初一數學教案(集錦15篇)
作為一名優秀的教育工作者,有必要進行細致的教案準備工作,教案是保證教學取得成功、提高教學質量的基本條件。那要怎么寫好教案呢?以下是小編為大家整理的初一數學教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
初一數學教案1
教學目的
通過天平實驗,讓學生在觀察、思考的基礎上歸納出方程的兩種變形,并能利用它們將簡單的方程變形以求出未知數的值。
重點、難點
1.重點:方程的兩種變形。
2.難點:由具體實例抽象出方程的兩種變形。
教學過程
一、引入
上一節課我們學習了列方程解簡單的應用題,列出的方程有的我們不會解,我們知道解方程就是把方程變形成x=a形式,本節課,我們將學習如何將方程變形。
二、新授
讓我們先做個實驗,拿出預先準備好的天平和若干砝碼。
測量一些物體的質量時,我們將它放在天干的左盤內,在右盤內放上砝碼,當天平處于平衡狀態時,顯然兩邊的質量相等。
如果我們在兩盤內同時加入相同質量的砝碼,這時天平仍然平衡,天平兩邊盤內同時拿去相同質量的砝碼,天平仍然平衡。
如果把天平看成一個方程,課本第4頁上的圖,你能從天平上砝碼的變化聯想到方程的變形嗎?
讓同學們觀察圖(1)的左邊的天平;天平的左盤內有一個大砝碼和2個小砝碼,右盤上有5個小砝碼,天平平衡,表示左右兩盤的質量相等。如果我們用x表示大砝碼的質量,1表示小砝碼的質量,那么可用方程x+2=5表示天平兩盤內物體的質量關系。
問:圖(1)右邊的天平內的砝碼是怎樣由左邊天平變化而來的?它所表示的方程如何由方程x+2=5變形得到的?
學生回答后,教師歸納:方程兩邊都減去同一個數,方程的解不變。
問:若把方程兩邊都加上同一個數,方程的解有沒有變?如果把方程兩邊都加上(或減去)同一個整式呢?
讓同學們看圖(2)。左天平兩盤內的砝碼的質量關系可用方程表示為3x=2x+2,右邊的天平內的砝碼是怎樣由左邊天平變化而來的`?
把天平兩邊都拿去2個大砝碼,相當于把方程3x=2x+2兩邊都減去2x,得到的方程的解變化了嗎?如果把方程兩邊都加上2x呢?
由圖(1)、(2)可歸結為;
方程兩邊都加上或都減去同一個數或同一個整式,方程的解不變。
讓學生觀察(3),由學生自己得出方程的第二個變形。
即方程兩邊都乘以或除以同一個不為零的數,方程的解不變:
通過對方程進行適當的變形.可以求得方程的解。
例1.解下列方程
(1)x-5=7 (2)4x=3x-4
(1)解兩邊都加上5,x,x=7+5 即 x=12
(2)兩邊都減去3x,x=3x-4-3x 即 x=-4
請同學們分別將x=7+5與原方程x-5=7;x=3x-4-3,與原方程4x=3x-4比較,你發現了這些方程的變形。有什么共同特點?
這就是說把方程兩邊都加上(或減去)同一個數或同一個整式,就相當于把方程中的某些項改變符號后,從方程的一邊移到另一邊,這樣的變形叫做移項。
注意:“移項’’是指將方程的某一項從等號的左邊移到右邊或從右邊移到左邊,移項時要先變號后移項。
例2.解下列方程
(1)-5x=2 (2) x=
這里的變形通常稱為“將未知數的系數化為1”。
以上兩個例題都是對方程進行適當的變形,得到x=a的形式。
練習:
課本第6頁練習1、2、3。
練習中的第3題,即第2頁中的方程①先讓學生討論、交流。
鼓勵學生采用不同的方法,要他們說出每一步變形的根據,由他們自己得出采用哪種方法簡便,體會方程的不同解法中所經歷的轉化思想,讓學生自己體驗成功的感覺。
三、鞏固練習
教科書第7頁,練習
四、小結
本節課我們通過天平實驗,得出方程的兩種變形:
1.把方程兩邊都加上或減去同一個數或整式方程的解不變。
2.把方程兩邊都乘以或除以(不等零)的同一個數,方程的解不變。第①種變形又叫移項,移項別忘了要先變號,注意移項與在方程的一邊交換兩項的位置有本質的區別。
五、作業
教科書第7—8頁習題6.2.1第1、2、3。
初一數學教案2
一、教學目標
1.通過七巧板的制作,拼擺等活動,進一步豐富對平行,垂直及角等有關內容的認識,積累數學活動經驗。
2.能用適當的圖形和語言表示自己的思考結果。
二、教學重點和難點
本堂內容的重點是七巧板的制作和拼擺,難點是拼圖所要表現的幾何圖形,對已學過的平行,垂直及角等有關內容的有機聯系和語言表達。
三、教學手段
引導活動討論
引導:意在教師講解七巧板的歷史,七巧板制作的方法。
活動:人人參與制作七巧板,拼擺七巧板的圖案。
討論:對自己所拼擺的圖形與同伴交流,與全班同學交流(利用多媒體工具)與老師進行交流。
四、教學方法
啟發式教學
五、教學過程
1 創設情景,引入新課
先用多媒體顯示各種已拼擺好的動物,交通工具,植物等等然后介紹它是由怎樣的一副拼板拼擺而成的(不一定要七巧板)。緊接著就介紹七巧板的歷史,制作方法,讓學生制作一副七巧板,并涂上不同的顏色。
2 合作交流,探索新知
利用所做的七巧板拼出兩個不同的圖案,并與同伴交流,與全班同學交流,與老師交流。
(1) 你的拼圖用了什么形狀的'板?你想表現什么?
