1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>

    高一數學教案

    時間:2022-11-12 15:27:37 高一數學教案 我要投稿

    高一數學教案(集錦15篇)

      作為一名教職工,總歸要編寫教案,編寫教案有利于我們準確把握教材的重點與難點,進而選擇恰當的教學方法。那要怎么寫好教案呢?以下是小編整理的高一數學教案,歡迎閱讀,希望大家能夠喜歡。

    高一數學教案(集錦15篇)

    高一數學教案1

      1、如果把數學比作一個成長中的生氣勃勃的人,把問題比作人身體的一個重要的器官,那么你將用什么器官比喻問題的重要性呢

      2、“問題是數學的心臟”,是一切科學發現與發明的源泉、在數學學習中,提出問題比解決問題具有同等甚至是更高的價值、因此在進入初中數學學習的時候,同學們要高度重視發現和提出數學問題,把這看作是提升自己數學能力的最重要的途徑、

      3、看到《有理數》這一章的標題,你想到的第一個問題是什么?接下來你又會提出什么問題呢?

      4、“有理數”這個名詞有點怪,難道還有“無理數”嗎?”這個問題提得好!既然有“有理數”,當然會有“無理數”、要回答什么是“有理數”的問題,一個途徑就是先回答“什么是無理數的問題”、

      5、我們在小學所學的數中,就有無理數,那就是無限不循環小數、有限小數、無限循環小數都是有理數、大家想一想下面的問題:

      ①有限小數、無限循環小數與分數是什么關系?

      ②整數能不能化成分數的形式?

      ③由此你能不能聯想出有理數的“理”是什么?也就是說,什么樣的數是有理數?

      1、1正數和負數

      一、教學目標

      知識與技能:了解正數和負數是怎樣產生的,會識別正數和負數,理解0表示的量的意義;學會用正數和負數表示相反意義的量;

      過程與方法:在形成負數概念的過程中,培養觀察、歸納與概括能力、情感、態度與價值觀:通過師生合作,聯系實際,感受數學與生活的聯系,激發學生學習數學的熱情、

      重點難點

      重點:形成負數概念;學會用正數和負數表示相反意義的量、

      難點:負數的意義及0的內涵、

      二、精講預設:

      1、其實,在進入初中之前,我們就有同學初步學習過“負數”概念,知道什么是正數和負數,但在跨入初中數學的大門的時候,我們還是要隆重地引入負數概念,因為它是我們建立有理數概念不可缺少的基礎、

      2、什么叫做正數?什么叫做負數?負數的概念是建立在什么基礎上的?你能換一種方式解釋負數這個概念嗎?請注意,給概念下定義的表達方式:……叫做……、

      3、①把0以外的數分成正數和負數,起源于什么?

      ②表示相反意義的量,數的性質(正與負)是怎樣規定的?有幾種方式?

      ③表示相反意義的量,要特別注意量的表達,也就是一定不能忽略單位!否則就不是量,而是數了、

      ④正數可以省略“+”號,負數可以省略“—”號嗎?為什么?

      4、還記得我在前面提出的關于“問題”在數學學習中地位的話嗎?請你提出關于“正數和負數”的概念與應用的問題,我們來開一次“數學記者招待會”、

      三、教學反思

      1、這次嘗試著從無理數的概念入手,“曲線教學”,一步到位,導出有理數的概念,從后續效果上看,還是比較成功的這一點在今后的教學中還可以延續、

      2、在學生自主學習與嘗試展示的過程中,采用事前精心設計的連續追問的方式,可以起到打通思維,貫通知識,加深理解的作用、

      1、2、1有理數

      一、教學目標

      知識與技能:理解有理數的.意義;能把有理數按要求分類;了解0在分類中作用、

      過程與方法:初步了解分類的思想方法,能正確地對有理數進行分類、情感、態度與價值觀:在體系中理解知識的內涵,在分類中了解概念之間的聯系,在學生的頭腦中初步建立起對立與統一的思考方法、

      重點難點

      重點:理解有理數的分類方法、

      難點:掌握有理數的兩種分類,避免混淆、

      二、精講預設

      1、在羅列出所學過的有理數,并對有理數給出定義之后,提出“你能把所有的這些有理數作出分類嗎?”的問題、

      2、在讓學生充分嘗試對有理數作出分類之后,講解數學學習的效益與分類討論的標準問題、數學學習的效益,不僅體現在數學知識與數學方法的掌握上,更體現在對數學數學思想方法的理解與運用上,這才是數學學習最重要的價值所在、分類討論就是一種重要的數學學習方法、在分類時首先要確定分類的標準,其次要注意遵循不重復、不遺漏的原則、

      3、在解把有理數填入集合圈的習題時,會出現哪些問題?原因何在?怎么解決?

