1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>

    初二數(shù)學(xué)教案

    時間:2022-11-30 09:18:30 八年級數(shù)學(xué)教案 我要投稿

    初二數(shù)學(xué)教案(精選15篇)

      作為一位兢兢業(yè)業(yè)的人民教師,通常需要用到教案來輔助教學(xué),教案是備課向課堂教學(xué)轉(zhuǎn)化的關(guān)節(jié)點。那么寫教案需要注意哪些問題呢?以下是小編精心整理的初二數(shù)學(xué)教案,僅供參考,歡迎大家閱讀。

    初二數(shù)學(xué)教案(精選15篇)

    初二數(shù)學(xué)教案1

      教學(xué)設(shè)計思想:

      本節(jié)主要學(xué)習(xí)了平行四邊形的幾種判定方法,以及平行四邊形性質(zhì)、判定的應(yīng)用——三角形的中位線定理。通過問題情境引入平行四邊形判定的研究,首先通過直觀猜測判定的方法,再次通過幾何證明來證明它的正確性。充分發(fā)揮學(xué)生的主觀能動性。

      教學(xué)目標

      知識與技能:

      1.總結(jié)出平行四邊形的三種判定方法;

      2.應(yīng)用平行四邊形的判定解決實際問題;

      3.應(yīng)用平行四邊形的性質(zhì)與判定得出三角形中位線定理;

      4.總結(jié)三角形與平行四邊形的`相互轉(zhuǎn)化,學(xué)會基本的添輔助線法。

      過程與方法:

      1.經(jīng)歷平行四邊形判別條件的探索過程,逐步掌握說理的基本方法。

      2.經(jīng)歷探究三角形中位線定理的過程,體會轉(zhuǎn)化思想在數(shù)學(xué)中的重要性。

      情感態(tài)度價值觀:

      1.在探究活動中,發(fā)展合情推理意識,養(yǎng)成主動探究的習(xí)慣;

      2.通過探索式證明法開拓思路,發(fā)展思維能力;

      3.在解決平行四邊形問題的過程中,不斷滲透轉(zhuǎn)化思想。

      教學(xué)重難點

      重點:1.平行四邊形的判別條件;2.應(yīng)用平行四邊形的性質(zhì)和判定得出三角形中位線定理。

      難點:1.靈活應(yīng)用平行四邊形的判別條件;2.合理添加輔助線;3.三角形與平行四邊形之間的合理轉(zhuǎn)化。

      教學(xué)方法

      小組討論、合作探究

      課時安排

      3課時

      教學(xué)媒體

      課件、

      教學(xué)過程

      第一課時

      (一)引入

      師:上節(jié)課我們已經(jīng)知道了平行四邊形的邊、角及對角線所具有的性質(zhì),請同學(xué)們回憶一下都有哪些?

    初二數(shù)學(xué)教案2

      1。教材分析

      (1)知識結(jié)構(gòu):

      (2)重點和難點分析:

      重點:四邊形的有關(guān)概念及內(nèi)角和定理。因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學(xué)習(xí)起著重要的作用。

      難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用。在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上在同一平面內(nèi)這個條件,這幾個字的意思學(xué)生不好理解,所以是難點。

      2。教法建議

      (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學(xué)生認識到這些四邊形都是常見圖形,研究它們具有實際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

      (2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學(xué)生看,讓學(xué)生明確這些概念。

      (3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決。結(jié)合圖形,讓學(xué)生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學(xué)生加深對對角線的作用的認識。

      (4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學(xué)思想方法進行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。

      一、素質(zhì)教育目標

      (一)知識教學(xué)點

      1。使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理。

      2。了解四邊形的不穩(wěn)定性及它在實際生產(chǎn),生活中的應(yīng)用。

      (二)能力訓(xùn)練點

      1。通過引導(dǎo)學(xué)生觀察氣象站的實例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力。

      2。通過推導(dǎo)四邊形內(nèi)角和定理,對學(xué)生滲透化歸思想。

      3。會根據(jù)比較簡單的條件畫出指定的四邊形。

      4。講解四邊形外角概念和外角定理時,聯(lián)系三角形的有關(guān)概念對學(xué)生滲透類比思想。

      (三)德育滲透點

      使學(xué)生認識到這些四邊形都是常見的,研究他們都有實際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)新知識的興趣。

      (四)美育滲透點

      通過四邊形內(nèi)角和定理數(shù)學(xué),滲透統(tǒng)一美,應(yīng)用美。

      二、學(xué)法引導(dǎo)

      類比、觀察、引導(dǎo)、講解

      三、重點難點疑點及解決辦法

      1。教學(xué)重點:四邊形及其有關(guān)概念;熟練推導(dǎo)四邊形外角和這一結(jié)論,并用此結(jié)論解決與四邊形內(nèi)外角有關(guān)計算問題。

      2。教學(xué)難點:理解四邊形的有關(guān)概念中的一些細節(jié)問題;四邊形不穩(wěn)定性的理解和應(yīng)用。

      3。疑點及解決辦法:四邊形的定義中為什么要有在平面內(nèi),而三角形的定義中就沒有呢?根據(jù)指定條件畫四邊形,關(guān)鍵是要分析好作圖的順序,一般先作一個角。

      四、課時安排

      2課時

      五、教具學(xué)具準備

      投影儀、膠片、四邊形模型、常用畫圖工具

      六、師生互動活動設(shè)計

      教師引入新課,學(xué)生觀察圖形,類比三角形知識導(dǎo)出四邊形有關(guān)概念;師生共同推導(dǎo)四邊形內(nèi)角和的定理,學(xué)生鞏固內(nèi)角和定理和應(yīng)用;共同分析探索外角和定理,學(xué)生閱讀相關(guān)材料。

      第一課時

      七、教學(xué)步驟

      【復(fù)習(xí)引入】

      在小學(xué)里已經(jīng)對四邊形、長方形、平形四邊形的有關(guān)知識有所了解,但還很膚淺,這一

      章我們將比較系統(tǒng)地學(xué)習(xí)各種四邊形的性質(zhì)和判定分析它們之間的關(guān)系,并運用有關(guān)四邊形的知識解決一些新問題。

      【引入新課】

      用投影儀打出課前畫好的教材中P119的圖。

      師問:在上圖中你能把知道的長方形、正方形、平行四邊形、梯形找出來嗎?(啟發(fā)學(xué)生找上述圖形,最后教師用彩色筆勾出幾個圖形)。

      【講解新課】

      1。四邊形的`有關(guān)概念

      結(jié)合圖形講解四邊形,四邊形的邊、頂點、角,凸四邊形,四邊形的對角線(同時學(xué)生在書上畫出上述概念),講解這些概念時:

      (1)要結(jié)合圖形。

      (2)要與三角形類比。

      (3)講清定義中的關(guān)鍵詞語。如四邊形定義中要說明為什么加上同一平面內(nèi)而三角形的定義中為什么不加同一平面內(nèi)(三角形的三個頂點一定在同一平面內(nèi),而四個點有可能不在同一平面內(nèi),如圖42中的點 。我們現(xiàn)在只研究平面圖形,故在定義中加上在同一平面內(nèi)的限制)。

      (4)強調(diào)四邊形對角線的作用,作為四邊形的一種常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形來解(滲透化歸思想),并觀察圖4—3用對角線分成的這些三角形與原四邊形的關(guān)系。

      (5)強調(diào)四邊形的表示方法,一定要按頂點順序書寫四邊形如圖41。

      (6)在判斷一個四邊形是不是凸四邊形時,一定要按照定義的要求把每一邊都延長后再下結(jié)論如圖4—4,圖4—5。

      2。四邊形內(nèi)角和定理

      教師問:

      (1)在圖4—3中對角線AC把四邊形ABCD分成幾個三角形?

      (2)在圖4—6中兩條對角線AC和BD把四邊形分成幾個三角形?