(2) 在你的拼出的圖案中,指出三組互相平行或垂直的線段,并將它們間的關系表示出來。
(3) 在你拼出的圖案中,找出一個銳角、一個直角、一個鈍角,并將它們表示出來,它們分別是多少度。
通過學生的展示,教師作適時的評價,樹立榜樣,培養學生之間的競爭意識。
3 范例教學
介紹老師制作的3副游戲板,并用多媒體顯示十幾種的拼擺圖案,通過生動有趣的圖案,激發學生的創造欲望,提出你還有材料嗎?有信心憑自己的智慧制作一副游戲板嗎?意在充分發揮學生的創造能力、想象能力、合作交流能力(可由附近的同學四人小組制作完成)。
4 反饋練習
由四人小組制作的游戲板,拼擺二個不同圖案,利用多媒體,展示給全體同學,用語言表示拼圖所表現的內容,與所學的知識的聯系,呈現平行,垂直及角的有關知識。
5 歸納小結
通過制作七巧板及游戲板進一步學會了畫平行線段、垂線段、找線段中點的方法,通過拼擺豐富了對平行、垂直及角等有關內容的認識,積累數學活動的經驗,提高了空間觀念和觀察、分析、概括表達的能力。
六、練習設計
利用20cm20cm的硬紙板做一副游戲板,利用它拼出5個自己喜歡的圖案,并把它畫下來,布置教室的環境。
七、板書設計
4.7有趣的七巧板
(一)知識回顧 (三)例題解析 (五)課堂小結
(二)觀察發現 (四)課堂練習 練習設計
初一數學教案3
學習目標:
理解多項式乘法法則,會利用法則進行簡單的多項式乘法運算。
學習重點:
多項式乘法法則及其應用。
學習難點:
理解運算法則及其探索過程。
一、課前訓練:
(1)-3a2b+2b2+3a2b-14b2 = ,(2)- = ;
(3)3a2b2 ab3 = , (4) = ;
(5)- = ,(6) = 。
二、探索練習:
(1)如圖1大長方形,其面積用四個小長方形面積
表示為: ;
(2)大長方形的長為 ,寬為 ,要
計算其面積就是 ,其中包含的
運算為 。
由上面的問題可發現:( )( )=
多項式乘以多項式法則:多項式與多項式相乘,先用一個多項式的' 以另一個多項式的每一項,再把所得的積 。
三.運用法則規范解題。
四.鞏固練習:
3.計算:① ,
4.計算:
五.提高拓展練習:
5.若 求m,n的值.
6.已知 的結果中不含 項和 項,求m,n的值.
7.計算(a+b+c)(c+d+e),你有什么發現?
六.晚間訓練:
(7) 2a2(-a)4 + 2a45a2 (8)
3、(1)觀察:4×6=24
14×16=224
24×26=624
34×36=1224
你發現其中的規律嗎?你能用代數式表示這一規律嗎?
(2)利用(1)中的規律計算124×126。
4、如圖,AB= ,P是線段AB上一點,分別以AP,BP為邊作正方形。
(1)設AP= ,求兩個正方形的面積之和S;
(2)當AP分別 時,比較S的大小。
初一數學教案4
【教學內容】
第二章 2.1 正數與負數 2.2 數軸
【教學目標】
1、會判斷一個數是正數還是負數,理解負數的意義。
2、會把已知數在數軸上表示,能說出已知點所表示的數。
3、了解數軸的原點、正方向、單位長度,能畫出數軸。
4、會比較數軸上數的大小。
【知識講解】
一、本講主要學習內容
1、負數的意義及表示 2、零的位置和地位
3、有理數的分類 4、數軸概念及三要素
5、數軸上數與點的對應關系 6、數軸上數的'比較大小
其中,負數的概念,數軸的概念及其三要素以及數軸上數的比較大小是重點。負數的意義是難點。
下面概述一下這六點的主要內容
1、負數的意義及表示
把大于0的數叫正數如5,3,+3等。在正數前加上“-”號的數叫做負數如-5,-3,- 等。負數是表示相反意義的量,如:低于海平面-155米表示為-155m,虧損50元表示-50元。
2、零的位置和地位
零既不是正數,也不是負數,但它是自然數。它可以表示沒有,也可以在數軸上分隔正數和分數,甚至可以表示始點,表示缺位,這將在下面詳細介紹。
3、有理數的分類
正整數、零、負整數統稱為整數,正分數、負分數統稱為分數,整數和分數統稱為有理數。
正整數
整數 零 正有理數
有理數 負整數 或 有理數 零
分數 正分數 負有理數
負分數
初一數學教案5
教學目標
1.使學生正確理解數軸的意義,掌握數軸的三要素;
2.使學生學會由數軸上的已知點說出它所表示的數,能將有理數用數軸上的點表示出來;
3.使學生初步理解數形結合的思想方法.
教學重點和難點
重點:初步理解數形結合的思想方法,正確掌握數軸畫法和用數軸上的點表示有理數.
難點:正確理解有理數與數軸上點的對應關系.
課堂教學過程設計
一、從學生原有認知結構提出問題
1.小學里曾用“射線”上的點來表示數,你能在射線上表示出1和2嗎?
2.用“射線”能不能表示有理數?為什么?
3.你認為把“射線”做怎樣的改動,才能用來表示有理數呢?
待學生回答后,教師指出,這就是我們本節課所要學習的內容——數軸.
二、講授新課
讓學生觀察掛圖——放大的溫度計,同時教師給予語言指導:利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標有讀數,根據溫度計的液面的不同位置就可以讀出不同的數,從而得到所測的溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.
與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零.具體方法如下(邊說邊畫):
1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數,也可偏向左邊)用這點表示0(相當于溫度計上的0℃);
2.規定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);
3.選取適當的長度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…
提問:我們能不能用這條直線表示任何有理數?(可列舉幾個數)
在此基礎上,給出數軸的.定義,即規定了原點、正方向和單位長度的直線叫做數軸.
進而提問學生:在數軸上,已知一點P表示數-5,如果數軸上的原點不選在原來位置,而改選在另一位置,那么P對應的數是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?
通過上述提問,向學生指出:數軸的三要素——原點、正方向和單位長度,缺一不可.
三、運用舉例變式練習
例1畫一個數軸,并在數軸上畫出表示下列各數的點:
例2指出數軸上A,B,C,D,E各點分別表示什么數.
課堂練習
示出來.
2.說出下面數軸上A,B,C,D,O,M各點表示什么數?
最后引導學生得出結論:正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,零用原點表示.
四、小結
指導學生閱讀教材后指出:數軸是非常重要的數學工具,它使數和直線上的點建立了對應關系,它揭示了數和形之間的內在聯系,為我們研究問題提供了新的方法.
