1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>

    高二數學教案

    時間:2022-12-03 15:08:07 高二數學教案 我要投稿

    關于高二數學教案(6篇)

      作為一位優秀的人民教師,時常需要編寫教案,教案是教學藍圖,可以有效提高教學效率。那么問題來了,教案應該怎么寫?下面是小編精心整理的關于高二數學教案,歡迎閱讀與收藏。

    關于高二數學教案(6篇)

    關于高二數學教案1

      教材分析:

      三角函數的誘導公式是普通高中課程標準實驗教科書(人教B版)數學必修四,第一章第二節內容,其主要內容是公式(一)至公式(四)。本節課是第二課時,教學內容是公式(三)。教材要求通過學生在已經掌握的任意角的三角函數定義和公式(一)(二)的基礎上,發現他們與單位圓的'交點坐標之間關系,進而發現三角函數值的關系。同時教材滲透了轉化與化歸等數學思想方法。

      教案背景:

      通過學生在已經掌握的任意角的三角函數定義和公式(一)(二)的基礎上,發現他們與單位圓的交點坐標之間關系,進而發現三角函數值的關系。同時教材滲透了轉化與化歸等數學思想方法,為培養學生養成良好的學習習慣提出了要求。因此本節內容在三角函數中占有非常重要的地位.

      教學方法:

      以學生為主題,以發現為主線,盡力滲透類比、化歸、數形結合等數學思想方法,采用提出問題、啟發引導、共同探究、綜合應用等教學模式。

      教學目標:

      借助單位圓探究誘導公式。

      能正確運用誘導公式將任意角的三角函數化為銳角三角函數。

      教學重點:

      誘導公式(三)的推導及應用。

      教學難點:

      誘導公式的應用。

      教學手段:

      多媒體。

    關于高二數學教案2

      【教學目標】

      1.會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。

      2.能根據幾何結構特征對空間物體進行分類。

      3.提高學生的觀察能力;培養學生的空間想象能力和抽象括能力。

      【教學重難點】

      教學重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。

      教學難點:柱、錐、臺、球的結構特征的概括。

      【教學過程】

      1.情景導入

      教師提出問題,引導學生觀察、舉例和相互交流,提出本節課所學內容,出示課題。

      2.展示目標、檢查預習

      3、合作探究、交流展示

      (1)引導學生觀察棱柱的幾何物體以及棱柱的圖片,說出它們各自的特點是什么?它們的共同特點是什么?

      (2)組織學生分組討論,每小組選出一名同學發表本組討論結果。

      在此基礎上得出棱柱的主要結構特征。

      (1)有兩個面互相平行;

      (2)其余各面都是平行四邊形;

      (3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

      (3)提出問題:請列舉身邊的棱柱并對它們進行分類

      (4)以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關的`概念,分類以及表示。

      (5)讓學生觀察圓柱,并實物模型演示,概括出圓柱的概念以及相關的概念及圓柱的表示。

      (6)引導學生以類似的方法思考圓錐、圓臺、球的結構特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。

      (7)教師指出圓柱和棱柱統稱為柱體,棱臺與圓臺統稱為臺體,圓錐與棱錐統稱為錐體。

      4.質疑答辯,排難解惑,發展思維,教師提出問題,讓學生思考。

      (1)有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明)

      (2)棱柱的任何兩個平面都可以作為棱柱的底面嗎?

      (3)圓柱可以由矩形旋轉得到,圓錐可以由直角三角形旋轉得到,圓臺可以由什么圖形旋轉得到?如何旋轉?

      (4)棱臺與棱柱、棱錐有什么關系?圓臺與圓柱、圓錐呢?

      (5)繞直角三角形某一邊的幾何體一定是圓錐嗎?

    關于高二數學教案3

      一、教學目標

      【知識與技能】

      掌握三角函數的單調性以及三角函數值的取值范圍。

      【過程與方法】

      經歷三角函數的單調性的探索過程,提升邏輯推理能力。

      【情感態度價值觀】

      在猜想計算的過程中,提高學習數學的.興趣。

      二、教學重難點

      【教學重點】

      三角函數的單調性以及三角函數值的取值范圍。

      【教學難點】

      探究三角函數的單調性以及三角函數值的取值范圍過程。

      三、教學過程

      (一)引入新課

      提出問題:如何研究三角函數的單調性

      (四)小結作業

      提問:今天學習了什么?