      ①在畫集合圈時忽略省略號;

      ②在填分數集合時,把遺漏有限小數和無限循環小數;

      ③把無限循環小數誤成分數、補充分類練習,采用《鼎新教案》P10例2,以加深學生對分類討論的理解

      三、教學反思

      1、這是學生在初中數學學習中第一次接觸分類思想,課本在這方面的處理太過簡略,幾乎到忽略不計的地步、為了彌補教材的不足,有必要加以補充、

      2、因為有理數的概念在本章教學的開篇就與學生進行過比較深入的討論,所以本節教學的重點還是以放在對分類的標準與原則上為宜,在這方面對學生進行訓練的后續教學效益應該是比較高的,今后還應堅持、

      1、2、2數軸

      一、教學目標

      知識與技能:了解數軸的概念,知道數軸的三要素,會畫數軸;能將已知數在數軸上表示出來,能說出數軸上已知點表示的數、

      過程與方法:通過對數軸的學習體會數形結合的數學思想、情感、態度與價值觀:通過對數軸的直觀認識,對數形結合思想的體會,認識不同事物之間的內在關系,感受數學與生活的聯系、

      重點難點

      重點:數軸的概念、

      難點:數軸的畫法與應用、

      二、精講預設

      1、畫數軸注意事項歌訣

      直線要直切勿曲,原點方向單位齊;

      右為箭頭左出頭,無限延伸要留意;

      (長度)正負分布須對稱,位置長度要適宜

      、數軸畫在格子中,舒展大方貴清晰、 (數) (原點)(單位長度)

      2、在數軸上表示有理數的方法歌訣

      先畫數軸要素全,數點描成實心圓;注意方向與距離,負數分數思慮全;點在線上勿飄起,數據標在點上面、

      3、應用歸類、提出問題,組織學生完成、

      三、教學反思

      1、數軸是學生所接觸的數形結合的第一個實例,因為對數軸概念的理解的不足,也因為教學中對數軸畫法的練習設計數量偏少,導致形形色色的畫法上的問題、對此一方面要在后續教學中加以彌補,另一方面在修改導學案的時候要對這一環節予以加強、

      2、在數軸上表示分數與小數,尤其是負分數與負小數時,學生出現了較多的錯誤,方向性的錯誤有,距離上的錯誤更多、對此要反復加以強調與來練習、

      1、2、3相反數

      一、教學目標

      知識與技能:借助數軸理解相反數的概念,知道互為相反數的兩個數在數軸上的位置關系,給出一個數,能說出和寫出它的相反數、

      過程與方法:經歷操作、對比,發現、提出、解決問題的過程,從形和數兩個不同的側面來理解相反數的意義,領會數形結合的思想,培養分析問題與解決問題的能力、

      情感、態度與價值觀:讓學生充分參與問題的解決過程,體驗參與的快樂與成就感、

      重點難點重點:相反數的概念、難點:相反數的識別與理解、

      二、精講預設

      1、如何理解“兩點關于原點對稱”?位置關系,數量關系、

      2、如何理解互為相反數的概念? “只有符號不同”,什么必須相同?

      3、怎樣表示一個數的相反數?在一個數的前面添上“—”時,要注意哪些問題?

      ①如果數不帶符號,直接在數的前面添加“—”號;

      ②如果數本身帶有符號,首先要用括號將這個數括起來,再在括號前前面;

      ③如果數是幾個數的和或差的形式,參照第②條處理;

      4、的相反數怎樣表示?的相反數怎樣表示?的相反數呢?你能提出更復雜的問題并自己解決嗎?這里面的規律是什么?

      三、教學反思

      1、相反數是相對簡單的概念,對于這個簡單的知識,通過從形到數的認識過程,可以培養學生的數學認識能力,對此如果重視不夠,將是一個損失、

      2、相反數的表示方法其實是一個有一定難度的問題,解決的最好方法不是直接教給學生要注意什么,而是與學生一起探討解決的方法、讓學生參與解決問題的過程,也許是解決問題的最有效的方法、

      1、2、4絕對值

      一、教學目標

      知識與技能:理解絕對值的意義,會求一個數的絕對值;會比較兩個有理數的大小、

      過程與方法:通過對正數、負數、0的絕對值的學習,體驗分類討論的數學思想、通關對有理數大小比較的學習,體驗數形結合的數學思想、

      情感、態度與價值觀:在充分的參與中體驗數學的美與價值、

      重點難點

      重點:絕對值的意義;有理數的大小的比較、

      難點:絕對值的意義與兩個負數的大小比較、

      二、精講預設

      1、串講相反數和絕對值問題提綱:

      ①相反數的幾何意義是什么?(借助數軸解釋相反數)

      ②在數軸上表示互為相反數的兩個點的異同點分別是什么?

      ③什么叫做數的絕對值?數的絕對值是什么?

      ④依據絕對值的定義,怎樣求一個數的絕對值?

      ⑤求絕對值的方法體現了什么數學思想方法?(分類討論)

      ⑥求一個數的絕對值時要注意哪些問題?