本節課要求同學們能掌握數軸的三要素,正確地畫出數軸,在此還要提醒同學們,所有的有理數都可用數軸上的點來表示,但是反過來不成立,即數軸上的點并不是都表示有理數,至于數軸上的哪些點不能表示有理數,這個問題以后再研究.
五、作業
1.在下面數軸上:
(1)分別指出表示-2,3,-4,0,1各數的點.
(2)A,H,D,E,O各點分別表示什么數?
2.在下面數軸上,A,B,C,D各點分別表示什么數?
3.下列各小題先分別畫出數軸,然后在數軸上畫出表示大括號內的一組數的點:
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};
初一數學教案6
教學目標
1,整理前兩個學段學過的整數、分數(包括小數)的知識,掌握正數和負數的概念;
2,能區分兩種不同意義的量,會用符號表示正數和負數;
3,體驗數學發展的一個重要原因是生活實際的需要,激發學生學習數學的興趣。
教學難點:正確區分兩種不同意義的量。
知識重點:兩種相反意義的量
教學過程:(師生活動)設計理念
設置情境
引入課題上課開始時,教師應通過具體的例子,簡要說明在前兩個學段我們已經學過的數,并由此請學生思考:生
活中僅有這些“以前學過的數”夠用了嗎?下面的例子僅供參考.
師:今天我們已經是七年級的學生了,我是你們的數學老師.下面我先向你們做一下自我介紹,我的名字是XX,身高1.73米,體重58.5千克,今年40歲.我們的班級是七(13)班,有60個同學,其中男同學有22個,占全班總人數的37%…
問題1:老師剛才的介紹中出現了幾個數?分別是什么?你能將這些數按以前學過的數的分類方法進行分類嗎?
學生活動:思考,交流
師:以前學過的數,實際上主要有兩大類,分別是整數和分數(包括小數).
問題2:在生活中,僅有整數和分數夠用了嗎?
請同學們看書(觀察本節前面的幾幅圖中用到了什么數,讓學生感受引入負數的必要性)并思考討論,然后進行交流。
(也可以出示氣象預報中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)
學生交流后,教師歸納:以前學過的數已經不夠用了,有時候需要一種前面帶有“-”的新數。先回顧小學里學過的數的類型,歸納出我們已經學了整數和分數,然后,舉一些實際生活有相反意義的量,說明為了表示相反意義的量,我們需要引入負數,這樣做強調了數學的嚴密性,但對于學生來說,更多
地感到了數學的枯燥乏味為了既復習小學里學過的數,又能激發學生的學習興
趣,所以創設如下的問題情境,以盡量貼近學生的實際.
這個問題能激發學生探究的欲望,學生自己看書學習是培養學生自主學習的重要途徑,都應予以重視。
以上的情境和實例使學生體會生活中處處有數學,通過實例,使學生獲取大量的感性材料,為正確建立相反意義的量奠定基礎。
分析問題
探究新知問題3:前面帶有“一”號的新數我們應怎樣命名它呢?為什么要引人負數呢?通常在日常生活中我們用正數和負數分別表示怎樣的量呢?
這些問題都必須要求學生理解.
教師可以用多媒體出示這些問題,讓學生帶著這些問題看書自學,然后師生交流.
這階段主要是讓學生學會正數和負數的表示.
強調:用正,負數表示實際問題中具有相反意義的量,而相反意義的量包含兩個要素:一是它們的意義相反,如向東與向西,收人與支出;二是它們都是數量,而且是同類的量.這些問題是這節課的主要知識,教師要清楚地向學生說明,并且要注意語言的準確與規范,要舍得花時間讓學充分發表想法。
舉一反三思維拓展經過上面的討論交流,學生對為什么要引人負數,對怎樣用正數和負數表示兩種相反意義的量有了初步的理解,教師可以要求學生舉出實際生活中類似的例子,以加深對正數和負數概念的理解,并開拓思維.
問題4:請同學們舉出用正數和負數表示的例子.
問題5:你是怎樣理解“正整數”“負整數,,’’正分數”和“負分數”的呢?請舉例說明.
能否舉出例子是學生對知識掌握程度的體現,也能進一步幫助學生理解引負數的必要性
課堂練習教科書第5頁練習
小結與作業
課堂小結圍繞下面兩點,以師生共同交流的方式進行:
1, 0由于實際問題中存在著相反意義的量,所以要引人負數,這樣數的范圍就擴大了;
2,正數就是以前學過的0以外的數(或在其前面加“+”),負數就是在以前學過的0以外的數前面加“-”。
本課作業教科書第7頁習題1.1 第1,2,4,5(第3題作為下節課的思考題。
作業可設必做題和選 做題,體現要求的層次性,以滿足不同學生的需要
本課教育評注(課堂設計理念,實際教學效果及改進設想)
密切聯系生活實際,創設學習情境.本課是有理數的第一節課時.引人負數是數的范圍的一次重要擴充,學生頭腦中關于數的結構要做重大調整(其實是一次知識的`順應過程),而負數相對于以前的數,對學生來說顯得更抽象,因此,這個概念并不是一下就能建立的.為了接受這個新的數,就必須對原有的數的結構進行整理,引人幣的舉例就是這個目的.
負數的產生主要是因為原有的數不夠用了(不能正確簡潔地表示數量),書本的例子或圖片中出現的負數就是讓學生去感受和體驗這一點.使學生接受生活生產實際中確實存在著兩種相反意義的量是本課的教學難點,所以在教學中可以多舉幾個這方面的例子,并且所舉的例子又應該符合學生的年齡和思維特點。當學生接受了這個事實后,引入負數(為了區分這兩種相反意義的量)就是順理成章的事了.