      (3)若在四邊形ABCD如圖4—7內(nèi)任取一點O,從O向四個頂點作連線,把四邊形分成幾個三角形。

      我們知道,三角形內(nèi)角和等于180,那么四邊形的內(nèi)角和就等于:

      ①2180=360如圖4

      ②4180—360=360如圖4—7。

      例1 已知:如圖48,直線 于B、 于C。

      求證:(1) (2) 。

      本例題是四邊形內(nèi)角和定理的應(yīng)用,實際上它證明了兩邊相互垂直的兩個角相等或互補的關(guān)系,何時用相等,何時用互補,如果需要應(yīng)用,作兩三步推理就可以證出。

      【總結(jié)、擴展】

      1。四邊形的有關(guān)概念。

      2。四邊形對角線的作用。

      3。四邊形內(nèi)角和定理。

      八、布置作業(yè)

      教材P128中1(1)、2、 3。

      九、板書設(shè)計

      四邊形(一)

      四邊形有關(guān)概念

      四邊形內(nèi)角和

      例1

      十、隨堂練習(xí)

      教材P122中1、2、3。

    初二數(shù)學(xué)教案3

      通過學(xué)生的討論,使學(xué)生更清楚以下事實:

      (1)分解因式與整式的乘法是一種互逆關(guān)系;

      (2)分解因式的結(jié)果要以積的形式表示;

      (3)每個因式必須是整式,且每個因式的次數(shù)都必須低于原來的多項式 的次數(shù);

      (4)必須分解到每個多項式不能再分解為止。

      活動5:應(yīng)用新知

      例題學(xué)習(xí):

      P166例1、例2(略)

      在教師的引導(dǎo)下,學(xué)生應(yīng)用提公因式法共同完成例題。

      讓學(xué)生進一步理解提公因式法進行因式分解。

      活動6:課堂練習(xí)

      1.P167練習(xí);

      2. 看誰連得準

      x2-y2 (x+1)2

      9-25 x 2 y(x -y)

      x 2+2x+1 (3-5 x)(3+5 x)

      xy-y2 (x+y)(x-y)

      3.下列哪些變形是因式分解,為什么?

      (1)(a+3)(a -3)= a 2-9

      (2)a 2-4=( a +2)( a -2)

      (3)a 2-b2+1=( a +b)( a -b)+1

      (4)2πR+2πr=2π(R+r)

      學(xué)生自主完成練習(xí)。

      通過學(xué)生的`反饋練習(xí),使教師能全面了解學(xué)生對因式分解意義的理解是否到位,以便教師能及時地進行查缺補漏。

      活動7:課堂小結(jié)

      從今天的課程中,你學(xué)到了哪些知識?掌握了哪些方法?明白了哪些道理?

      學(xué)生發(fā)言。

      通過學(xué)生的回顧與反思,強化學(xué)生對因式分解意義的理解,進一步清楚地了解分解因式與整式的乘法的互逆關(guān)系,加深對類比的數(shù)學(xué)思想的理解。

      活動8:課后作業(yè)

      課本P170習(xí)題的第1、4大題。

      學(xué)生自主完成

      通過作業(yè)的鞏固對因式分解,特別是提公因式法理解并學(xué)會應(yīng)用。

      板書設(shè)計(需要一直留在黑板上主板書)

      15.4.1提公因式法 例題

      1.因式分解的定義

      2.提公因式法

    初二數(shù)學(xué)教案4

      課型:

      復(fù)習(xí)課

      學(xué)習(xí)目標(學(xué)習(xí)重點):

      1. 針對函數(shù)及其圖象一章,查漏補缺,答疑解惑;

      2. 一次函數(shù)應(yīng)用的復(fù)習(xí).

      補充例題:

      例1.如圖,lA lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關(guān)系

      (1)B出發(fā)時與A相距 千米;

      (2)走了一段路后,自行車發(fā)生故障,進行修理,所用的時間是 小時;

      (3)B出發(fā)后 小時與A相遇;

      (4)求出A行走的路程S與時間t的函數(shù)關(guān)系式;

      (5)若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進, 小時與A相遇,相遇點離B的出發(fā)點 千米,在圖中表示出這個相遇點C.

      例2.在平面直角坐標系中,過一點分別作坐標軸的垂線,若與坐標軸圍成矩形的周長與面積相等,則這個點叫做和諧點.例如,圖中過點P分別作x軸, y的垂線,與坐標軸圍成矩形OAPB的周長與面積相等,則點P是和諧點.

      (1)判斷點M(1,2),N(4,4)是否為和諧點,并說明理由;

      (2)若和諧點P(a,3)在直線y=-x+b(b為常數(shù))上,求點a, b的值.

      例3.在平面直角坐標系中,一動點P(x,y)從M(1,0)出發(fā),沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四點組成的.正方形邊線(如圖①)按一定方向運動.圖②是P點運動的路程s(個單位)與運動時間 (秒)之間的函數(shù)圖象,圖③是P點的縱坐標y與P點運動的路程s之間的函數(shù)圖象的一部分.

      (1)求s與t之間的函數(shù)關(guān)系式.

      (2)與圖③相對應(yīng)的P點的運動路徑是: ;P點出發(fā) 秒首次到達點B;

      (3)寫出當38時,y與s之間的函數(shù)關(guān)系式,并在圖③中補全函數(shù)圖象.

      課后續(xù)助:

      1.某市自來水公司為限制單位用水,每月只給某單位計劃內(nèi)用水3000噸,計劃內(nèi)用水每噸收費0.5元,超計劃部分每噸按0.8元收費.

      (1)寫出該單位水費y(元)與每月用水量x(噸)之間的函數(shù)關(guān)系式

      ①用水量小于等于3000噸 ;②用水量大于3000噸 .

      (2)某月該單位用水3200噸,水費是 元;若用水2800噸,水費 元.

      (3)若某月該單位繳納水費1540元,則該單位用水多少噸?

      2.某通訊公司推出①、②兩種通訊收費方式供用戶選擇,其中一種有月租費,另一種無月租費,且兩種收費方式的通訊時間x(分鐘)與收費y(元)之間的函數(shù)關(guān)系如圖所示.

      (1)有月租費的收費方式是 (填①或②),月租費是 元;

      (2)分別求出①、②兩種收費方式中y與自變量x之間的函數(shù)關(guān)系式;

      (3)請你根據(jù)用戶通訊時間的多少,給出經(jīng)濟實惠的選擇建議.

      3.某氣象研究中心觀測一場沙塵暴從發(fā)生到結(jié)束全過程, 開始時風(fēng)暴平均每小時增加2千米/時,4小時后,沙塵暴經(jīng)過開闊荒漠地,風(fēng)速變?yōu)槠骄啃r增加4千米/時,一段時間,風(fēng)暴保持不變,當沙塵暴遇到綠色植被區(qū)時,其風(fēng)速平均每小時減小1千米/時,最終停止。 結(jié)合風(fēng)速與時間的圖像,回答下列問題:

      (1)在y軸( )內(nèi)填入相應(yīng)的數(shù)值;

      (2)沙塵暴從發(fā)生到結(jié)束,共經(jīng)過多少小時?

      (3)求出當x25時,風(fēng)速y(千米/時)與時間x(小時)之間的函數(shù)關(guān)系式.

      (4)若風(fēng)速達到或超過20千米/時,稱為強沙塵暴,則強沙塵暴持續(xù)多長時間?