      2、有理數大小比較的方法講解提綱:

      ⑴試用分類討論的方法分解有理數大小的比較問題:

      ①比較兩個正數的大小;

      ②比較正數和0的大小;

      ③比較0和負數的大小;

      ④比較正數和負數的大小;

      ⑤比較兩個負數的大小、

      ⑵上述問題中,真正需要解決的問題是什么?怎么解決?解決的程序是什么

      ⑶解決一般的有理數大小問題的思維與表達程序是什么?(先分類,后表述)一看能不能直接比較大小?二看需不需化簡后再比較大小?三要注意比較結果的表達要求(答案保持數的原有形式與排列順序)、

      三、教學反思

      1、誘導學生分析相反數的幾何意義的共同特征,從而引出絕對值的概念,借助于知識之間的聯系,使新知識在“出場”的時候,就與學生建立起“親密”的聯系、這一點是本節教學的亮點之一、

    高一數學教案2

      學習目標

      1.能根據拋物線的定義建立拋物線的標準方程;

      2.會根據拋物線的標準方程寫出其焦點坐標與準線方程;

      3.會求拋物線的標準方程。

      一、預習檢查

      1.完成下表:

      標準方程

      圖形

      焦點坐標

      準線方程

      開口方向

      2.求拋物線的焦點坐標和準線方程.

      3.求經過點的拋物線的標準方程.

      二、問題探究

      探究1:回顧拋物線的定義,依據定義,如何建立拋物線的標準方程?

      探究2:方程是拋物線的標準方程嗎?試將其與拋物線的標準方程辨析比較.

      例1.已知拋物線的頂點在原點,對稱軸為坐標軸,焦點在直線上,求拋物線的方程.

      例2.已知拋物線的焦點在軸上,點是拋物線上的一點,到焦點的距離是5,求的'值及拋物線的標準方程,準線方程.

      例3.拋物線的頂點在原點,對稱軸為軸,它與圓相交,公共弦的長為.求該拋物線的方程,并寫出其焦點坐標與準線方程.

      三、思維訓練

      1.在平面直角坐標系中,若拋物線上的點到該拋物線的焦點的距離為6,則點的橫坐標為.

      2.拋物線的焦點到其準線的距離是.

      3.設為拋物線的焦點,為該拋物線上三點,若,則=.

      4.若拋物線上兩點到焦點的距離和為5,則線段的中點到軸的距離是.

      5.(理)已知拋物線,有一個內接直角三角形,直角頂點在原點,斜邊長為,一直角邊所在直線方程是,求此拋物線的方程。

      四、課后鞏固

      1.拋物線的準線方程是.

      2.拋物線上一點到焦點的距離為,則點到軸的距離為.

      3.已知拋物線,焦點到準線的距離為,則.

      4.經過點的拋物線的標準方程為.

      5.頂點在原點,以雙曲線的焦點為焦點的拋物線方程是.

      6.拋物線的頂點在原點,以軸為對稱軸,過焦點且傾斜角為的直線被拋物線所截得的弦長為8,求拋物線的方程.

      7.若拋物線上有一點,其橫坐標為,它到焦點的距離為10,求拋物線方程和點的坐標。

    高一數學教案3

      一、教學目標

      1.知識與技能

      (1)解二分法求解方程的近似解的思想方法,會用二分法求解具體方程的近似解;

      (2)體會程序化解決問題的思想,為算法的學習作準備。

      2.過程與方法

      (1)讓學生在求解方程近似解的實例中感知二分發思想;

      (2)讓學生歸納整理本節所學的知識。

      3.情感、態度與價值觀

      ①體會二分法的程序化解決問題的思想,認識二分法的價值所在,使學生更加熱愛數學;

      ②培養學生認真、耐心、嚴謹的數學品質。

      二、 教學重點、難點

      重點:用二分法求解函數f(x)的零點近似值的步驟。

      難點:為何由︱a - b ︳< 便可判斷零點的近似值為a(或b)?

      三、 學法與教學用具

      1.想-想。

      2.教學用具:計算器。

      四、教學設想

      (一)、創設情景,揭示課題

      提出問題:

      (1)一元二次方程可以用公式求根,但是沒有公式可以用來求解放程 ㏑x+2x-6=0的根;聯系函數的零點與相應方程根的關系,能否利用函數的有關知識來求她的根呢?

      (2)通過前面一節課的學習,函數f(x)=㏑x+2x-6在區間內有零點;進一步的問題是,如何找到這個零點呢?

      (二)、研討新知

      一個直觀的想法是:如果能夠將零點所在的范圍盡量的縮小,那么在一定的精確度的要求下,我們可以得到零點的近似值;為了方便,我們通過“取中點”的方法逐步縮小零點所在的范圍。

      取區間(2,3)的中點2.5,用計算器算得f(2.5)≈-0.084,因為f(2.5)xf(3)<0,所以零點在區間(2.5,3)內;

      再取區間(2.5,3)的`中點2.75,用計算器算得f(2.75)≈0.512,因為f(2.75)xf(2.5)<0,所以零點在(2.5,2.75)內;

      由于(2,3),(2.5,3),(2.5,2.75)越來越小,所以零點所在范圍確實越來越小了;重復上述步驟,那么零點所在范圍會越來越小,這樣在有限次重復相同的步驟后,在一定的精確度下,將所得到的零點所在區間上任意的一點作為零點的近似值,特別地可以將區間的端點作為零點的近似值。例如,當精確度為0.01時,由于∣2.5390625-2.53125∣=0.0078125<0.01,所以我們可以將x=2.54作為函數f(x)=㏑x+2x-6零點的近似值,也就是方程㏑x+2x-6=0近似值。

      這種求零點近似值的方法叫做二分法。

      1.師:引導學生仔細體會上邊的這段文字,結合課本上的相關部分,感悟其中的思想方法.