這個教學設計突出了數學與實際生活的緊密聯系,使學生體會到數學的應用價值,
體現了學生自主學習、合作交流的教學理念,書本中的圖片和例子都是生活生產中常見的事實,學生容易接受,所以應該讓學生自己看書、學習,并且鼓勵學生討論交流,教師作適當引導就可以了。
初一數學教案7
教學目標1,整理前兩個學段學過的整數、分數(包括小數)的知識,掌握正數和負數的概念;
2,能區分兩種不同意義的量,會用符號表示正數和負數;
3,體驗數學發展的一個重要原因是生活實際的需要,激發學生學習數學的興趣。
教學難點正確區分兩種不同意義的量。
知識重點兩種相反意義的量
教學過程(師生活動)設計理念
設置情境
引入課題上課開始時,教師應通過具體的例子,簡要說明在前兩個學段我們已經學過的數,并由此請學生思考:生
活中僅有這些“以前學過的數”夠用了嗎?下面的例子
僅供參考。
師:今天我們已經是七年級的學生了,我是你們的數學老師。下面我先向你們做一下自我介紹,我的名字是——,身高1。73米,體重58。5千克,今年40歲。我們的班級是七(13)班,有60個同學,其中男同學有22個,占全班總人數的37%…
問題1:老師剛才的介紹中出現了幾個數?分別是什么?你能將這些數按以前學過的數的分類方法進行分類嗎?
學生活動:思考,交流
師:以前學過的數,實際上主要有兩大類,分別是整數和分數(包括小數)。
問題2:在生活中,僅有整數和分數夠用了嗎?
請同學們看書(觀察本節前面的幾幅圖中用到了什么數,讓學生感受引入負數的必要性)并思考討論,然后進行交流。
(也可以出示氣象預報中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)
學生交流后,教師歸納:以前學過的數已經不夠用了,有時候需要一種前面帶有“—”的新數。先回顧小學里學過的數的類型,歸納出我們已經學了整數和分數,然后,舉一些實際生活中共有相反意義的量,說明為了表示相反意義的量,我們需要引入負數,這樣做強調了數學的嚴
密性,但對于學生來說,更多
地感到了數學的枯燥乏味為了既復習小學里學過的數,又能激發學生的學習興
趣,所以創設如下的問題情境,以盡量貼近學生的實際。
這個問題能激發學生探究的欲望,學生自己看書學習是培養學生自主學習的重要途徑,都應予以重視。
以上的情境和實例使學生體會生活中處處有數學,通過實例,使學生獲取大量的感性材料,為正確建立相反意義的量奠定基礎。
分析問題
探究新知問題3:前面帶有“一”號的新數我們應怎樣命名它呢?為什么要引人負數呢?通常在日常生活中我們用正數和負數分別表示怎樣的量呢?
這些問題都必須要求學生理解。
教師可以用多媒體出示這些問題,讓學生帶著這些問題看書自學,然后師生交流。
這階段主要是讓學生學會正數和負數的表示。
強調:用正,負數表示實際問題中具有相反意義的量,而相反意義的量包含兩個要素:一是它們的意義相反,如向東與向西,收人與支出;二是它們都是數量,而且是同類的量。這些問題是這節課的主要知識,教師要清楚地向學生說明,并且要注意語言的準確與規范,要舍得花時間讓學充分發表想法。
舉一反三思維拓展經過上面的討論交流,學生對為什么要引人負數,對怎樣用正數和負數表示兩種相反意義的量有了初步的理解,教師可以要求學生舉出實際生活中類似的例子,以加深對正數和負數概念的理解,并開拓思維。
問題4:請同學們舉出用正數和負數表示的例子。
問題5:你是怎樣理解“正整數”“負整數,,’’正分數”和“負分數”的呢?請舉例說明。
能否舉出例子是學生對知識掌握程度的體現,也能進一步幫助學生理解引負數的必要性
課堂練習教科書第5頁練習
小結與作業
課堂小結圍繞下面兩點,以師生共同交流的方式進行:
1,0由于實際問題中存在著相反意義的量,所以要引人負數,這樣數的范圍就擴大了;
2,正數就是以前學過的0以外的數(或在其前面加“+”),負數就是在以前學過的0以外的數前面加“—”。
本課作業教科書第7頁習題1。1第1,2,4,5(第3題作為下節課的思考題。
作業可設必做題和選做題,體現要求的層次性,以滿足不同學生的需要
本課教育評注(課堂設計理念,實際教學效果及改進設想)
密切聯系生活實際,創設學習情境。本課是有理數的第一節課時。引人負數是數的范圍的一次重要擴充,學生頭腦中關于數的結構要做重大調整(其實是一次知識的順應過程),而負數相對于以前的數,對學生來說顯得更抽象,因此,這個概念并不是一下就能建立的為了接受這個新的數,就必須對原有的`數的結構進行整理,引人幣的舉例就是這個目的
負數的產生主要是因為原有的數不夠用了(不能正確簡潔地表示數量),書本的例子
或圖片中出現的負數就是讓學生去感受和體驗這一點。使學生接受生活生產實際中確實
存在著兩種相反意義的量是本課的教學難點,所以在教學中可以多舉幾個這方面的例
子,并且所舉的例子又應該符合學生的年齡和思維特點。當學生接受了這個事實后,引入負數(為了區分這兩種相反意義的量)就是順理成章的事了。
這個教學設計突出了數學與實際生活的緊密聯系,使學生體會到數學的應用價值,
體現了學生自主學習、合作交流的教學理念,書本中的圖片和例子都是生活生產中常見
的事實,學生容易接受,所以應該讓學生自己看書、學習,并且鼓勵學生討論交流,教師作適當引導就可以了。
初一數學教案8
一、 學情分析:
在此之前,本班學生已有探索有理數加法法則的經驗,多數學生能在教師指導下探索問題。由于學生已了解利用數軸表示加法運算過程,不太熟悉水位變化,故改為用數軸表示乘法運算過程。
二、 課前準備
把學生按組間同質、組內異質分為10個小組,以便組內合作學習、組間競爭學習,形成良好的學習氣氛。
三、 教學目標
1、 知識與技能目標
掌握有理數乘法法則,能利用乘法法則正確進行有理數乘法運算。
2、 能力與過程目標
經歷探索、歸納有理數乘法法則的過程,發展學生觀察、歸納、猜測、驗證等能力。
3、 情感與態度目標
通過學生自己探索出法則,讓學生獲得成功的喜悅。
四、 教學重點、難點
重點:運用有理數乘法法則正確進行計算。
難點:有理數乘法法則的探索過程,符號法則及對法則的理解。
五、 教學過程
1、 創設問題情景,激發學生的求知欲望,導入新課。
教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經放了3天,現在水深20米,問放水抗旱前水庫水深多少米?