    初二數(shù)學(xué)教案5

      一、學(xué)生情況分析及改進提高措施:

      學(xué)生們經(jīng)過兩年的學(xué)習(xí),已經(jīng)具備了初步的邏輯思維能力和簡單的抽象概括能力,養(yǎng)成了一些良好的學(xué)習(xí)習(xí)慣,掌握了一些科學(xué)的學(xué)習(xí)方法,學(xué)會了獨立思考和與人溝通、協(xié)商、合作、交流的能力,學(xué)會了探究問題,并能根據(jù)具體情況提出合理的問題,還能正確解決問題的能力。無論是理解問題的能力,還是分析、解決問題的能力均有所提高,基礎(chǔ)知識和基本技能打得也比較扎實,對數(shù)學(xué)學(xué)習(xí)有著濃厚的興趣,樂于參與到學(xué)習(xí)活動中去,特別是對一些動手操作,合作學(xué)習(xí),實踐活動等學(xué)習(xí)內(nèi)容尤為感興趣,因此,在教學(xué)中應(yīng)多設(shè)計一些活動,引導(dǎo)學(xué)生進行獨立思考與合作交流,幫助學(xué)生積累參加數(shù)學(xué)學(xué)習(xí)活動的經(jīng)驗。

      在數(shù)學(xué)知識上已經(jīng)掌握了兩步計算式題和有余數(shù)的除法,還有統(tǒng)計知識,并學(xué)會了辨認八個方位;掌握了萬以內(nèi)數(shù)的讀法、寫法和加、減法;還掌握了長度單位毫米、厘米、分米、米和千米的實際長度和簡單的換算以及實際測量,并能用以上這些相應(yīng)的知識解決實際生活中的問題。總之,這些技能和知識點都為本學(xué)期進一步學(xué)習(xí)新知識打下了堅實的基礎(chǔ),他們愛學(xué)數(shù)學(xué)的熱情,以及對數(shù)學(xué)的感悟能力會在本學(xué)期進一步得到發(fā)揚光大,他們的情感、態(tài)度、價值觀會沿著良性軌道螺旋式上升。

      具體提高措施是:

      1.從學(xué)生的年齡特點出發(fā),多采用情境活動式教學(xué),培養(yǎng)學(xué)生的參與意識。兩班學(xué)生都能根據(jù)教師給出的情境獲取相關(guān)的數(shù)學(xué)信息,并能根據(jù)有效信息提出數(shù)學(xué)問題,能積極投入到探索問題的活動中去,絕大部分學(xué)生能夠在課堂上主動的研究問題,獲取知識。

      2.在課堂教學(xué)中,多增添一些與學(xué)生生活相關(guān)的利于孩子理解的問題,讓學(xué)生在解決問題的'過程中能夠聯(lián)系到實際,便于對問題的理解。結(jié)合學(xué)生的生活實際,將問題生活化,讓學(xué)生從生活中獲取到更多的解決問題的素材。

      3.課后練習(xí)注重增添以學(xué)習(xí)內(nèi)容為主的相關(guān)實踐練習(xí),加強各學(xué)科之間的聯(lián)系,少一些呆板的練習(xí),提高練習(xí)的實踐性和趣味性。在上學(xué)期的教學(xué)中,我發(fā)現(xiàn)學(xué)生們比較喜歡做不同科目之間有聯(lián)系的綜合性作業(yè),例如我把數(shù)學(xué)與科學(xué)課相結(jié)合,讓他們種豆子,了解植物的生長,并做記錄,再將每天的記錄制作成統(tǒng)計圖,學(xué)生完成作業(yè)的積極性特別高。我為了讓學(xué)生了解長度單位,讓他們從成語詞典上收集有關(guān)長度單位的成語,通過對詞語的理解把握其表示的長度。

      4.加強學(xué)校教育和家庭教育的聯(lián)系。關(guān)注學(xué)生的平時學(xué)習(xí)情況,與學(xué)生家長多溝通交流。

      二、本冊教材分析

      本冊教材充分體現(xiàn)了新《課程標準》的理念,以學(xué)生的數(shù)學(xué)活動實踐為學(xué)習(xí)內(nèi)容,教材創(chuàng)設(shè)了生動有趣的情境,引導(dǎo)學(xué)生在解決現(xiàn)實問題的過程中獲得對數(shù)學(xué)知識的理解和體驗。教學(xué)內(nèi)容主要包括(1)乘法;(2)除法;(3)觀察物體;(4)千克、克、噸;(5)、周長;(6)年、月、日;(7)可能性;(8)共有五個社會實踐活動,還有兩個整理復(fù)習(xí),一個總復(fù)習(xí)。具體特點是:

      1.在數(shù)與代數(shù)的學(xué)習(xí)中,重視動手操作與抽象概括相結(jié)合,體驗乘、除法意義,發(fā)展了學(xué)生的數(shù)感和符號感。

      2.在空間和圖形學(xué)習(xí)中,從學(xué)生的生活經(jīng)驗出發(fā),注重通過操作活動發(fā)展空間觀念。

      3.教材為教師留下了創(chuàng)造空間,可結(jié)合自身教學(xué)要求,生發(fā)新的教學(xué)設(shè)想,內(nèi)化自己的教學(xué)設(shè)計。

      三、總體教學(xué)目標:

      (一)、知識與技能

      1.在單元學(xué)習(xí)中,學(xué)生通過“數(shù)一數(shù)”、“分一分”等活動,經(jīng)歷從具體情境中抽象出乘法除法算式,體會乘法與除法的意義。

      2.學(xué)平面圖形的周長,會進行周長的計算。

      (二)、實踐能力培養(yǎng)

      1.觀察物體,引導(dǎo)學(xué)生經(jīng)歷觀察的過程,體驗從不同的位置觀察,所看到的物體可能是不一樣的。

      2.結(jié)合生活情境,感受并認識質(zhì)量單位。

      3.經(jīng)歷對生活中某些現(xiàn)象進行推理、判斷的過程,能對生活中的某些現(xiàn)象按一定的方法進行邏輯推理、判斷其結(jié)果。

      (三)、情感與態(tài)度

      1、讓學(xué)生在觀察和操作的學(xué)習(xí)活動中,能夠感受到思考的條理性和合理性。

      2、教師重視對學(xué)生數(shù)學(xué)學(xué)習(xí)過程的評價,讓他們在感受到樂趣之外,應(yīng)具備必要的學(xué)習(xí)自信心,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。

      教研專題:

      創(chuàng)設(shè)課堂學(xué)習(xí)情境,有效培養(yǎng)創(chuàng)新意識。

      個人專題:

      在情境中培養(yǎng)學(xué)生的自主學(xué)習(xí)意識,提高課堂的有效性。

    初二數(shù)學(xué)教案6

      教學(xué)目標

      1、初步掌握頻率分布直方圖的概念,能繪制有關(guān)連續(xù)型統(tǒng)計量的直方圖;

      2、讓學(xué)生進一步經(jīng)歷數(shù)據(jù)的整理和表示的過程,掌握繪制頻率分布直方圖的方法;

      教學(xué)重點

      掌握頻率分布直方圖概念及其應(yīng)用;

      教學(xué)難點

      繪制連續(xù)統(tǒng)計量的直方圖

      教學(xué)過程

      Ⅰ.提出問題,創(chuàng)設(shè)情境,引入新課:

      問題:我們班準備從63名同學(xué)中挑選出身高相差不多的40名同學(xué)參加比賽,那么這個想法可以實現(xiàn)嗎?應(yīng)該選擇身高在哪個范圍的學(xué)生參加?

      63名學(xué)生的身高數(shù)據(jù)如下:

      158158160168159159151158159

      168158154158154169158158158

      159167170153160160159159160

      149163163162172161153156162

      162163157162162161157157164

      155156165166156154166164165

      156157153165159157155164156

      解:(確定組距)最大值為172,最小值為149,他們的`差為23

      (身高x的變化范圍在23厘米,)

      (分組劃記)頻數(shù)分布表:

      身高(x)劃記頻數(shù)(學(xué)生人數(shù))

      149≤x<1522

      152≤x<1556

      155≤x<15812

      158≤x<16119

      161≤<16410

      164≤x<1678

      167≤x<1704

      170≤x<1732

      從表中看,身高在155≤x<158,158≤x<161,161≤<164三組人最多,共41人,所以可以從身高在155~164cm(不含164cm)之間的學(xué)生中選隊員

      (繪制頻數(shù)分布直方圖如課本P72圖12.2-3)

      探究:上面對數(shù)據(jù)分組時,組距取3,把數(shù)據(jù)分成8個組,如果組距取2或4,那么數(shù)據(jù)應(yīng)分成幾個組,這樣做能否選出身高比較整齊的隊員?