      生:認真理解二分法的函數思想,并根據課本上二分法的一般步驟,探索其求法。

      2.為什么由︱a - b ︳<便可判斷零點的近似值為a(或b)?

      先由學生思考幾分鐘,然后作如下說明:

      設函數零點為x0,則a<x0<b,則:

      0<x0-a<b-a,a-b<x0-b<0;

      由于︱a - b ︳<,所以

      ︱x0 - a ︳<b-a<,︱x0 - b ︳<∣ a-b∣<,

      即a或b 作為零點x0的近似值都達到了給定的精確度。

     (三)、鞏固深化,發展思維

      1.學生在老師引導啟發下完成下面的例題

      例2.借助計算器用二分法求方程2x+3x=7的近似解(精確到0.01)

      問題:原方程的近似解和哪個函數的零點是等價的?

      師:引導學生在方程右邊的常數移到左邊,把左邊的式子令為f(x),則原方程的解就是f(x)的零點。

      生:借助計算機或計算器畫出函數的圖象,結合圖象確定零點所在的區間,然后利用二分法求解.

      (四)、歸納整理,整體認識

      在師生的互動中,讓學生了解或體會下列問題:

      (1)本節我們學過哪些知識內容?

      (2)你認為學習“二分法”有什么意義?

      (3)在本節課的學習過程中,還有哪些不明白的地方?

      (五)、布置作業

      P92習題3.1A組第四題,第五題。

    高一數學教案4

      經典例題

      已知關于 的方程 的實數解在區間 ,求 的取值范圍。

      反思提煉:1.常見的四種指數方程的一般解法

      (1)方程 的解法:

      (2)方程 的解法:

      (3)方程 的'解法:

      (4)方程 的解法:

      2.常見的三種對數方程的一般解法

      (1)方程 的解法:

      (2)方程 的解法:

      (3)方程 的解法:

      3.方程與函數之間的轉化。

      4.通過數形結合解決方程有無根的問題。

      課后作業:

      1.對正整數n,設曲線 在x=2處的切線與軸交點的縱坐標為 ,則數列 的前n項和的公式是

      [答案] 2n+1-2

      [解析] ∵=xn(1-x),∴′=(xn)′(1-x)+(1-x)′xn=nxn-1(1-x)-xn.

      f ′(2)=-n2n-1-2n=(-n-2)2n-1.

      在點x=2處點的縱坐標為=-2n.

      ∴切線方程為+2n=(-n-2)2n-1(x-2).

      令x=0得,=(n+1)2n,

      ∴an=(n+1)2n,

      ∴數列ann+1的前n項和為2(2n-1)2-1=2n+1-2.

      2.在平面直角坐標系 中,已知點P是函數 的圖象上的動點,該圖象在P處的切線 交軸于點M,過點P作 的垂線交軸于點N,設線段MN的中點的縱坐標為t,則t的最大值是_____________

      解析:設 則 ,過點P作 的垂線

      ,所以,t在 上單調增,在 單調減, 。

    高一數學教案5

      一、教學目標

      (1)了解含有“或”、“且”、“非”復合命題的概念及其構成形式;

      (2)理解邏輯聯結詞“或”“且”“非”的含義;

      (3)能用邏輯聯結詞和簡單命題構成不同形式的復合命題;

      (4)能識別復合命題中所用的邏輯聯結詞及其聯結的簡單命題;

      (5)會用真值表判斷相應的復合命題的真假;

      (6)在知識學習的基礎上,培養學生簡單推理的技能.

      二、教學重點難點:

      重點是判斷復合命題真假的方法;難點是對“或”的含義的理解.

      三、教學過程

      1.新課導入

      在當今社會中,人們從事任何工作、學習,都離不開邏輯.具有一定邏輯知識是構成一個公民的文化素質的重要方面.數學的特點是邏輯性強,特別是進入高中以后,所學的教學比初中更強調邏輯性.如果不學習一定的邏輯知識,將會在我們學習的過程中不知不覺地經常犯邏輯性的錯誤.其實,同學們在初中已經開始接觸一些簡易邏輯的知識.

      初一平面幾何中曾學過命題,請同學們舉一個命題的例子.(板書:命題.)

      (從初中接觸過的“命題”入手,提出問題,進而學習邏輯的有關知識.)

      學生舉例:平行四邊形的對角線互相平. ……(1)

      兩直線平行,同位角相等.…………(2)

      教師提問:“……相等的角是對頂角”是不是命題?……(3)

      (同學議論結果,答案是肯定的.)

      教師提問:什么是命題?

      (學生進行回憶、思考.)

      概念總結:對一件事情作出了判斷的語句叫做命題.

      (教師肯定了同學的回答,并作板書.)

      由于判斷有正確與錯誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.

      (教師利用投影片,和學生討論以下問題.)

      例1 判斷以下各語句是不是命題,若是,判斷其真假:

      命題一定要對一件事情作出判斷,(3)、(4)沒有對一件事情作出判斷,所以它們不是命題.

