲透點

      通過學習有理數除法運算、感知數學知識具有普遍聯系性、相互轉化性.

      (四)美育滲透點

      把小學算術里的乘法法則推廣到有理數范圍內,體現了知識體系的完整美.

      二、學法引導

      1.教學方法:遵循啟發式教學原則,注意創設問題情境,精心構思啟發導語 并及時點撥,使學生主動發展思維和能力.

      2.學生學法:通過練習探索新知→歸納除法法則→鞏固練習

      三、重點、難點、疑點及解決辦法

      1.重點:除法法則的靈活運用和倒數的概念.

      2.難點:有理數除法確定商的符號后,怎樣根據不同的情況來取適當的方法求商的絕對值.

      3.疑點:對零不能作除數與零沒有倒數的理解.

      四、課時安排

      1課時

      五、教具學具準備

      投影儀、自制膠片、彩粉筆.

      六、師生互動活動設計

      教師出示探索性練習,學生討論歸納除法法則,教師出示鞏固性練習,學生以多種形式完成.

      七、教學步驟

      (一)創設情境,復習導入

      師:以上我們學習了有理數的乘法,這節我們應該學習,板書課題.

      【教法說明】

      同小學算術中除法一樣—除以一個數等于乘以這個數的倒數,所以必須以學好求一個有理數的倒數為基礎學習.

      (二)探索新知,講授新課

      1.倒數.

      (出示投影1)

      4×( )=1; ×( )=1; 0.5×( )=1;

      0×( )=1; -4×( )=1; ×( )=1.

      學生活動:口答以上題目.

      【教法說明】

      在有理數乘法的基礎上,學生很容易地做出這幾個題目,在題目的`選擇上,注意了數的全面性,即有正數、0、負數,又有整數、分數,在數的變化中,讓學生回憶、體會出求各種數的倒數的方法.

      師問:兩個數乘積是1,這兩個數有什么關系?

      學生活動:乘積是1的兩個數互為倒數.(板書)

      師問:0有倒數嗎?為什么?

      學生活動:通過題目0×( )=1得出0乘以任何數都不得1,0沒有倒數.

      師:引入負數后,乘積是1的兩個負數也互為倒數,如-4與,與互為倒數,即的倒數是.

      提出問題:根據以上題目,怎樣求整數、分數、小數的倒數?

      【教法說明】

      教師注意創設問題情境,讓學生參與思考,循序漸進地引出,對于有理數也有倒數是.對于怎樣求整數、分數、小數的倒數,學生還很難總結出方法,提出這個問題是讓學生帶著問題來做下組練習.

      (出示投影2)

      求下列各數的倒數:

      (1); (2); (3);

      (4); (5)-5; (6)1.

      學生活動:通過思考口答這6小題,討論后得出,求整數的倒數是用1除以它,求分數的倒數是分子分母顛倒位置;求小數的倒數必須先化成分數再求.

      2.計算:8÷(-4).

      計算:8×()=? (-2)

      8÷(-4)=8×().

      再嘗試:-16÷(-2)=? -16×()=?

      師:根據以上題目,你能說出怎樣計算嗎?能用含字母的式子表示嗎?

      學生活動:同桌互相討論.(一個學生回答)

      師強調后板書:

      [板書]

      【教法說明】

      通過學生親自演算和教師的引導,對有理數除法法則及字母表示有了非常清楚的認識,教師放手讓學生總結法則,尤其是字母表示,訓練學生的歸納及口頭表達能力.

      (三)嘗試反饋,鞏固練習

      師在黑板上出示例題.

      計算(1)(-36)÷9, (2)()÷().

      學生嘗試做此題目.

      (出示投影3)

      1.計算:

      (1)(-18)÷6; (2)(-63)÷(-7); (3)(-36)÷6;

      (4)1÷(-9); (5)0÷(-8); (6)16÷(-3).

      2.計算:

      (1)()÷(); (2)(-6.5)÷0.13;

      (3)()÷(); (4)÷(-1).