      分析:如果組距取2,那么分成12組;如果組距取4,那么分成6組。都可以選出身高比較整齊的隊員。

      歸納:組距和組數(shù)的確定沒有固定的標準,要憑借經(jīng)驗和研究的具體問題來決定,通常數(shù)據(jù)越多,分成的組數(shù)也越多,當數(shù)據(jù)在100個以內(nèi)時,根據(jù)數(shù)據(jù)的多少通常分為5~12個組。

      我們還可以用頻數(shù)折線圖來描述頻數(shù)分布的情況。頻數(shù)折線圖可以在頻數(shù)分布直方圖的基礎(chǔ)上畫出來。

      首先取直方圖中每一個長方形上邊的中草藥點,然后在橫軸上取兩個頻數(shù)為0的點,在上方圖的左邊取(147、5,0),在直方圖的右邊取點(174、5,0),將這些點用線段依次連接起來,就得到頻數(shù)折線圖。

      頻數(shù)折線圖也可以不通過直方圖直接畫出。

      根據(jù)表12.2-2,求了各個小組兩個端點的平均數(shù),而這些平均數(shù)稱為組中值,用橫軸表示身高(組中值),用縱軸表示頻數(shù),以各小組的組中值為橫坐標,各小組對應(yīng)的頻數(shù)為縱坐標描點,另外再在橫軸上取兩個點,依次連接這些點,就得到頻數(shù)分布折線圖如課本P73圖。

      II課堂小結(jié):

      (1)怎樣制作頻數(shù)分布直方圖和頻數(shù)分布折線圖

      (2)組距和組數(shù)沒有確定標準,當數(shù)據(jù)在1000個以內(nèi)時,通常分成5~12組

      (3)如果取個長方形上邊的中點,可以得到頻數(shù)折線圖

      (4)求各小組兩個斷點的平均數(shù),這些平均數(shù)叫組中值。

    初二數(shù)學(xué)教案7

    重難點分析

      本節(jié)的重點是矩形的性質(zhì)和判定定理。矩形是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是特殊的平行四邊形,特殊之處就是有一個角是直角,因而就增加了一些特殊的性質(zhì)和不同于平行四邊形的判定方法。矩形的這些性質(zhì)和判定定理即是平行四邊形性質(zhì)與判定的延續(xù),又是以后要學(xué)習(xí)的正方形的基礎(chǔ)。

      本節(jié)的難點是矩形性質(zhì)的靈活應(yīng)用。由于矩形是特殊的平行四邊形,所以它不但具有平行四邊形的性質(zhì),同時還具有自己獨特的性質(zhì)。如果得到一個平行四邊形是矩形,就可以得到許多關(guān)于邊、角、對角線的條件,在實際解題中,應(yīng)該應(yīng)用哪些條件,怎樣應(yīng)用這些條件,常常讓許多學(xué)生手足無措,教師在教學(xué)過程中應(yīng)給予足夠重視。

      教法建議

      根據(jù)本節(jié)內(nèi)容的特點和與平行四邊形的關(guān)系,建議教師在教學(xué)過程中注意以下問題:

      1.矩形的知識,學(xué)生在小學(xué)時接觸過一些,可由小學(xué)學(xué)過的知識作為引入。

      2.矩形在現(xiàn)實中的實例較多,在講解矩形的性質(zhì)和判定時,教師可自行準備或由學(xué)生準備一些生活實例來進行判別應(yīng)用了哪些性質(zhì)和判定,既增加了學(xué)生的參與感又鞏固了所學(xué)的知識.

      3. 如果條件允許,教師在講授這節(jié)內(nèi)容前,可指導(dǎo)學(xué)生按照教材145頁圖4-30所示,制作一個平行四邊形作為教學(xué)過程中的道具,既增強了學(xué)生的動手能力和參與感,有在教學(xué)中有切實的體例,使學(xué)生對知識的掌握更輕松些.

      4. 在對性質(zhì)的講解中,教師可將學(xué)生分成若干組,每個學(xué)生分別對事先準備后的圖形進行邊、角、對角線的測量,然后在組內(nèi)進行整理、歸納.

      5. 由于矩形的性質(zhì)定理證明比較簡單,教師可引導(dǎo)學(xué)生分析思路,由學(xué)生來進行具體的證明.

      6.在矩形性質(zhì)應(yīng)用講解中,為便于理解掌握,教師要注意題目的層次安排。

      矩形教學(xué)設(shè)計

      教學(xué)目標

      1.知道矩形的定義和矩形與平行四邊形之間的聯(lián)系;能說出矩形的四個角都是直角和矩形的的對角線相等的性質(zhì);能推出直角三角形斜邊上的中線等于斜邊的一半的性質(zhì)。

      2.能運用以上性質(zhì)進行簡單的證明和計算。

      此外,從矩形與平行四邊形的區(qū)別與聯(lián)系中,體會特殊與一般的關(guān)系,滲透集合的思想,培養(yǎng)學(xué)生辨證唯物主義觀點。

      引導(dǎo)性材料

      想一想:一般四邊形與平行四邊形之間的相互關(guān)系?在圖4.5-l的圓圈中填上四邊形和平行四邊形的'字樣來說明這種關(guān)系:即平行四邊形是特殊的四邊形,又具有一般四邊形的一切性質(zhì);具有一些特殊的性質(zhì)。

      小學(xué)里已學(xué)過長方形,即矩形。顯然,矩形是平行四邊形,而且矩形還具有四個角都是直角(小學(xué)里已學(xué)過)等特殊性質(zhì),那么,如果在圖4.5-1中再畫一個圈表示矩形,這個圈應(yīng)畫在哪里?

      (讓學(xué)生初步感知矩形與平行四邊形的從屬關(guān)系。)

      演示:用四根木條制作一個平行四邊形教具。利用平行四邊形的不穩(wěn)定性,演示如圖4.5-2,當平行四邊形的一個內(nèi)角由銳角變?yōu)殁g角的過程中,會發(fā)生怎樣的特殊情況,這時的圖形是什么圖形(矩形)。

      問題1:從上面的演示過程,可以發(fā)現(xiàn):平行四邊形具備什么條件時,就成了矩形?

      說明與建議:教師的演示應(yīng)充分展現(xiàn)變化過程,從而讓學(xué)生深切地感受到短形是無數(shù)個平行四邊形中的一個特例,同時,又使學(xué)生能正確地給出矩形的定義。

      問題2:矩形是特殊的平行四邊形,它除了有一個角是直角以外,還可能具有哪些平行四邊形所沒有的特殊性質(zhì)呢?

      說明與建議:讓學(xué)生分組探索,有必要時,教師可引導(dǎo)學(xué)生,根據(jù)研究平行四邊形獲得的經(jīng)驗,分別從邊、角、對角線三個方面探索矩形的特性,還可提醒學(xué)生,這種探索的基礎(chǔ)是矩形有一個角是直角矩形的四個角都相等(矩形性質(zhì)定理1),要學(xué)生給以證明(即課本例1后練習(xí)第1題)。

      學(xué)生能探索得出矩形的鄰邊互相垂直的特性,教師可作說明:這與矩形的四個角是直角本質(zhì)上是一致的,所以不必另列為一個性質(zhì)。

      學(xué)生探索矩形的四條對角線的大小關(guān)系時,如有困難,可引導(dǎo)學(xué)生測量并比較矩形兩條對角線的長度,然后加以證明,得出性質(zhì)定理2。

      問題3:矩形的一條對角線把矩形分成兩個直角三角形,矩形的對角線既互相平分又相等,由此,我們可以得到直角三角形的什么重要性質(zhì)?