學生:26米。
教師:能寫出算式嗎?
學生:……
教師:這涉及有理數乘法運算法則,正是我們今天需要討論的問題(教師板書課題)
2、 小組探索、歸納法則
(1)教師出示以下問題,學生以組為單位探索。
以原點為起點,規定向東的方向為正方向,向西的方向為負方向。
a. 2 ×3
2看作向東運動2米,×3看作向原方向運動3次。
結果:向 運動 米
2 ×3=
b. -2 ×3
-2看作向西運動2米,×3看作向原方向運動3次。
結果:向 運動 米
-2 ×3=
c. 2 ×(-3)
2看作向東運動2米,×(-3)看作向反方向運動3次。
結果:向 運動 米
2 ×(-3)=
d. (-2) ×(-3)
-2看作向西運動2米,×(-3)看作向反方向運動3次。
結果:向 運動 米
(-2) ×(-3)=
e.被乘數是零或乘數是零,結果是人仍在原處。
(2)學生歸納法則
a.符號:在上述4個式子中,我們只看符號,有什么規律?
(+)×(+)= 同號得
(-)×(+)= 異號得
(+)×(-)= 異號得
(-)×(-)= 同號得
b.積的絕對值等于 。
c.任何數與零相乘,積仍為 。
(3)師生共同用文字敘述有理數乘法法則。
3、 運用法則計算,鞏固法則。
(1)教師按課本P75 例1板書,要求學生述說每一步理由。
(2)引導學生觀察、分析例1中(3)(4)小題兩因數的關系,得出兩個有理數互為倒數,它們的積為 。
(3)學生做 P76 練習1(1)(3),教師評析。
(4)教師引導學生做P75 例2,讓學生說出每步法則,使之進一步熟悉法則,同時讓學生總結出多因數相乘的符號法則。多個因數相乘,積的符號由 決定,當負因數個數有 ,積為 ; 當負因數個數有 ,積為 ;只要有一個因數為零,積就為 。
4、 討論對比,使學生知識系統化。
有理數乘法 | 有理數加法 | |
同號 | 得正 | 取相同的`符號 |
把絕對值相乘 (-2)×(-3)=6 | 把絕對值相加 (-2)+(-3)=-5 | |
異號 | 得負 | 取絕對值大的加數的符號 |
把絕對值相乘 (-2)×3= -6 | (-2)+3=1 用較大的絕對值減小的絕對值 | |
任何數與零 | 得零 | 得任何數 |
5、 分層作業,鞏固提高。
初一數學教案9
一、教學內容:
人教版教材五年級上冊第五單元多邊形的面積整理與復習
二、教學目標:
1、使學生進一步熟練掌握已學圖形各面積公式,能靈活地應用多種方法解決生活中簡單的有關平面圖形面積的實際問題。
2、使學生感受數學方法和思想的重要性及其應用的廣泛性。體會數學的價值,培養對數學學習的熱愛
三、教學重、難點
重點:使學生進一步熟練掌握已學圖形各面積公式,能靈活地應用多種方法解決生活中簡單的'有關平面圖形面積的實際問題。
難點:引導學生整理多邊形面積的推導過程,掌握轉化的數學思想方法,建構知識網絡。
四、教學準備:多媒體課件,多邊形紙模
五、教學步驟與過程
(一)導入復習
師:同學們,我們學過哪些平面圖形的面積計算公式?(正方形、長方形、平行四邊形、三角形、梯形)
師:這節課我們就來重點整理和復習有關這些多邊形的面積的知識。
板書課題:多邊形面積計算復習課
(二)回顧整理,建構網絡
1.復習平行四邊形、三角形、梯形面積公式的推導過程。
⑴請大家回憶一下:平行四邊形、三角形、梯形面積的計算公式是怎樣經過平移、旋轉等方法轉化成我們已經學過的圖形,從而推導出它們的面積計算公式的。
⑵根據學生的回答,出示每個公式的推導過程。
六、課堂練習
學生獨立計算。指名學生板演,集體訂正七、說一說,你學會了什么?從整理圖中能看出各種圖形之間的關系嗎?
七,作業布置:練習十九
板書設計
S=ah÷2
S=abS=ah
S=(a+b)h÷2
初一數學教案10
教學目標
1,通過對數“零”的意義的探討,進一步理解正數和負數的概念;
2,利用正負數正確表示相反意義的量(規定了指定方向變化的量)
3,進一步體驗正負數在生產生活實際中的廣泛應用,提高解決實際問題的能力,激發學習數學的興趣。
教學難點:深化對正負數概念的理解
知識重點:正確理解和表示向指定方向變化的量
教學過程:(師生活動)設計理念
知識回顧與深化回顧:上一節課我們知道了在實際生產和生活中存在著兩種不同意義的量,為了區分這兩種量,我們用正數表示其中一種意義的量,那么另一種意義的量就用負數來表示.這就是說:數的范圍擴大了(數有正數和負數之分).那么,有沒有一種既不是正數又不是負數的數呢?
問題1:有沒有一種既不是正數又不是負數的數呢?
學生思考并討論.
(數0既不是正數又不是負數,是正數和負數的分
界,是基準.這個道理學生并不容易理解,可視學生的討論情況作些啟發和引導,下面的例子供參考)
例如:在溫度的表示中,零上溫度和零下溫度是兩種不同意義的量,通常規定零上溫度用正數來表示,零下溫度用負數來表示。那么某一天某地的最高溫度是零上7℃,最低溫度是零下5℃時,就應該表示為+7℃和-5℃,這里+7℃和-5℃就分別稱為正數和負數 .
那么當溫度是零度時,我們應該怎樣表示呢?(表示為0℃),它是正數還是負數呢?由于零度既不是零上溫度也不是零下溫度,所以,0既不是正數也不是負數
問題2:引入負數后,數按照“兩種相反意義的量”來分,可以分成幾類?“數0耽不是正數,也不是負數”也應看作是負數定義的一部分.在引入
負數后,0除了表示一個也沒有以外,還是正數和負數的分界.了解。的這一層意義,也有助于對正負數的理解;且對數的順利擴張和有理毅概念的建立都有幫助。
所舉的例子,要考慮學生的可接受性.“數0既不是正數,也不是負數”應從相反意義的1這個角度來說明.這個問題只要初步認識即可,不必深究.