      學生活動:

      1題讓學生搶答,教師用復合膠片顯示結果.

      2題在練習本上演示,兩個同學板演(教師訂正).

      【教法說明】

      此組練習中兩個題目都是對的直接應用.1題是整數,利用口答形式訓練學生速算能力.2題是小數、分數略有難度,要求學生自行演算,加強運算的準確性,2題(2)小題必須把小數都化成分數再轉化成乘法來計算.

      提出問題:(1)兩數相除,商的符號怎樣確定,商的絕對值呢?(2)0不能做除數,0做被除數時商是多少?

      學生活動:分組討論,1—2個同學回答.

      [板書]

      2.兩數相除,同號得正,異號得負,并把絕對值相除.

      0除以任何不等于0的數,都得0.

      【教法說明】

      通過上組練習的結果,不難看出與有理數乘法有類似的法則,這個法則的得出為計算有理數除法又添了一種方法,這時教師要及時指出,在做有理數除法的題目時,要根據具體情況,靈活運用這兩種方法.

      (四)變式訓練,培養能力

      回顧例1 計算:

      (1)(-36)÷9; (2)()÷().

      提出問題:每個題目你想采用哪種法則計算更簡單?

      學生活動:(1)題采用兩數相除,異號得負并把絕對值相除的方法較簡單.

      (2)題仍用除以一個數等于乘以這個數的倒數較簡單.

      提出問題:-36:9=?;:()=?它們都屬于除法運算嗎?

      學生活動:口答出答案.

      (出示投影4)

      例2 化簡下列分數

      例3 計算

      (1)()÷(-6);

      (2)-3.5÷×();

      (3)(-6)÷(-4)×().

      學生活動:例2讓學生口答,例3全體同學獨立計算,三個學生板演.

      【教法說明】

      例2是檢查學生對有理數除法法則的靈活運用能力,并滲透了除法、分數、比可互相轉化,并且通過這種轉化,常常可能簡化計算.例3培養學生分析問題的能力,優化學生思維品質:

      如在(1)()÷(-6)中.

      根據方法①()÷(-6)=×()=.

      根據方法②()÷(-6)=(24+)×=4+=.

      讓學生區分方法的差異,點明方法②非常簡便,肯定當除法轉化成乘法時,可以利用有理數乘法運算律簡化運算.(2)(3)小題也是如此.

      (五)歸納小結

      師:今天我們學習了及倒數的概念,回答問題:

      1.的倒數是__________________();

      學生活動:分組討論。

      【教法說明】

      對這節課全部知識點的回顧不是教師單純地總結,而是讓學生在思考回答的過程中自己把整節內容進行了梳理,并且上升到了用字母表示的數學式子,逐步培養學生用數學語言表達數學規律的能力.

      八、隨堂練習

      1.填空題

      (1)的倒數為__________,相反數為____________,絕對值為___________

      (2)(-18)÷(-9)=_____________;

      (3)÷(-2.5)=_____________;

      (4);

      (5)若,是;

      (6)若、互為倒數,則;

      (7)或、互為相反數且,則,;

      (8)當時,有意義;

      (9)當時,;

      (10)若,,則,和符號是_________,___________.

      2.計算

      (1)-4.5÷()×;

      (2)(-12)÷〔(-3)+(-15)〕÷(+5).

      九、布置作業

      (一)必做題:1.仿照例1、例2自編2道題,同桌交換解答.

      2.計算:(1)()×()÷();

      (2)-6÷(-0.25)×.

      3.當,,時求的值.

      (二)選做題:1.填空:用“>”“<”“=”號填空

      (1)如果,則,;

      (2)如果,則,;

      (3)如果,則,;

      (4)如果,則,;

      2.判斷:正確的打“√”錯的打“×”

      (1)( );

      (2)( ).

      3.(1)倒數等于它本身的數是______________.

      (2)互為相反數的數(0除外)商是________________.