      說明與建議:(1)讓學(xué)生先觀察圖4.5-3,并議論猜想,如學(xué)生有困難,教師可引導(dǎo)學(xué)生觀察圖中的一個直角三角形(如Rt△ABC),讓學(xué)生自己發(fā)現(xiàn)斜邊上的中線BO與斜線AC的大小關(guān)系,然后讓學(xué)生自己給出如下證明:

      證明:在矩形ABCD中,對角線AC、BD相交于點O,AC=BD(矩形的對角線相等)。

      ,AO=CO

      在Rt△ABC中,BO是斜邊AC上的中線,且 。

      直角三角形斜邊上的中線等于斜邊的一半。

      例題解析

      例1:(即課本例1)

      說明:本題難度不大,又有助于學(xué)生加深對性質(zhì)定理的理解,教學(xué)中應(yīng)引導(dǎo)學(xué)生探索解法:

      如圖4.5-4,欲求對角線BD的長,由于BAD=90,AB=4cm,則只要再找出Rt△ABD中一條直角邊的長,或一個銳角的度數(shù),再從已知條件AOD=120出發(fā),應(yīng)用矩形的性質(zhì)可知,ADB=30,另外,還可以引導(dǎo)學(xué)生探究△AOB是什么特殊的三角形(等邊三角形),課本用了第一種解法,并給出了解幾何計算題書寫格式的示范;第二種解法如下:

      ∵四邊形ABCD是矩形,

      AC=BD(矩形的對角線相等)。

      又 。

      OA=BO,△AOB是等腰三角形,

      ∵AOD=120,AOB=180- 120= 60

      AOB是等邊三角形。

      BO=AB=4cm,

      BD=2BO=244cm=8cm。

      例2:(補充例題)

      已知:如圖4.5-5四邊形ABCD中,ABC=ADC=90, E是AC的中點,EF平分BED交BD于點F。

      (l)猜想:EF與BD具有怎樣的關(guān)系?

      (2)試證明你的猜想。

      解:(l)EF垂直平分BD。

      (2)證明:∵ABC=90,點E是AC的中點。

      (直角三角形的斜邊上的中線等于斜邊的一半)。

      同理: 。

      BE=DE。

      又∵EF平分BED。

      EFBD,BF=DF。

      說明:本例是一道不給出結(jié)論,需要學(xué)生自己觀察---猜想---討論的幾何命題,有助于發(fā)展學(xué)生的推理(包括合情推理和邏輯推理)能力。如果學(xué)生不適應(yīng),或有困難,教師可根據(jù)實際情況加以引導(dǎo),這種訓(xùn)練,重要的不是猜對了沒有?證明了沒有?而是讓學(xué)生經(jīng)歷這樣一種自己研究圖形性質(zhì)的過程,順便指出:求解本題的重要基礎(chǔ)是識圖技能----能從復(fù)雜圖形中分解出如圖4.5-6所示的三個基本圖形。

      課堂練習(xí)

      1.課本例1后練習(xí)題第2題。

      2.課本例1后練習(xí)題第4題。

      小結(jié)

      1.矩形的定義:

      2.歸納總結(jié)矩形的性質(zhì):

      對邊平行且相等

      四個角都是直角

      對角線平行且相等

      3.直角三角形斜邊上的中線等于斜邊的一半。

      4.矩形的一條對角線把矩形分成兩個全等的直角三角形;矩形的兩條對角線把矩形分成四個全等的等腰三角形。因此,有關(guān)矩形的問題往往可化為直角三角形或等腰三角形的問題來解決。

      作業(yè)

      l.課本習(xí)題4.3A組第2題。

      2.課本復(fù)習(xí)題四A組第6、7題。

    初二數(shù)學(xué)教案8

      一、教學(xué)目標

      1. 掌握等腰梯形的判定方法.

      2. 能夠運用等腰梯形的性質(zhì)和判定進行有關(guān)問題的論證和計算,進一步培養(yǎng)學(xué)生的分析能力和計算能力.

      3. 通過添加輔助線,把梯形的問題轉(zhuǎn)化成平行四邊形或三角形問題,使學(xué)生體會圖形變換的方法和轉(zhuǎn)化的思想

      二、教法設(shè)計

      小組討論,引導(dǎo)發(fā)現(xiàn)、練習(xí)鞏固

      三、重點、難點

      1.教學(xué)重點:等腰梯形判定.

      2.教學(xué)難點:解決梯形問題的基本方法(將梯形轉(zhuǎn)化為平行四邊形和三角形及正確運用輔助線).

      四、課時安排

      1課時

      五、教具學(xué)具準備

      多媒體,小黑板,常用畫圖工具

      六、師生互動活動設(shè)計

      教師復(fù)習(xí)引入,學(xué)生閱讀課本;學(xué)生在教師引導(dǎo)下探索等腰梯形的判定,歸納小結(jié)梯形轉(zhuǎn)化的常見的輔助線

      七、教學(xué)步驟

      【復(fù)習(xí)提問】

      1.什么樣的四邊形叫梯形,什么樣的梯形是直角梯形、等腰梯形?

      2.等腰梯形有哪些性質(zhì)?它的性質(zhì)定理是怎樣證明的?

      3.在研究解決梯形問題時的基本思想和方法是什么?常用的輔助線有哪幾種?

      我們已經(jīng)掌握了等腰梯形的性質(zhì),那么又如何來判定一個梯形是否是等腰梯形呢?今天我們就共同來研究這個問題.

      【引人新課】

      等腰梯形判定定理:在同一底上的兩個角相等的梯形是等腰梯形.

      前面我們用等腰三角形的定理證明了等腰梯形的性質(zhì)定理,現(xiàn)在我們也可以用等腰三角形的判定定理來證明等腰梯形的判定定理.

      例1已知:如圖,在梯形 中, , ,求證: .

      分析:我們學(xué)過“如果一個三角形中有兩個角相等,那么它們所對的邊相等.”因此,我們只要能將等腰梯形同一底上的兩個角轉(zhuǎn)化為等腰三角形的.兩個底角,定理就容易證明了.

      (引導(dǎo)學(xué)生口述證明方法,然后利用投影儀出示三種證明方法)

      (1)如圖,過點 作 、 ,交 于 ,得 ,所以得 .

      又由 得 ,因此可得 .

      (2)作高 、 ,通過證 推出 .

      (3)分別延長 、 交于點 ,則 與 都是等腰三角形,所以可得 .

      (證明過程略).

      例3 求證:對角線相等的梯形是等腰梯形.

      已知:如圖,在梯形 中, , .

      求證: .

      分析:證明本題的關(guān)鍵是如何利用對角線相等的條件來構(gòu)造等腰三角形.

      在 和 中,已有兩邊對應(yīng)相等,別人要能證 ,就可通過證 得到 .

      (引導(dǎo)學(xué)生說出證明思路,教師板書證明過程)

      證明:過點 作 ,交 延長線于 ,得 ,

      ∴ .

      ∵ , ∴

      ∴

      ∵ , ∴

      又∵ 、 ,∴

      ∴ .

      說明:如果 、 交于點 ,那么由 可得 , ,即等腰梯形對角線相交,可以得到以交點為頂點的兩個等腰三角形,這個結(jié)論雖不能直接引用,但可以為以后解題提供思路.

      例4 畫一等腰梯形,使它上、下底長分別5cm,高為4cm,并計算這個等腰梯形的周長和面積.

      分析:如圖,先算出 長,可畫等腰三角形 ,然后完成 的畫圖.

      畫法:①畫 ,使 .

      .

      ②延長 到 使 .

      ③分別過 、 作 , , 、 交于點 .

      四邊形 就是所求的等腰梯形.

      解:梯形 周長 .

      答:梯形周長為26cm,面積為 .

      【總結(jié)、擴展】

      小結(jié):(由學(xué)生總結(jié))

      (l)等腰梯形的判定方法:①先判定它是梯形②再用“兩腰相等”“或同一底上的兩個角相等”來判定它是等腰梯形.

      (2)梯形的畫圖:一般先畫出有關(guān)的三角形,在此基礎(chǔ)上再畫出有關(guān)的平行四邊形,最后得到所求圖形.(三角形奠基法)

      八、布置作業(yè)

      l.已知:如圖,梯形 中, , 、 分別為 、 中點,且 ,求證:梯形 為等腰梯形.