      初中所學的命題概念涉及邏輯知識,我們今天開始要在初中學習的基礎上,介紹簡易邏輯的知識.

      2.講授新課

      大家看課本(人教版,試驗修訂本,第一冊(上))從第25頁至26頁例1前,并歸納一下這段內容主要講了哪些問題?

      (片刻后請同學舉手回答,一共講了四個問題.師生一道歸納如下.)

      (1)什么叫做命題?

      可以判斷真假的`語句叫做命題.

      判斷一個語句是不是命題,關鍵看這語句有沒有對一件事情作出了判斷,疑問句、祈使句都不是命題.有些語句中含有變量,如 x2-5x+6=0

      中含有變量 ,在不給定變量的值之前,我們無法確定這語句的真假(這種含有變量的語句叫做“開語句”).

      (2)介紹邏輯聯結詞“或”、“且”、“非”.

      “或”、“且”、“非”這些詞叫做邏輯聯結詞.邏輯聯結詞除這三種形式外,還有“若…則…”和“當且僅當”兩種形式.

      命題可分為簡單命題和復合命題.

      不含邏輯聯結詞的命題叫做簡單命題.簡單命題是不含其他命題作為其組成部分(在結構上不能再分解成其他命題)的命題.

      由簡單命題和邏輯聯結詞構成的命題叫做復合命題,如“6是自然數且是偶數”就是由簡單命題“6是自然數”和“6是偶數”由邏輯聯結詞“且”構成的復合命題.

      (4)命題的表示:用p ,q ,r ,s ,……來表示.

      (教師根據學生回答的情況作補充和強調,特別是對復合命題的概念作出分析和展開.)

      我們接觸的復合命題一般有“p 或q ”“p且q ”、“非p ”、“若p 則q ”等形式.

      給出一個含有“或”、“且”、“非”的復合命題,應能說出構成它的簡單命題和弄清它所用的邏輯聯結詞;應能根據所給出的兩個簡單命題,寫出含有邏輯聯結詞“或”、“且”、“非”的復合命題.

      對于給出“若p 則q ”形式的復合命題,應能找到條件p 和結論q .

      在判斷一個命題是簡單命題還是復合命題時,不能只從字面上來看有沒有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無“且”;命題“5的倍數的末位數字不是0就是5”的字面上無“或”,但它們都是復合命題.

      3.鞏固新課

      例2 判斷下列命題,哪些是簡單命題,哪些是復合命題.如果是復合命題,指出它的構成形式以及構成它的簡單命題.

      (1)5 ;

      (2)0.5非整數;

      (3)內錯角相等,兩直線平行;

      (4)菱形的對角線互相垂直且平分;

      (5)平行線不相交;

      (6)若ab=0 ,則a=0 .

      (讓學生有充分的時間進行辨析.教材中對“若…則…”不作要求,教師可以根據學生的情況作些補充.)

    高一數學教案6

      一、教材

      首先談談我對教材的理解,《兩條直線平行與垂直的判定》是人教A版高中數學必修2第三章3.1.2的內容,本節課的內容是兩條直線平行與垂直的判定的推導及其應用,學生對于直線平行和垂直的概念已經十分熟悉,并且在上節課學習了直線的傾斜角與斜率,為本節課的學習打下了基礎。

      二、學情

      教材是我們教學的工具,是載體。但我們的教學是要面向學生的,高中學生本身身心已經趨于成熟,管理與教學難度較大,那么為了能夠成為一個合格的高中教師,深入了解所面對的學生可以說是必修課。本階段的學生思維能力已經非常成熟,能夠有自己獨立的思考,所以應該積極發揮這種優勢,讓學生獨立思考探索。

      三、教學目標

      根據以上對教材的分析以及對學情的把握,我制定了如下三維教學目標:

      (一)知識與技能

      掌握兩條直線平行與垂直的判定,能夠根據其判定兩條直線的位置關系。

      (二)過程與方法

      在經歷兩條直線平行與垂直的判定過程中,提升邏輯推理能力。

      (三)情感態度價值觀

      在猜想論證的過程中,體會數學的嚴謹性。

      四、教學重難點

      我認為一節好的數學課,從教學內容上說一定要突出重點、突破難點。而教學重點的確立與我本節課的內容肯定是密不可分的。那么根據授課內容可以確定本節課的教學重點是:兩條直線平行與垂直的判定。本節課的教學難點是:兩條直線平行與垂直的判定的推導。

      五、教法和學法

      現代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、引導者,教學的一切活動都必須以強調學生的主動性、積極性為出發點。根據這一教學理念,結合本節課的.內容特點和學生的年齡特征,本節課我采用講授法、練習法、小組合作等教學方法。

      六、教學過程

      下面我將重點談談我對教學過程的設計。

      (一)新課導入

      首先是導入環節,那么我采用復習導入,回顧上節課所學的直線的傾斜角與斜率并順勢提問:能否通過直線的斜率,來判斷兩條直線的位置關系呢?