      引導學生回顧:基本不等式以及推導證明過程。

      課后作業:

      思考如何用三角函數單調性比較三角函數值的大小。

    關于高二數學教案4

      一、教材分析

      本節知識是必修五第一章《解三角形》的第一節內容,與初中學習的三角形的邊和角的基本關系有密切的聯系與判定三角形的全等也有密切聯系,在日常生活和工業生產中也時常有解三角形的問題,而且解三角形和三角函數聯系在高考當中也時?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。

      根據上述教材內容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:

      認知目標:通過創設問題情境,引導學生發現正弦定理的內容,掌握正弦定理的內容及其證明方法,使學生會運用正弦定理解決兩類基本的解三角形問題。

      能力目標:引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養學生的創新意識和觀察與邏輯思維能力,能體會用向量作為數形結合的工具,將幾何問題轉化為代數問題。

      情感目標:面向全體學生,創造平等的教學氛圍,通過學生之間、師生之間的交流、合作和評價,調動學生的主動性和積極性,激發學生學習的興趣。

      教學重點:正弦定理的內容,正弦定理的證明及基本應用。教學難點:已知兩邊和其中一邊的對角解三角形時判斷解的個數。

      二、教法

      根據教材的內容和編排的特點,為是更有效地突出重點,空破難點,以學業生的發展為本,遵照學生的認識規律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想,采用探究式課堂教學模式,即在教學過程中,在教師的啟發引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發現”為基本探究內容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。

      三、學法

      指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現學生的主體地位,增強學生由特殊到一般的數學思維能力,形成了實事求是的科學態度,增強了鍥而不舍的求學精神。

      四、教學過程

      (一)創設情境(3分鐘)

      “興趣是的老師”,如果一節課有個好的開頭,那就意味著成功了一半,本節課由一個實際問題引入,“工人師傅的一個三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發學生幫助別人的熱情和學習的'興趣,從而進入今天的學習課題,

      (二)猜想—推理—證明(15分鐘)

      激發學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發現正弦定理。提問:那結論對任意三角形都適用嗎?(讓學生分小組討論,并得出猜想)

      在三角形中,角與所對的邊滿足關系

      注意:

      1.強調將猜想轉化為定理,需要嚴格的理論證明。

      2.鼓勵學生通過作高轉化為熟悉的直角三角形進行證明。

      3.提示學生思考哪些知識能把長度和三角函數聯系起來,繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學思想。

      (三)總結--應用(3分鐘)

      1.正弦定理的內容,討論可以解決哪幾類有關三角形的問題。

      2.運用正弦定理求解本節課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發學生知識后用于實際的價值觀。

    關于高二數學教案5

      教學目的:

      1、使理解線段的垂直平分線的性質定理及逆定理,掌握這兩個定理的關系并會用這兩個定理解決有關幾何問題。

      2、了解線段垂直平分線的軌跡問題。

      3、結合教學內容培養學生的動作、形象和抽象。

      教學重點:

      線段的垂直平分線性質定理及逆定理的引入證明及運用。

      教學難點:

      線段的垂直平分線性質定理及逆定理的關系。

      教學關鍵:

      1、垂直平分線上所有的點和線段兩端點的距離相等。

      2、到線段兩端點的距離相等的所有點都在這條線段的`垂直平分線上。

      教具:

      投影儀及投影膠片。

      教學過程:

      一、提問

      1、角平分線的性質定理及逆定理是什么?

      2、怎樣做一條線段的垂直平分線?

      二、新課

      1、請同學們在練習本上做線段AB的垂直平分線EF(請一名同學在黑板上做)。

      2、在EF上任取一點P,連結PA、PB量出PA=?,PB=?引導學生觀察這兩個值有什么關系?

      通過學生的觀察、分析得出結果PA=PB,再取一點P試一試仍然有PA=PB,引導學生猜想EF上的所有點和點A、點B的距離都相等,再請同學把這一結論敘述成命題(用幻燈展示)。

      定理:線段的垂直平分線上的點和這條線段的兩個端點的距離相等。

      這個命題,是我們通過作圖、觀察、猜想得到的,還得在理論上加以證明是真命題才能做為定理。

      已知:如圖,直線EF⊥AB,垂足為C,且AC=CB,點P在EF上

      求證:PA=PB

      如何證明PA=PB學生分析得出只要證RTΔPCA≌RTΔPCB

      證明:∵PC⊥AB(已知)

      ∴∠PCA=∠PCB(垂直的定義)

      在ΔPCA和ΔPCB中

      ∴ΔPCA≌ΔPCB(SAS)

      即:PA=PB(全等三角形的對應邊相等)。

      反過來,如果PA=PB,P1A=P1B,點P,P1在什么線上?