      九、板書設(shè)計

      十、隨堂練習(xí)

      教材P177中l(wèi);P179中B組2

    初二數(shù)學(xué)教案9

      教學(xué)目標:

      知識與技能

      1、掌握直角三角形的判別條件,并能進行簡單應(yīng)用;

      2、進一步發(fā)展數(shù)感,增加對勾股數(shù)的直觀體驗,培養(yǎng)從實際問題抽象出數(shù)學(xué)問題的能力,建立數(shù)學(xué)模型、

      3、會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應(yīng)用哪個結(jié)論、

      情感態(tài)度與價值觀

      敢于面對數(shù)學(xué)學(xué)習(xí)中的困難,并有獨立克服困難和運用知識解決問題的成功經(jīng)驗,進一步體會數(shù)學(xué)的應(yīng)用價值,發(fā)展運用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動的意識、

      教學(xué)重點

      運用身邊熟悉的事物,從多種角度發(fā)展數(shù)感,會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應(yīng)用哪個結(jié)論、

      教學(xué)難點

      會辨析哪些問題應(yīng)用哪個結(jié)論、

      課前準備

      標有單位長度的細繩、三角板、量角器、題篇

      教學(xué)過程:

      復(fù)習(xí)引入:

      請學(xué)生復(fù)述勾股定理;使用勾股定理的'前提條件是什么?

      已知△ABC的兩邊AB=5,AC=12,則BC=13對嗎?

      創(chuàng)設(shè)問題情景:由課前準備好的一組學(xué)生以小品的形式演示教材第9頁古埃及造直角的方法、

      這樣做得到的是一個直角三角形嗎?

      提出課題:能得到直角三角形嗎

      講授新課:

      1、如何來判斷?(用直角三角板檢驗)

      這個三角形的三邊分別是多少?(一份視為1)它們之間存在著怎樣的關(guān)系?

      就是說,如果三角形的三邊為 , , ,請猜想在什么條件下,以這三邊組成的三角形是直角三角形?(當滿足較小兩邊的平方和等于較大邊的平方時)

      2、繼續(xù)嘗試:下面的三組數(shù)分別是一個三角形的三邊長a,b,c:

      5,12,13; 6, 8, 10; 8,15,17、

      (1)這三組數(shù)都滿足a2 +b2=c2嗎?

      (2)分別以每組數(shù)為三邊長作出三角形,用量角器量一量,它們都是直角三角形嗎?

      3、直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2 +b2=c2 ,那么這個三角形是直角三角形、

      滿足a2 +b2=c2的三個正整數(shù),稱為勾股數(shù)、

      4、例1 一個零件的形狀如左圖所示,按規(guī)定這個零件中 ∠A和∠DBC都應(yīng)為直角、工人師傅量得這個零件各邊尺寸如右圖所示,這個零件符合要求嗎?

      隨堂練習(xí):

      1、下列幾組數(shù)能否作為直角三角形的三邊長?說說你的理由、

      ⑴9,12,15; ⑵15,36,39;

      ⑶12,35,36; ⑷12,18,22、

      2、已知ABC中BC=41, AC=40, AB=9, 則此三角形為_______三角形, ______是角、

      3、四邊形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求這個四邊形的面積、

      4、習(xí)題1、3

      課堂小結(jié):

      1、直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2 +b2=c2 ,那么這個三角形是直角三角形、

      2、滿足a2 +b2=c2的三個正整數(shù),稱為勾股數(shù)、勾股數(shù)擴大相同倍數(shù)后,仍為勾股數(shù)、

    初二數(shù)學(xué)教案10

      教學(xué)目的

      通過分析儲蓄中的數(shù)量關(guān)系、商品利潤等有關(guān)知識,經(jīng)歷運用方程解決實際問題的過程,進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學(xué)模型。

      重點、難點

      1.重點:探索這些實際問題中的等量關(guān)系,由此等量關(guān)系列出方程。

      2.難點:找出能表示整個題意的等量關(guān)系。

      教學(xué)過程

      一、復(fù)習(xí)

      1.儲蓄中的利息、本金、利率、本利和等含義,關(guān)系:利息=本金×年利率×年數(shù)

      本利和=本金×利息×年數(shù)+本金

      2.商品利潤等有關(guān)知識。

      利潤=售價—成本; =商品利潤率

      二、新授

      問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元?

      利息—利息稅=48。6

      可設(shè)小明爸爸前年存了x元,那么二年后共得利息為

      2.43%×X×2,利息稅為2.43%X×2×20%

      根據(jù)等量關(guān)系,得2.43%x·2—2.43%x×2×20%=48.6

      問,扣除利息的20%,那么實際得到的利息是多少?扣除利息的20%,實際得到利息的80%,因此可得

      2.43%x·2.80%=48.6

      解方程,得x=1250

      例1.一家商店將某種服裝按成本價提高40%后標價,又以8折(即按標價的80%)優(yōu)惠賣出,結(jié)果每件仍獲利15元,那么這種服裝每件的成本是多少元?

      大家想一想這15元的利潤是怎么來的?

      標價的80%(即售價)-成本=15

      若設(shè)這種服裝每件的成本是x元,那么

      每件服裝的`標價為:(1+40%)x

      每件服裝的實際售價為:(1+40%)x·80%

      每件服裝的利潤為:(1+40%)x·80%—x

      由等量關(guān)系,列出方程:

      (1+40%)x·80%—x=15

      解方程,得x=125

      答:每件服裝的成本是125元。

      三、鞏固練習(xí)

      教科書第15頁,練習(xí)1、2。

      四、小結(jié)

      當運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數(shù)學(xué)問題,然后分析數(shù)學(xué)問題中的等量關(guān)系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應(yīng)用一元一次方程解決實際問題的關(guān)鍵是:根據(jù)題意首先尋找“等量關(guān)系”。

      五、作業(yè)

      教科書第16頁,習(xí)題6.3.1,第4、5題。

    初二數(shù)學(xué)教案11

      教學(xué)目標

      1、知識與技能

      了解因式分解的意義,以及它與整式乘法的關(guān)系、

      2、過程與方法

      經(jīng)歷從分解因數(shù)到分解因式的類比過程,掌握因式分解的概念,感受因式分解在解決問題中的作用、

      3、情感、態(tài)度與價值觀

      在探索因式分解的方法的`活動中,培養(yǎng)學(xué)生有條理的思考、表達與交流的能力,培養(yǎng)積極的進取意識,體會數(shù)學(xué)知識的內(nèi)在含義與價值、

      重、難點與關(guān)鍵

      1、重點:了解因式分解的意義,感受其作用、

      2、難點:整式乘法與因式分解之間的關(guān)系、

      3、關(guān)鍵:通過分解因數(shù)引入到分解因式,并進行類比,加深理解、

      教學(xué)方法

      采用“激趣導(dǎo)學(xué)”的教學(xué)方法、

      教學(xué)過程

      一、創(chuàng)設(shè)情境,激趣導(dǎo)入

      【問題牽引】

      請同學(xué)們探究下面的2個問題:

      問題1:720能被哪些數(shù)整除?談?wù)勀愕南敕ā?/p>

      問題2:當a=102,b=98時,求a2-b2的值、

      二、豐富聯(lián)想,展示思維

      探索:你會做下面的填空嗎?

      1、ma+mb+mc=()();

      2、x2-4=()();

      3、x2-2xy+y2=()2、

      【師生共識】把一個多項式化成幾個整式的積的形式,叫做把這個多項式因式分解,也叫做分解因式、

      三、小組活動,共同探究

      【問題牽引】

      (1)下列各式從左到右的變形是否為因式分解:

      ①(x+1)(x-1)=x2-1;

      ②a2-1+b2=(a+1)(a-1)+b2;

      ③7x-7=7(x-1)、

      (2)在下列括號里,填上適當?shù)捻棧沟仁匠闪ⅰ?/p>

      ①9x2(______)+y2=(3x+y)(_______);

      ②x2-4xy+(_______)=(x-_______)2、

      四、隨堂練習(xí),鞏固深化

      課本練習(xí)、

      【探研時空】計算:993-99能被100整除嗎?

      五、課堂總結(jié),發(fā)展?jié)撃?/strong>

      由學(xué)生自己進行小結(jié),教師提出如下綱目:

      1、什么叫因式分解?

      2、因式分解與整式運算有何區(qū)別?