      利用上節課所學的知識進行導入,很好的克服學生的畏難情緒。

      (二)新知探索

      接下來是教學中最重要的新知探索環節,我主要采用講解法、小組合作、啟發法等。

    高一數學教案7

      學 習 目 標

      1明確空間直角坐標系是如何建立;明確空間中任意一點如何表示;

      2 能夠在空間直角坐標系中求出點坐標

      教 學 過 程

      一 自 主 學 習

      1平面直角坐標系建立方法,點坐標確定過程、表示方法?

      2一個點在平面怎么表示?在空間呢?

      3關于一些對稱點坐標求法

      關于坐標平面 對稱點 ;

      關于坐標平面 對稱點 ;

      關于坐標平面 對稱點 ;

      關于 軸對稱點 ;

      關于 對軸稱點 ;

      關于 軸對稱點 ;

      二 師 生 互動

      例1在長方體 中, , 寫出 四點坐標

      討論:若以 點為原點,以射線 方向分別為 軸,建立空間直角坐標系,則各頂點坐標又是怎樣呢?

      變式:已知 ,描出它在空間位置

      例2 為正四棱錐, 為底面中心,若 ,試建立空間直角坐標系,并確定各頂點坐標

      練1 建立適當直角坐標系,確定棱長為3正四面體各頂點坐標

      練2 已知 是棱長為2正方體, 分別為 和 中點,建立適當空間直角坐標系,試寫出圖中各中點坐標

      三 鞏 固 練 習

      1 關于空間直角坐標系敘述正確是( )

      A 中 位置是可以互換

      B空間直角坐標系中點與一個三元有序數組是一種一一對應關系

      C空間直角坐標系中三條坐標軸把空間分為八個部分

      D某點在不同空間直角坐標系中坐標位置可以相同

      2 已知點 ,則點 關于原點對稱點坐標為( )

      A B C D

      3 已知 三個頂點坐標分別為 ,則 重心坐標為( )

      A B C D

      4 已知 為平行四邊形,且 , 則頂點 坐標

      5 方程 幾何意義是

      四 課 后 反 思

      五 課 后 鞏 固 練 習

      1 在空間直角坐標系中,給定點 ,求它分別關于坐標平面,坐標軸和原點對稱點坐標

      2 設有長方體 ,長、寬、高分別為 是線段 中點分別以 所在直線為 軸, 軸, 軸,建立空間直角坐標系

      ⑴求 坐標;

      ⑵求 坐標;

    高一數學教案8

      教學目標:

      使學生理解函數的概念,明確決定函數的三個要素,學會求某些函數的定義域,掌握判定兩個函數是否相同的方法;使學生理解靜與動的辯證關系.

      教學重點:

      函數的概念,函數定義域的求法.

      教學難點:

      函數概念的理解.

      教學過程:

      Ⅰ.課題導入

      [師]在初中,我們已經學習了函數的概念,請同學們回憶一下,它是怎樣表述的?

      (幾位學生試著表述,之后,教師將學生的回答梳理,再表述或者啟示學生將表述補充完整再條理表述).

      設在一個變化的過程中有兩個變量x和y,如果對于x的每一個值,y都有惟一的值與它對應,那么就說y是x的函數,x叫做自變量.

      [師]我們學習了函數的概念,并且具體研究了正比例函數,反比例函數,一次函數,二次函數,請同學們思考下面兩個問題:

      問題一:y=1(xR)是函數嗎?

      問題二:y=x與y=x2x 是同一個函數嗎?

      (學生思考,很難回答)

      [師]顯然,僅用上述函數概念很難回答這些問題,因此,需要從新的高度來認識函數概念(板書課題).

      Ⅱ.講授新課

      [師]下面我們先看兩個非空集合A、B的元素之間的一些對應關系的例子.

      在(1)中,對應關系是乘2,即對于集合A中的每一個數n,集合B中都有一個數2n和它對應.

      在(2)中,對應關系是求平方,即對于集合A中的每一個數m,集合B中都有一個平方數m2和它對應.

      在(3)中,對應關系是求倒數,即對于集合A中的每一個數x,集合B中都有一個數 1x 和它對應.

      請同學們觀察3個對應,它們分別是怎樣形式的對應呢?

      [生]一對一、二對一、一對一.

      [師]這3個對應的共同特點是什么呢?

      [生甲]對于集合A中的任意一個數,按照某種對應關系,集合B中都有惟一的數和它對應.

      [師]生甲回答的很好,不但找到了3個對應的共同特點,還特別強調了對應關系,事實上,一個集合中的數與另一集合中的數的對應是按照一定的關系對應的,這是不能忽略的. 實際上,函數就是從自變量x的集合到函數值y的集合的一種對應關系.

      現在我們把函數的概念進一步敘述如下:(板書)

      設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有惟一確定的數f(x)和它對應,那么就稱f︰AB為從集合A到集合B的一個函數.

      記作:y=f(x),xA

      其中x叫自變量,x的取值范圍A叫做函數的定義域,與x的值相對應的y(或f(x))值叫做函數值,函數值的集合{y|y=f(x),xA}叫函數的值域.

      一次函數f(x)=ax+b(a0)的定義域是R,值域也是R.對于R中的任意一個數x,在R中都有一個數f(x)=ax+b(a0)和它對應.