分析問題
解決問題問題3:教科書第6頁例題
說明:這是一個用正負數描述向指定方向變化情況的例子, 通常向指定方向變化用正數表示;向指定方向的相反方向變化用負數表示。這種描述在實際生活中有廣泛的應用,應予以重視。教學中,應讓學生體驗“增長”和“減少”是兩種相反意義的量,要求寫出“體重的增長值”和“進出口額的增長率”,就暗示著用正數來表示增長的量。
歸納:在同一個問題中,分別用正數和負數表示的量具有相反的意義(教科書第6頁).
類似的例子很多,如:
水位上升-3m,實際表示什么意思呢?
收人增加-10%,實際表示什么意思呢?
可視教學中的實際情況進行補充.
這種用正負數描述向指定方向變化情況的例子,在實際生活中有廣泛的應用,按題意找準哪種意義的量應該用正數表示是解題的關健.這種描述具有相反數的影子,例如第(1)題中小明的體重可說成是減少-2kg,但現在不必向學生提出.
鞏固練習教科書第6頁練習
閱讀思考
教科書第8頁閱讀與思考是正負數應用的很好例子,要花時間讓學生討論交流
小結與作業
課堂小結以問題的形式,要求學生思考交流:
1,引人負數后,你是怎樣認識數0的,數0的意義有哪些變化?
2,怎樣用正負數表示具有相反意義的量?
(用正數表示其中一種意義的.量,另一種量用負數表示;特別地,在用正負數表示向指定方向變化的量時,通常把向指定方向變化的量規定為正數,而把向指定方向的相反方向變化的量規定為負數.)
本課作業
1,必做題:教科書第7頁習題1.1第3,6,7,8題
2,選做題:教師自行安排
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1,本課主要目的是加深對正負數概念的理解和用正負數表示實際生產生活中的向指定方向變化的量。
2,“數0既不是正數,也不是負數,’(要從0不屬于兩種相反意義的量中的任何一種上來理解)也應看作是負數定義的一部分.在引人負數后,除了表示一個也沒有以外,還是正數和負數的分界。了解0的這一層意義,也有助于對正負數的理解,且對數的順利擴張和有理數概念的建立都有幫助.由于上節課的重點是建立兩種相反意義量的概念,考慮到學生的可接受性,所以作為知識的回顧和深化而放到本課.
3,教科書的例子是用正負數表示(向指定方向變化的)量的實際應用,用這種方式描述的例子很多,要盡量使學生理解.
4,本設計體現了學生自主學習、交流討論的教學理念,教學中要讓學生體驗數學知識在實際中的合理應用,在體驗中感悟和深化知識.通過實際例子的學習激發學生學習數學的興趣.
初一數學教案11
7.3.1多邊形
[教學目標]
1.了解多邊形及有關概念,理解正多邊形及其有關概念.
2.區別凸多邊形與凹多邊形.
[教學重點、難點]
1.重點:
(1)了解多邊形及其有關概念,理解正多邊形及其有關概念.
(2)區別凸多邊形和凹多邊形.
2.難點:
多邊形定義的準確理解.
[教學過程]
一、新課講授
投影:圖形見課本P84圖7.3一l.
你能從投影里找出幾個由一些線段圍成的圖形嗎?
上面三圖中讓同學邊看、邊議.
在同學議論的基礎上,老師給以總結,這些線段圍成的圖形有何特性?
(1)它們在同一平面內.
(2)它們是由不在同一條直線上的幾條線段首尾順次相接組成的.
這些圖形中有三角形、四邊形、五邊形、六邊形、八邊形,那么什么叫做多邊形呢?
提問:三角形的定義.
你能仿照三角形的定義給多邊形定義嗎?
1.在平面內,由一些線段首位順次相接組成的圖形叫做多邊形.
如果一個多邊形由n條線段組成,那么這個多邊形叫做n邊形.(一個多邊形由幾條線段組成,就叫做幾邊形.)
2.多邊形的邊、頂點、內角和外角.
多邊形相鄰兩邊組成的角叫做多邊形的內角,多邊形的邊與它的鄰邊的延長線組成的角叫做多邊形的外角.
3.多邊形的.對角線
連接多邊形的不相鄰的兩個頂點的線段,叫做多邊形的對角線.
讓學生畫出五邊形的所有對角線.
4.凸多邊形與凹多邊形
看投影:圖形見課本P85.7.3—6.
在圖(1)中,畫出四邊形ABCD的任何一條邊所在的直線,整個圖形都在這條直線的同一側,這樣的四邊形叫做凸四邊形,這樣的多邊形稱為凸多邊形;而圖(2)就不滿足上述凸多邊形的特征,因為我們畫BD所在直線,整個多邊形不都在這條直線的同一側,我們稱它為凹多邊形,今后我們在習題、練習中提到的多邊形都是凸多邊形.
5.正多邊形
由正方形的特征出發,得出正多邊形的概念.
各個角都相等,各條邊都相等的多邊形叫做正多邊形.
二、課堂練習
課本P86練習1.2.
三、課堂小結
引導學生總結本節課的相關概念.
四、課后作業
課本P90第1題.
備用題:
一、判斷題.
1.由四條線段首尾順次相接組成的圖形叫四邊形.()
2.由不在一直線上四條線段首尾次順次相接組成的圖形叫四邊形.()
3.由不在一直線上四條線段首尾順次接組成的圖形,且其中任何一條線段所在的直線、使整個圖形都在這直線的同一側,叫做四邊形.()
4.在同一平面內,四條線段首尾順次連接組成的圖形叫四邊形.()
二、填空題.
1.連接多邊形的線段,叫做多邊形的對角線.
2.多邊形的任何整個多邊形都在這條直線的,這樣的多邊形叫凸多邊形.
3.各個角,各條邊的多邊形,叫正多邊形.
三、解答題.
1.畫出圖(1)中的六邊形ABCDEF的所有對角線.