      六、布置作業(yè),專題突破

      選用補充作業(yè)、

      板書設(shè)計

    初二數(shù)學(xué)教案12

      教學(xué)建議

      知識結(jié)構(gòu):

      重點難點分析:

      是商的二次根式的性質(zhì)及利用性質(zhì)進行二次根式的化簡與運算,利用分母有理化化簡.商的算術(shù)平方根的性質(zhì)是本節(jié)的主線,學(xué)生掌握性質(zhì)在二次根使得化簡和運算的運用是關(guān)鍵,從化簡與運算由引出初中重要的內(nèi)容之一分母有理化,分母有理化的理解決定了最簡二次根式化簡的掌握.

      教學(xué)難點是二次根式的除法與商的算術(shù)平方根的關(guān)系及應(yīng)用.二次根式的除法與乘法既有聯(lián)系又有區(qū)別,強調(diào)根式除法結(jié)果的一般形式,避免分母上含有根號.由于分母有理化難度和復(fù)雜性大,要讓學(xué)生首先理解分母有理化的意義及計算結(jié)果形式.

      教法建議:

      1. 本節(jié)內(nèi)容是在有積的二次根式性質(zhì)的基礎(chǔ)后學(xué)習(xí),因此可以采取學(xué)生自主探索學(xué)習(xí)的模式,通過前一節(jié)的復(fù)習(xí),讓學(xué)生通過具體實例再結(jié)合積的性質(zhì),對比、歸納得到商的二次根式的性質(zhì).教師在此過程中給與適當?shù)闹笇?dǎo),提出問題讓學(xué)生有一定的探索方向.

      2. 本節(jié)內(nèi)容可以分為三課時,第一課時討論商的算術(shù)平方根的性質(zhì),并運用這一性質(zhì)化簡較簡單的二次根式(被開方數(shù)的分母可以開得盡方的二次根式);第二課時討論二次根式的除法法則,并運用這一法則進行簡單的二次根式的除法運算以及二次根式的乘除混合運算,這一課時運算結(jié)果不包括根號出現(xiàn)內(nèi)出現(xiàn)分式或分數(shù)的情況;第三課時討論分母有理化的概念及方法,并進行二次根式的乘除法運算,把運算結(jié)果分母有理化.這樣安排使內(nèi)容由淺入深,各部分相互聯(lián)系,因此及彼,層層展開.

      3. 引導(dǎo)學(xué)生思考想一想中的內(nèi)容,培養(yǎng)學(xué)生思維的深刻性,教師組織學(xué)生思考、討論過程中,鼓勵學(xué)生大膽猜想,積極探索,運用類比、歸納和從特殊到一般的思考方法激發(fā)學(xué)生創(chuàng)造性的思維.

      教學(xué)設(shè)計示例

      一、教學(xué)目標

      1.掌握商的算術(shù)平方根的性質(zhì),能利用性質(zhì)進行二次根式的化簡與運算;

      2.會進行簡單的二次根式的除法運算;

      3.使學(xué)生掌握分母有理化概念,并能利用分母有理化解決二次根式的化簡及近似計算問題;

      4. 培養(yǎng)學(xué)生利用二次根式的除法公式進行化簡與計算的能力;

      5. 通過二次根式公式的引入過程,滲透從特殊到一般的歸納方法,提高學(xué)生的歸納總結(jié)能力;

      6. 通過分母有理化的'教學(xué),滲透數(shù)學(xué)的簡潔性.

      二、教學(xué)重點和難點

      1.重點:會利用商的算術(shù)平方根的性質(zhì)進行二次根式的化簡,會進行簡單的二次根式的除法運算,還要使學(xué)生掌握二次根式的除法采用分母有理化的方法進行.

      2.難點:二次根式的除法與商的算術(shù)平方根的關(guān)系及應(yīng)用.

      三、教學(xué)方法

      從特殊到一般總結(jié)歸納的方法以及類比的方法,在學(xué)習(xí)了二次根式乘法的基礎(chǔ)上本小節(jié)

      內(nèi)容可引導(dǎo)學(xué)生自學(xué),進行總結(jié)對比.

      四、教學(xué)手段

      利用投影儀.

      五、教學(xué)過程

      (一) 引入新課

      學(xué)生回憶及得算數(shù)平方根和性質(zhì): (a0,b0)是用什么樣的方法引出的?(上述積的算術(shù)平方根的性質(zhì)是由具體例子引出的.)

      學(xué)生觀察下面的例子,并計算:

      由學(xué)生總結(jié)上面兩個式的關(guān)系得:

      類似地,每個同學(xué)再舉一個例子,然后由這些特殊的例子,得出:

      (二)新課

      商的算術(shù)平方根.

      一般地,有 (a0,b0)

      商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根.

      讓學(xué)生討論這個式子成立的條件是什么?a0,b0,對于為什么b0,要使學(xué)生通過討論明確,因為b=0時分母為0,沒有意義.

      引導(dǎo)學(xué)生從運算順序看,等號左邊是將非負數(shù)a除以正數(shù)b求商,再開方求商的算術(shù)平方根,等號右邊是先分別求被除數(shù)、除數(shù)的算術(shù)平方根,然后再求兩個算術(shù)平方根的商,根據(jù)商的算術(shù)平方根的性質(zhì)可以進行簡單的二次根式的化簡與運算.

      例1 化簡:

      (1) ; (2) ; (3) ;

      解∶(1)

      (2)

      (3)

      說明:如果被開方數(shù)是帶分數(shù),在運算時,一般先化成假分數(shù);本節(jié)根號下的字母均為正數(shù).

      例2 化簡:

      (1) ; (2) ;

      解:(1)

      (2)

      讓學(xué)生觀察例題中分母的特點,然后提出, 的問題怎樣解決?

      再總結(jié):這一小節(jié)開始講的二次根式的化簡,只限于所得結(jié)果的式子中分母可以完全開的盡方的情況, 的問題,我們將在今后的學(xué)習(xí)中解決.

      學(xué)生討論本節(jié)課所學(xué)內(nèi)容,并進行小結(jié).

      (三)小結(jié)

      1.商的算術(shù)平方根的性質(zhì).(注意公式成立的條件)

      2.會利用商的算術(shù)平方根的性質(zhì)進行簡單的二次根式的化簡.

      (四)練習(xí)

      1.化簡:

      (1) ; (2) ; (3) .

      2.化簡:

      (1) ; (2) ; (3)

      六、作業(yè)

      教材P.183習(xí)題11.3;A組1.

      七、板書設(shè)計

    初二數(shù)學(xué)教案13

      知識與技能

      1.了解分式的基本性質(zhì),掌握分式的約分和通分法則。掌握分式的四則運算。

      2.會用待定系數(shù)法求反比例函數(shù)的解析式,能利用函數(shù)性質(zhì)分析和解決一些簡單的實際問題。

      3.體驗勾股定理的探索過程,會運用勾股定理解決簡單問題。會運用勾股定理的逆定理判定直角三角形。

      4.探索并掌握平行四邊形、矩形、菱形、正方形、等腰梯形的有關(guān)性質(zhì)和常用判定方法,并運用這些知識進行有關(guān)的證明和計算。

      5.進一步理解平均數(shù)、中位數(shù)和眾數(shù)等統(tǒng)計量的統(tǒng)計意義,會計算極差和方差,理解它們的.統(tǒng)計意義,會用它們表示數(shù)據(jù)的波動情況。

      過程與方法

      進一步培養(yǎng)學(xué)生的合情推理能力和發(fā)展學(xué)生邏輯思維能力和推理論證的表達能力;解決一些實際問題,體會化歸思想和函數(shù)的變化與對應(yīng)的思想;養(yǎng)成用數(shù)據(jù)說話的習(xí)慣和實事求是的科學(xué)態(tài)度;培養(yǎng)學(xué)生的探究能力、數(shù)學(xué)歸納能力,在活動中培養(yǎng)學(xué)生的合作交流能力;逐步形成獨立思考,主動探索的習(xí)慣。

      情感、態(tài)度與價值觀

      豐富學(xué)生從事數(shù)學(xué)活動的經(jīng)驗和體驗,通過對問題的共同探討,培養(yǎng)學(xué)生的協(xié)作精神,通過對知識方法的總結(jié),培養(yǎng)反思的習(xí)慣,和理性思維。培養(yǎng)學(xué)生面對教學(xué)活動中的困難,能通過合作交流解決遇到的困難。

    初二數(shù)學(xué)教案14

      一、教學(xué)目標

      1.掌握矩形的定義,知道矩形與平行四邊形的關(guān)系.