      反比例函數f(x)=kx (k0)的定義域是A={x|x0},值域是B={f(x)|f(x)0},對于A中的任意一個實數x,在B中都有一個實數f(x)= kx (k0)和它對應.

      二次函數f(x)=ax2+bx+c(a0)的定義域是R,值域是當a0時B={f(x)|f(x)4ac-b24a };當a0時,B={f(x)|f(x)4ac-b24a },它使得R中的任意一個數x與B中的數f(x)=ax2+bx+c(a0)對應.

      函數概念用集合、對應的語言敘述后,我們就很容易回答前面所提出的兩個問題.

      y=1(xR)是函數,因為對于實數集R中的任何一個數x,按照對應關系函數值是1,在R中y都有惟一確定的值1與它對應,所以說y是x的函數.

      Y=x與y=x2x 不是同一個函數,因為盡管它們的對應關系一樣,但y=x的'定義域是R,而y=x2x 的定義域是{x|x0}. 所以y=x與y=x2x 不是同一個函數.

      [師]理解函數的定義,我們應該注意些什么呢?

      (教師提出問題,啟發、引導學生思考、討論,并和學生一起歸納、總結)

      注意:①函數是非空數集到非空數集上的一種對應.

      ②符號f:AB表示A到B的一個函數,它有三個要素;定義域、值域、對應關系,三者缺一不可.

      ③集合A中數的任意性,集合B中數的惟一性.

      ④f表示對應關系,在不同的函數中,f的具體含義不一樣.

      ⑤f(x)是一個符號,絕對不能理解為f與x的乘積.

      [師]在研究函數時,除用符號f(x)表示函數外,還常用g(x) 、F(x)、G(x)等符號來表示

      Ⅲ.例題分析

      [例1]求下列函數的定義域.

      (1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x

      分析:函數的定義域通常由問題的實際背景確定.如果只給出解析式y=f(x),而沒有指明它的定義域.那么函數的定義域就是指能使這個式子有意義的實數x的集合.

      解:(1)x-20,即x2時,1x-2 有意義

      這個函數的定義域是{x|x2}

      (2)3x+20,即x-23 時3x+2 有意義

      函數y=3x+2 的定義域是[-23 ,+)

      (3) x+10 x2

      這個函數的定義域是{x|x{x|x2}=[-1,2)(2,+).

      注意:函數的定義域可用三種方法表示:不等式、集合、區間.

      從上例可以看出,當確定用解析式y=f(x)表示的函數的定義域時,常有以下幾種情況:

      (1)如果f(x)是整式,那么函數的定義域是實數集R;

      (2)如果f(x)是分式,那么函數的定義域是使分母不等于零的實數的集合;

      (3)如果f(x)是偶次根式,那么函數的定義域是使根號內的式子不小于零的實數的集合;

      (4)如果f(x)是由幾個部分的數學式子構成的,那么函數的定義域是使各部分式子都有意義的實數的集合(即使每個部分有意義的實數的集合的交集);

      (5)如果f(x)是由實際問題列出的,那么函數的定義域是使解析式本身有意義且符合實際意義的實數的集合.

      例如:一矩形的寬為x m,長是寬的2倍,其面積為y=2x2,此函數定義域為x0而不是全體實數.

      由以上分析可知:函數的定義域由數學式子本身的意義和問題的實際意義決定.

      [師]自變量x在定義域中任取一個確定的值a時,對應的函數值用符號f(a)來表示.例如,函數f(x)=x2+3x+1,當x=2時的函數值是f(2)=22+32+1=11

      注意:f(a)是常量,f(x)是變量 ,f(a)是函數f(x)中當自變量x=a時的函數值.

      下面我們來看求函數式的值應該怎樣進行呢?

      [生甲]求函數式的值,嚴格地說是求函數式中自變量x為某一確定的值時函數式的值,因此,求函數式的值,只要把函數式中的x換為相應確定的數(或字母,或式子)進行計算即可.

      [師]回答正確,不過要準確地求出函數式的值,計算時萬萬不可粗心大意噢!

      [生乙]判定兩個函數是否相同,就看其定義域或對應關系是否完全一致,完全一致時,這兩個函數就相同;不完全一致時,這兩個函數就不同.

      [師]生乙的回答完整嗎?

      [生]完整!(課本上就是如生乙所述那樣寫的).

      [師]大家說,判定兩個函數是否相同的依據是什么?

      [生]函數的定義.

      [師]函數的定義有三個要素:定義域、值域、對應關系,我們判定兩個函數是否相同為什么只看兩個要素:定義域和對應關系,而不看值域呢?

      (學生竊竊私語:是啊,函數的三個要素不是缺一不可嗎?怎不看值域呢?)

      (無人回答)

      [師]同學們預習時還是欠仔細,欠思考!我們做事情,看問題都要多問幾個為什么!函數的值域是由什么決定的,不就是由函數的定義域與對應關系決定的嗎!關注了函數的定義域與對應關系,三者就全看了!

      (生恍然大悟,我們怎么就沒想到呢?)