      【教法說明】

      必做題為本節的重點內容,首先在這節課學習的基礎上讓同學仿照例題編題,學生也有這方面的能力,極大調動了學生積極性,提高了學生運用知識的能力.

      選作題是對這節課重點內容的進一步理解和運用,為學有余力的學生提供了展示自己的機會.

      十、板書設計

    七年級下冊數學教案13

      平行線的判定(1)

      課型:新課: 備課人:韓賀敏 審核人:霍紅超

      學習目標

      1.經歷觀察、操作、想像、推理、交流等活動,進一步發展推理能力和有條理表達能力.

      2.掌握直線平行的條件,領悟歸納和轉化的數學思想

      學習重難點:探索并掌握直線平行的條件是本課的重點也是難點.

      一、探索直線平行的條件

      平行線的判定方法1:

      二、練一練1、判斷題

      1.兩條直線被第三條直線所截,如果同位角相等,那么內錯角也相等.( )

      2.兩條直線被第三條直線所截,如果內錯角互補,那么同旁內角相等.( )

      2、填空1.如圖1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或筆________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.

      (2)

      (3)

      2.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

      三、選擇題

      1.如圖3所示,下列條件中,不能判定AB∥CD的是( )

      A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3

      2.右圖,由圖和已知條件,下列判斷中正確的'是( )

      A.由∠1=∠6,得AB∥FG;

      B.由∠1+∠2=∠6+∠7,得CE∥EI

      C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;

      D.由∠5=∠4,得AB∥FG

      四、已知直線a、b被直線c所截,且∠1+∠2=180°,試判斷直線a、b的位置關系,并說明理由.

      五、作業課本15頁-16頁練習的1、2、3、

      5.2.2平行線的判定(2)

      課型:新課: 備課人:韓賀敏 審核人:霍紅超

      學習目標

      1.經歷觀察、操作、想像、推理、交流等活動,進一步發展空

      間觀念,推理能力和有條理表達能力.

      毛2.分析題意說理過程,能靈活地選用直線平行的方法進行說理.

      學習重點:直線平行的條件的應用.

      學習難點:選取適當判定直線平行的方法進行說理是重點也是難點.

      一、學習過程

      平行線的判定方法有幾種?分別是什么?

      二.鞏固練習:

      1.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

      (第1題) (第2題)

      2.如圖,一個合格的變形管道ABCD需要AB邊與CD邊平行,若一個拐角∠ABC=72°,則另一個拐角∠BCD=_______時,這個管道符合要求.

      二、選擇題.

      1.如圖,下列判斷不正確的是( )

      A.因為∠1=∠4,所以DE∥AB

      B.因為∠2=∠3,所以AB∥EC

      C.因為∠5=∠A,所以AB∥DE

      D.因為∠ADE+∠BED=180°,所以AD∥BE

      2.如圖,直線AB、CD被直線EF所截,使∠1=∠2≠90°,則( )

      A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4

      三、解答題.

      1.你能用一張不規則的紙(比如,如圖1所示的四邊形的紙)折出兩條平行的直線嗎?與同伴說說你的折法.

      2.已知,如圖2,點B在AC上,BD⊥BE,∠1+∠C=90°,問射線CF與BD平行嗎?試用兩種方法說明理由.

    七年級下冊數學教案14

      第一章 一元一次不等式組

      1.1 一元一次不等式組

      第1教案

      教學目標

      1. 能結合實例,了解一元一次不等式組的相關概念。

      2. 讓學生在探索活動中體會化陌生為熟悉,化復雜為簡單的“轉化”思想方法。

      3. 提高分析問題的能力,增強數學應用意識,體會數學應用價值。

      教學重、難點

      1..不等式組的解集的`概念。

      2.根據實際問題列不等式組。

      教學方法

      探索方法,合作交流。

      教學過程

      一、 引入課題:

      1. 估計自己的體重不低于多少千克?不超過多少千克?若沒體重為x千克,列出兩個不等式。

      2. 由許多問題受到多種條件的限制引入本章。

      二、 探索新知:

      自主探索、解決第2頁“動腦筋”中的問題,完成書中填空。

      分別解出兩個不等式。

      把兩個不等式解集在同一數軸上表示出來。

      找出本題的答案。

      三、 抽象:

      教師舉例說出什么是一元一次不等式組。什么是一元一次不等式組的解集。(滲透交集思想)

    七年級下冊數學教案15

      [教學目標]

      1. 通過動手、操作、推斷、交流等活動,進一步發展空間觀念,培養識圖能力,推理能力和有條理表達能力

      2. 在具體情境中了解鄰補角、對頂角,能找出圖形中的一個角的鄰補角和對頂角,理解對頂角相等,并能運用它解決一些簡單問題

      [教學重點與難點]

      重點:鄰補角與對頂角的概念.對頂角性質與應用

      難點:理解對頂角相等的性質的探索

      [教學設計]

      一.創設情境 激發好奇 觀察剪刀剪布的過程,引入兩條相交直線所成的角

      在我們的生活的世界中,蘊涵著大量的相交線和平行線,本章要研究相交線所成的角和它的特征。

      觀察剪刀剪布的過程,引入兩條相交直線所成的角。

      學生觀察、思考、回答問題

      教師出示一塊布和一把剪刀,表演剪布過程,提出問題:剪布時,用力握緊把手,兩個把手之間的的角發生了什么變化?剪刀張開的口又怎么變化?

      教師點評:如果把剪刀的構造看作是兩條相交的直線,以上就關系到兩條直線相交所成的角的問題,

      二.認識鄰補角和對頂角,探索對頂角性質

      1.學生畫直線AB、CD相交于點O,并說出圖中4個角,兩兩相配

      共能組成幾對角?根據不同的位置怎么將它們分類?

      學生思考并在小組內交流,全班交流。

      當學生直觀地感知角有“相鄰”、“對頂”關系時,教師引導學生用

      幾何語言準確表達;

      有公共的頂點O,而且 的兩邊分別是 兩邊的反向延長線

      2.學生用量角器分別量一量各角的度數,發現各類角的.度數有什么關系?

      (學生得出結論:相鄰關系的兩個角互補,對頂的兩個角相等)

      3學生根據觀察和度量完成下表:

      兩條直線相交 所形成的角 分類 位置關系 數量關系

      教師提問:如果改變 的大小,會改變它與其它角的位置關系和數量關系嗎?

      4.概括形成鄰補角、對頂角概念和對頂角的性質

      三.初步應用

      練習:

      下列說法對不對

      (1) 鄰補角可以看成是平角被過它頂點的一條射線分成的兩個角

      (2) 鄰補角是互補的兩個角,互補的兩個角是鄰補角

      (3) 對頂角相等,相等的兩個角是對頂角

      學生利用對頂角相等的性質解釋剪刀剪布過程中所看到的現象

      四.鞏固運用例題:如圖,直線a,b相交, ,求 的度數。

      [鞏固練習](教科書5頁練習)已知,如圖, ,求: 的度數

      [小結]

      鄰補角、對頂角.

      [作業]課本P9-1,2P10-7,8

    【七年級下冊數學教案】相關文章:

    七年級下冊數學教案08-26

    七年級下冊數學教案12-05

    初中七年級下冊數學教案01-13

    【熱門】七年級下冊數學教案03-15

    【熱】七年級下冊數學教案03-16

    【精】七年級下冊數學教案03-16

    【薦】七年級下冊數學教案03-14

    七年級下冊數學教案【薦】03-15

    七年級下冊數學教案【精】03-14

    七年級下冊數學教案【熱門】02-23

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      午夜亚洲AⅤ在线影视 | 午夜国产亚州视频在线 | 日韩免费中文字幕 | 色5月婷婷亚洲 | 五月天AV女优在线观看 | 午夜精品网站亚洲一级在线 |