2.如圖(2),O為四邊形ABCD內一點,連接OA、OB、OC、OD可以得幾個三角形?它與邊數有何關系?
3.如圖(3),O在五邊形ABCDE的AB上,連接OC、OD、OE,可以得到幾個三角形?它與邊數有何關系?
4.如圖(4),過A作六邊形ABCDEF的對角線,可以得到幾個三角形?它與邊數有何關系?
初一數學教案12
相交線
課型:新授課 備課人:徐新齊 審核人:霍紅超
學習目標
1.通過動手觀察、操作、推斷、交流等數學活動,進一步發展空間觀念毛
2.在具體情境中了解鄰補角、對頂角, 能找出圖形中的一個角的鄰補角和對頂角
重點、難點
重點:鄰補角、對頂角的概念,對頂角性質與應用.
難點:理解對頂角相等的性質的探索.
教學過程
一、復習導入
教師在輕松歡快的音樂中演示第五章章首圖片為主體的課件.
學生欣賞圖片,閱讀其中的文字.
師生共同總結:我們生活的世界中,蘊涵著大量的相交線和平行線. 本章要研究相交線所成的角和它的特征,相交線的一種特殊形式即垂直,垂線的性質, 研究平行線的性質和平行的判定以及圖形的平移問題.
二、自學指導
觀察剪刀剪布的'過程,引入兩條相交直線所成的角
握緊把手時,隨著兩個把手之間的角逐漸變小,剪刀刃之間的角邊相應變小. 如果改變用力方向,隨著兩個把手之間的角逐漸變大,剪刀刃之間的角也相應變大.
三、 問題導學
認識鄰補角和對頂角,探索對頂角性質
(1).學生畫直線AB、CD相交于點O,并說出圖中4個角,兩兩相配共能組成幾對角? 各對角的位置關系如何?根據不同的位置怎么將它們分類?
學生思考并在小組內交流,全班交流.
∠AOC和∠BOC有一條公共邊OC,它們的另一邊互為反向延長線.
∠AOC和∠BOD有公共的頂點O,而是∠AOC的兩邊分別是∠BOD兩邊的反向延長線.
( 2).學生用量角器分別量一量各個角的度數,以發現各類角的度數有什么關系,學生得出有"相鄰"關系的兩角互補,"對頂"關系的兩角相等.
(3).概括形成鄰補角、對頂角概念.
有一條公共邊,而且另一邊互為反向延長線的兩個角叫做鄰補角.
如果兩個角有一個公共頂點, 而且一個角的兩邊分別是另一角兩邊的反向延長線,那么這兩個角叫對頂角.
四、典題訓練
1.例:如圖,直線a,b相交,∠1=40°,求∠2,∠3,∠4的度數.
2.:判斷下列圖中是否存在對頂角.
小結
初一數學教案13
大家都聽說過一句名言:“世界上不是缺少美,而是缺少發現美的眼睛”,大家知道這句話是誰說的嗎?不知道沒關系,大家記住下一句名言就好:“世界上不是缺少數學,而是缺少發現數學的眼睛——李老師語錄”,那這個著名的李老師是誰呢?遠在天邊,近在眼前。不要太驚訝,想要簽名的下課來找我就行。
好,那我們接下來就用發現數學的眼睛來看一看,生活中常見的幾何體都有哪些物體,分別是什么形狀?水杯,籃球,冰激凌,金字塔,黑板擦。分別對應圓柱,球,圓錐,棱錐,棱柱。其中長方體,正方體是特殊的棱柱。
好了,幾何體我們都了解了,面對這些雜亂無章的幾何體是不是感覺很亂,接下來我們就給幾何體分分類:
一、常見幾何體分類
1、 按照柱、錐、球分類
圓柱
柱生活中的立體圖形 球 棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱。
錐圓錐
棱錐
2、 按照有無頂點分類
生活中的立體圖形
3、 按照有無曲面分類
二、棱柱(直)
1、 基本概念
(1) 棱:在棱柱中,任何相鄰的兩個面的交線叫做棱。
(2) 側棱:在棱柱中,相鄰兩個側面的交線叫做側棱。
2、 特征
(1) 棱柱的所有側棱長相等。
(2) 棱柱的上下底面完全相同且都是多邊形。
(3) 棱柱的側面都是長方形。
(4) n棱柱有兩個底面,n個側面,共(n+2)個面;3n條棱,n條側棱;2n個頂點。
3、 分類
按照底面多邊形的邊數分類,底面幾邊形就是幾棱柱。
三、圖形的構成元素
點:線與線橡膠的地方就是點。
1 線:面與面相交的'地方就是線。
面:包圍著體的是面。
2、聯系
點動成線,線動成面,面動成體。
展開與折疊
一、正方體的展開圖(11種)
1-4-1型:(6種)
2-3-1型(3種)
2-2-2型(1種)
3-3型(
1種)
二、正方體的折疊
展開圖中不出現一字型、田字形、凹字形,2-4型,若有此形狀的展開圖則折不成正方體。
三、總結規律:
一線不過四,
田凹應棄之;
相間、Z端是對面,
間二、拐角鄰面知。
四、常見幾何體的展開圖
三、截一個幾何體
一、正方體的截面
用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。
可能出現的:銳角三角型、等邊、等腰三角形, 正方形、矩形、非矩形的平行四邊形、 非等腰梯形、 等腰梯形、五邊形、六邊形、正六邊形
不可能出現:鈍角三角形、直角三角形、直角梯形、正五邊形、七邊形或更多邊形
二、常見幾何體截面
四、從三個方向看物體的形狀
一、三視圖
物體的三視圖指主視圖、俯視圖、左視圖。
主視圖:從正面看到的圖,叫做主視圖。
左視圖:從左面看到的圖,叫做左視圖。
俯視圖:從上面看到的圖,叫做俯視圖。
二、聯系
主俯長對正,主左高平齊,俯左寬相等。
三、畫法
一看,二畫,三查(尺寸,虛實)
初一數學教案14
教學目標
(一)教學知識點
1.經歷探索二次函數與一元二次方程的關系的過程,體會方程與函數之間的聯系.
2.理解二次函數與x軸交點的個數與一元二次方程的根的個數之間的關系,理解何時方程有兩個不等的實根、兩個相等的實數和沒有實根.