      2.掌握矩形的性質(zhì)定理.

      3.使學(xué)生能應(yīng)用矩形定義、性質(zhì)等知識,解決簡單的證明題和計算題,進一步培養(yǎng)學(xué)生的分析能力.

      4.通過性質(zhì)的學(xué)習(xí),體會矩形的應(yīng)用美.

      二、教法設(shè)計

      觀察、啟發(fā)、總結(jié)、提高,類比探討,討論分析,啟發(fā)式.

      三、重點、難點及解決辦法

      1.教學(xué)重點:矩形的性質(zhì)及其推論.

      2.教學(xué)難點:矩形的本質(zhì)屬性及性質(zhì)定理的綜合應(yīng)用.

      四、課時安排

      1課時

      五、教具學(xué)具準備

      教具(一個活動的平行四邊形),投影儀及膠片,常用畫圖工具

      六、師生互動活動設(shè)計

      教具演示、創(chuàng)設(shè)情境,觀察猜想,推理論證

      七、教學(xué)步驟

      【復(fù)習(xí)提問】

      什么叫平行四邊形?它和四邊形有什么區(qū)別?

      【引入新課】

      我們已經(jīng)知道平行四邊形是特殊的四邊形,因此平行四邊形除具有四邊形的性質(zhì)外,還有它的特殊性質(zhì),同樣對于平行四邊形來說,也有特殊情況即特殊的平行四邊形, 堂課我們就來研究一種特殊的平行四邊形矩形(寫出課題).

      【講解新課】

      制一個活動的平行四邊形教具,堂上進行演示圖,使學(xué)生注意觀察四邊形角的變化,當變到一個角是直角時,指出這時平行四邊形是矩形,使學(xué)生明確矩形是特殊的平行四邊形(特殊之處就在于一個角是直角,深刻理解矩形與平行四邊形的聯(lián)系和區(qū)別).

      矩形的性質(zhì):

      既然矩形是一種特殊的平行四邊形,就應(yīng)具有平行四邊形性質(zhì),同時矩形又是特殊的平行四邊形,比平行四邊形多了一個角是直角的條件,因而它就增加了一些特殊性質(zhì).

      繼續(xù)演示教具,當它變成矩形時,學(xué)生容易看到它的四個角都是直角;它的對角線也相等(寫出這兩個結(jié)論),指出觀察出來的結(jié)論不能做為定理,需要證明.引導(dǎo)學(xué)生利用平行四邊形角的性質(zhì)證明得出.

      矩形性質(zhì)定理1:矩形的`四個角都是直角.

      矩形性質(zhì)定理2:矩形對角線相等.

      由矩形性質(zhì)定理2我們可以得到

      推論:直角三角形斜邊上的中線等于斜邊的一半.

      (這實際上是 △的一個重要性質(zhì),即 △斜邊中點到三頂點的距離相等,它在求線段長或線段部分關(guān)系時經(jīng)常用到)

      例1 已知如圖1 矩形 的兩條對角線相交于點, , ,求矩形對角線的長.(按教材的格式)

      (強調(diào)這種計算題的解題格式,防止學(xué)生離開幾何元素之間的關(guān)系,而單純進行代數(shù)計算)

      【總結(jié)、擴展】

      1.小結(jié):(用投影打出)

      (1)矩形、平行四邊形、四邊形從屬關(guān)系如圖.

      (2)矩形性質(zhì).

      1.具有平行四邊形的所有性質(zhì).

      2.特有性質(zhì):四個角都是直角,對角線相等.

      3.思考題:已知如圖, 是矩形 對角線交點, 平分 , ,求 的度數(shù)

      八、布置作業(yè)

      教材P158中2、5,P195中7.

      九、板書設(shè)計

      十、隨堂練習(xí)

      教材P146中1、2、3、4

    初二數(shù)學(xué)教案15

      一、教學(xué)目標

      1.了解分式、有理式的概念。

      2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件。

      二、重點、難點

      1.重點:理解分式有意義的條件,分式的值為零的條件。

      2.難點:能熟練地求出分式有意義的條件,分式的值為零的條件。

      3。認知難點與突破方法

      難點是能熟練地求出分式有意義的條件,分式的值為零的條件。突破難點的方法是利用分式與分數(shù)有許多類似之處,從分數(shù)入手,研究出分式的有關(guān)概念,同時還要講清分式與分數(shù)的聯(lián)系與區(qū)別。

      三、例、習(xí)題的意圖分析

      本章從實際問題引出分式方程=,給出分式的描述性的定義:像這樣分母中含有字母的式子屬于分式。不要在列方程時耽誤時間,列方程在這節(jié)課里不是重點,也不要求解這個方程。

      1.本節(jié)進一步提出P4[思考]讓學(xué)生自己依次填出:。為下面的[觀察]提供具體的式子,就以上的式子,有什么共同點?它們與分數(shù)有什么相同點和不同點?

      可以發(fā)現(xiàn),這些式子都像分數(shù)一樣都是(即A÷B)的形式。分數(shù)的.分子A與分母B都是整數(shù),而這些式子中的A、B都是整式,并且B中都含有字母。

      P5[歸納]順理成章地給出了分式的定義。分式與分數(shù)有許多類似之處,研究分式往往要類比分數(shù)的有關(guān)概念,所以要引導(dǎo)學(xué)生了解分式與分數(shù)的聯(lián)系與區(qū)別。

      希望老師注意:分式比分數(shù)更具有一般性,例如分式可以表示為兩個整式相除的商(除式不能為零),其中包括所有的分數(shù)。

      2.P5[思考]引發(fā)學(xué)生思考分式的分母應(yīng)滿足什么條件,分式才有意義?由分數(shù)的分母不能為零,用類比的方法歸納出:分式的分母也不能為零。注意只有滿足了分式的分母不能為零這個條件,分式才有意義。即當B≠0時,分式才有意義。

      3.P5例1填空是應(yīng)用分式有意義的條件—分母不為零,解出字母x的值。還可以利用這道題,不改變分式,只把題目改成“分式無意義”,使學(xué)生比較全面地理解分式及有關(guān)的概念,也為今后求函數(shù)的自變量的取值范圍,打下良好的基礎(chǔ)。

      4.P12[拓廣探索]中第13題提到了“在什么條件下,分式的值為0?”,下面補充的例2為了學(xué)生更全面地體驗分式的值為0時,必須同時滿足兩個條件:1分母不能為零;2分子為零。這兩個條件得到的解集的公共部分才是這一類題目的解。

      四、課堂引入

      1.讓學(xué)生填寫P4[思考],學(xué)生自己依次填出:

      2.學(xué)生看P3的問題:一艘輪船在靜水中的最大航速為20千米/時,它沿江以最大航速順流航行100千米所用實踐,與以最大航速逆流航行60千米所用時間相等,江水的流速為多少?

      請同學(xué)們跟著教師一起設(shè)未知數(shù),列方程。

      設(shè)江水的流速為x千米/時。

    【初二數(shù)學(xué)教案】相關(guān)文章:

    初二數(shù)學(xué)教案11-02

    初二數(shù)學(xué)教案【熱門】12-22

    初二數(shù)學(xué)教案【薦】12-22

    【熱】初二數(shù)學(xué)教案12-23

    【推薦】初二數(shù)學(xué)教案12-23

    初二數(shù)學(xué)教案【熱】12-24

    《矩形》初二的數(shù)學(xué)教案12-02

    【薦】初二數(shù)學(xué)教案12-19

    【精】初二數(shù)學(xué)教案12-19

    【熱門】初二數(shù)學(xué)教案12-20

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      亚洲精品视频三级在线看 | 野外少妇愉情中文字幕 | 亚洲欧美综合a一区久久 | 亚洲无线码在线一区 | 在线观看国产欧美亚洲 | 玩弄丰满少妇视频 |