      過P,P1做直線EF交AB于C,可證明ΔPAP1≌PBP1(SSS)

      ∴EF是等腰三角型ΔPAB的頂角平分線

      ∴EF是AB的垂直平分線(等腰三角形三線合一性質)

      ∴P,P1在AB的垂直平分線上,于是得出上述定理的逆定理(啟發學生敘述)(用幻燈展示)。

      逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。

      根據上述定理和逆定理可以知道:直線MN可以看作和兩點A、B的距離相等的所有點的集合。

      線段的垂直平分線可以看作是和線段兩個端點距離相等的所有點的集合。

      三、舉例(用幻燈展示)

      例:已知,如圖ΔABC中,邊AB,BC的垂直平分線相交于點P,求證:PA=PB=PC。

      證明:∵點P在線段AB的垂直平分線上

      ∴PA=PB

      同理PB=PC

      ∴PA=PB=PC

      由例題PA=PC知點P在AC的垂直平分線上,所以三角形三邊的垂直平分線交于一點P,這點到三個頂點的距離相等。

      四、小結

      正確的運用這兩個定理的關鍵是區別它們的條件與結論,加強證明前的分析,找出證明的途徑。定理的作用是可證明兩條線段相等或點在線段的垂直平分線上。

    關于高二數學教案6

      一、教材分析

      推理是高考的重要的內容,推理包括合情推理與演繹推理,由于解答高考題的過程就是推理的過程,因此本部分內容的考察將會滲透到每一個高考題中,考察推理的基本思想和方法,既可能在選擇題中和填空題中出現,也可能在解答題中出現。

      二、教學目標

      (1)知識與能力:了解演繹推理的含義及特點,會將推理寫成三段論的形式

      (2)過程與方法:了解合情推理和演繹推理的區別與聯系

      (3)情感態度價值觀:了解演繹推理在數學證明中的重要地位和日常生活中的作用,養成言之有理論證有據的習慣。

      三、教學重點難點

      教學重點:演繹推理的含義與三段論推理及合情推理和演繹推理的區別與聯系

      教學難點:演繹推理的.應用

      四、教學方法:探究法

      五、課時安排:1課時

      六、教學過程

      1. 填一填:

     、 所有的金屬都能夠導電,銅是金屬,所以 ;

     、 太陽系的大行星都以橢圓形軌道繞太陽運行,冥王星是太陽系的大行星,因此 ;

     、 奇數都不能被2整除,20xx是奇數,所以 .

      2.討論:上述例子的推理形式與我們學過的合情推理一樣嗎?

      3.小結:

     、 概念:從一般性的原理出發,推出某個特殊情況下的結論,我們把這種推理稱為____________.

      要點:由_____到_____的推理.

     、 討論:演繹推理與合情推理有什么區別?

     、 思考:所有的金屬都能夠導電,銅是金屬,所以銅能導電,它由幾部分組成,各部分有什么特點?

      小結:三段論是演繹推理的一般模式:

      第一段:_________________________________________;

      第二段:_________________________________________;

      第三段:____________________________________________.

     、 舉例:舉出一些用三段論推理的例子.

      例1:證明函數 在 上是增函數.

      例2:在銳角三角形ABC中, ,D,E是垂足. 求證:AB的中點M到D,E的距離相等.

      當堂檢測:

      討論:因為指數函數 是增函數, 是指數函數,則結論是什么?

      討論:演繹推理怎樣才能使得結論正確?

      比較:合情推理與演繹推理的區別與聯系?

      課堂小結

      課后練習與提高

      1.演繹推理是以下列哪個為前提,推出某個特殊情況下的結論的推理方法( )

      A.一般的原理原則; B.特定的命題;

      C.一般的命題; D.定理、公式.

      2.因為對數函數 是增函數(大前提),而 是對數函數(小前提),所以 是增函數(結論).上面的推理的錯誤是( )

      A.大前提錯導致結論錯; B.小前提錯導致結論錯;

      C.推理形式錯導致結論錯; D.大前提和小前提都錯導致結論錯.

      3.下面幾種推理過程是演繹推理的是( )

      A.兩條直線平行,同旁內角互補,如果A和B是兩條平行直線的同旁內角,則B =180B.由平面三角形的性質,推測空間四面體的性質;.

      4.補充下列推理的三段論:

      (1)因為互為相反數的兩個數的和為0,又因為 與 互為相反數且________________________,所以 =8.

      (2)因為_____________________________________,又因為 是無限不循環小數,所以 是無理數.

      七、板書設計

      八、教學反思

    【高二數學教案】相關文章:

    高二數學教案12-04

    高二數學教案08-27

    高二優秀數學教案11-14

    關于高二數學教案12-01

    中職高二數學教案11-07

    最新高二數學教案09-29

    高二數學教案(15篇)12-06

    高二數學教案15篇12-05

    高二數學教案精選15篇12-16

    高二數學教案(精選15篇)02-27

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      亚洲国产日韩欧美性 | 人人狠狠久久亚洲区 | 最新国产精品拍自在线观看 | 视频一区视频二区中文精品 | 亚洲精品五级在线 | 亚洲区精品久久一区二区三区 |