3.理解一元二次方程的根就是二次函數與y=h(h是實數)交點的橫坐標.
(二)能力訓練要求
1.經歷探索二次函數與一元二次方程的關系的過程,培養學生的探索能力和創新精神.
2.通過觀察二次函數圖象與x軸的交點個數,討論一元二次方程的根的情況,進一步培養學生的數形結合思想.
3.通過學生共同觀察和討論,培養大家的合作交流意識.
(三)情感與價值觀要求
1.經歷探索二次函數與一元二次方程的關系的'過程,體驗數學活動充滿著探索與創造,感受數學的嚴謹性以及數學結論的確定性.
2.具有初步的創新精神和實踐能力.
教學重點
1.體會方程與函數之間的聯系.
2.理解何時方程有兩個不等的實根,兩個相等的實數和沒有實根.
3.理解一元二次方程的根就是二次函數與y=h(h是實數)交點的橫坐標.
教學難點
1.探索方程與函數之間的聯系的過程.
2.理解二次函數與x軸交點的個數與一元二次方程的根的個數之間的關系.
教學方法
討論探索法.
教具準備
投影片二張
第一張:(記作§2.8.1A)
第二張:(記作§2.8.1B)
教學過程
Ⅰ.創設問題情境,引入新課
[師]我們學習了一元一次方程kx+b=0(k≠0)和一次函數y=kx+b(k≠0)后,討論了它們之間的關系.當一次函數中的函數值y=0時,一次函數y=kx+b就轉化成了一元一次方程kx+b=0,且一次函數y=kx+b(k≠0)的圖象與x軸交點的橫坐標即為一元一次方程kx+b=0的解.
現在我們學習了一元二次方程ax2+bx+c=0(a≠0)和二次函數y=ax2+bx+c(a≠0),它們之間是否也存在一定的關系呢?本節課我們將探索有關問題。
通過學生的討論,使學生更清楚以下事實:
(1)分解因式與整式的乘法是一種互逆關系;
(2)分解因式的結果要以積的形式表示;
(3)每個因式必須是整式,且每個因式的次數都必須低于原來的多項式的次數;
(4)必須分解到每個多項式不能再分解為止。
活動5:應用新知
例題學習:
P166例1、例2(略)
在教師的引導下,學生應用提公因式法共同完成例題。
讓學生進一步理解提公因式法進行因式分解。
活動6:課堂練習
1.P167練習;
2.看誰連得準
x2-y2 (x+1)2
9-25 x 2 y(x -y)
x 2+2x+1 (3-5 x)(3+5 x)
xy-y2 (x+y)(x-y)
3.下列哪些變形是因式分解,為什么?
(1)(a+3)(a -3)= a 2-9
(2)a 2-4=( a +2)( a -2)
(3)a 2-b2+1=( a +b)( a -b)+1
(4)2πR+2πr=2π(R+r)
學生自主完成練習。
通過學生的反饋練習,使教師能全面了解學生對因式分解意義的理解是否到位,以便教師能及時地進行查缺補漏。
活動7:課堂小結
從今天的課程中,你學到了哪些知識?掌握了哪些方法?明白了哪些道理?
學生發言。
通過學生的回顧與反思,強化學生對因式分解意義的理解,進一步清楚地了解分解因式與整式的乘法的互逆關系,加深對類比的數學思想的理解。
活動8:課后作業
課本P170習題的第1、4大題。
學生自主完成
通過作業的鞏固對因式分解,特別是提公因式法理解并學會應用。
板書設計(需要一直留在黑板上主板書)
15.4.1提公因式法例題
1.因式分解的定義
2.提公因式法
初一數學教案15
學習目標:
1.理解平行線的意義兩條直線的兩種位置關系;
2.理解并掌握平行公理及其推論的內容;
3.會根據幾何語句畫圖,會用直尺和三角板畫平行線;
學習重點:
探索和掌握平行公理及其推論.
學習難點:
對平行線本質屬性的理解,用幾何語言描述圖形的性質
一、學習過程:預習提問
兩條直線相交有幾個交點?
平面內兩條直線的位置關系除相交外,還有哪些呢?
(一)畫平行線
1、 工具:直尺、三角板
2、 方法:一"落";二"靠";三"移";四"畫"。
3、請你根據此方法練習畫平行線:
已知:直線a,點B,點C.
(1)過點B畫直線a的平行線,能畫幾條?
(2)過點C畫直線a的平行線,它與過點B的平行線平行嗎?
(二)平行公理及推論
1、思考:上圖中,①過點B畫直線a的平行線,能畫 條;
②過點C畫直線a的平行線,能畫 條;
③你畫的直線有什么位置關系? 。
②探索:如圖,P是直線AB外一點,CD與EF相交于P.若CD與AB平行,則EF與AB平行嗎?為什么?
二、自我檢測:
(一)選擇題:
1、下列推理正確的.是 ( )
A、因為a//d, b//c,所以c//d B、因為a//c, b//d,所以c//d
C、因為a//b, a//c,所以b//c D、因為a//b, d//c,所以a//c
2.在同一平面內有三條直線,若其中有兩條且只有兩條直線平行,則它們交點的個數為( )
A.0個 B.1個 C.2個 D.3個
(二)填空題:
1、在同一平面內,與已知直線L平行的直線有 條,而經過L外一點,與已知直線L平行的直線有且只有 條。
2、在同一平面內,直線L1與L2滿足下列條件,寫出其對應的位置關系:
(1)L1與L2 沒有公共點,則 L1與L2 ;
(2)L1與L2有且只有一個公共點,則L1與L2 ;
(3)L1與L2有兩個公共點,則L1與L2 。
3、在同一平面內,一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小關系是 。
4、平面內有a 、b、c三條直線,則它們的交點個數可能是 個。
三、CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.
【初一數學教案】相關文章:
初一數學教案08-27
初一數學教案11-04
初一數學教案【熱門】12-01
【精】初一數學教案12-02
初一數學教案【推薦】12-11
【熱】初一數學教案12-12
【推薦】初一數學教案12-03
【薦】初一數學教案12-04
【熱門】初一數學教案12-12
初一數學教案【薦】12-13