      [例2]求下列函數的值域

      (1)y=1-2x (xR) (2)y=|x|-1 x{-2,-1,0,1,2}

      (3)y=x2+4x+3 (-31)

      分析:求函數的值域應確定相應的定義域后再根據函數的具體形式及運算確定其值域.

      對于(1)(2)可用直接法根據它們的定義域及對應法則得到(1)(2)的值域.

      對于(3)可借助數形結合思想利用它們的圖象得到值域,即圖象法.

      解:(1)yR

      (2)y{1,0,-1}

      (3)畫出y=x2+4x+3(-31)的圖象,如圖所示,

      當x[-3,1]時,得y[-1,8]

      Ⅳ.課堂練習

      課本P24練習17.

      Ⅴ.課時小結

      本節課我們學習了函數的定義(包括定義域、值域的概念)、區間的概念及求函數定義域的方法.學習函數定義應注意的問題及求定義域時的各種情形應該予以重視.(本小結的內容可由學生自己來歸納)

      Ⅵ.課后作業

      課本P28,習題1、2. 文 章來

    高一數學教案9

      教學目標

      1.理解分數指數冪的含義,了解實數指數冪的意義。

      2.掌握有理數指數冪的運算性質,靈活的運用乘法公式進行有理數指數冪的運算和化簡,會進行根式與分數指數冪的相互轉化。

      教學重點

      1.分數指數冪含義的理解。

      2.有理數指數冪的運算性質的`理解。

      3.有理數指數冪的運算和化簡。

      教學難點

      1.分數指數冪含義的理解。

      2.有理數指數冪的運算和化簡。

      教學過程

      一.問題情景

      上節課研究了根式的意義及根式的性質,那么根式與指數冪有什么關系?整數指數冪有那些運算性質?

      二.學生活動

      1.說出下列各式的意義,并指出其結果的指數,被開方數的指數及根指數三者之間的關系

      (1)=(2)=

      2.從上述問題中,你能得到的結論為

      3.(a0)及(a0)能否化成指數冪的形式?

      三.數學理論

      正分數指數冪的意義:=(a0,m,n均為正整數)

      負分數指數冪的意義:=(a0,m,n均為正整數)

      1.規定:0的正分數指數冪仍是0,即=0

      0的負分數指數冪無意義。

      3.規定了分數指數冪的意義后,指數的概念從整數指數推廣到了有理數指數,因而整數指數冪的運算性質同樣適用于有理數指數冪。

      即=(1)

      =(2)其中s,tQ,a0,b0

      =(3)

      四.數學運用

      例1求值:

      (1)(2)(3)(4)

      例2用分數指數冪的形式表示下列各式(a0)

      (1)(2)

      例3化簡

      (1)

      (2)(3)

      例4化簡

      例5已知求(1)(2)

      五.回顧小結

      1.分數指數冪的意義。=(0,m,n)

      無意義

      2.有理數指數冪的運算性質

      3.整式運算律及乘法公式在分數指數冪運算中仍適用

      4.指數概念從整數指數冪推廣到有理數指數冪,同樣可以推廣到實數指數冪,請同學們閱讀P47的閱讀部分

      練習P47-48練習1,2,3,4

      六.課外作業

      P48習題2.2(1)2,4

    高一數學教案10

      教學目標:

      1.進一步理解對數函數的性質,能運用對數函數的相關性質解決對數型函數的常見問題.

      2.培養學生數形結合的思想,以及分析推理的能力.

      教學重點:

      對數函數性質的應用.

      教學難點:

      對數函數的性質向對數型函數的演變延伸.

      教學過程:

      一、問題情境

      1.復習對數函數的性質.

      2.回答下列問題.

      (1)函數y=log2x的值域是 ;

      (2)函數y=log2x(x≥1)的'值域是 ;

      (3)函數y=log2x(0

      3.情境問題.

      函數y=log2(x2+2x+2)的定義域和值域分別如何求呢?

      二、學生活動

      探究完成情境問題.

      三、數學運用

      例1 求函數y=log2(x2+2x+2)的定義域和值域.

      練習:

      (1)已知函數y=log2x的值域是[-2,3],則x的范圍是________________.

      (2)函數 ,x(0,8]的值域是 .

      (3)函數y=log (x2-6x+17)的值域 .

      (4)函數 的值域是_______________.

      例2 判斷下列函數的奇偶性:

      (1)f (x)=lg (2)f (x)=ln( -x)

      例3 已知loga 0.75>1,試求實數a 取值范圍.

      例4 已知函數y=loga(1-ax)(a>0,a≠1).

      (1)求函數的定義域與值域;

      (2)求函數的單調區間.

      練習:

      1.下列函數(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域為R的有 (請寫出所有正確結論的序號).

      2.函數y=lg( -1)的圖象關于 對稱.

      3.已知函數 (a>0,a≠1)的圖象關于原點對稱,那么實數m= .

      4.求函數 ,其中x [ ,9]的值域.

      四、要點歸納與方法小結

      (1)借助于對數函數的性質研究對數型函數的定義域與值域;

      (2)換元法;

      (3)能畫出較復雜函數的圖象,根據圖象研究函數的性質(數形結合).

      五、作業

      課本P70~71-4,5,10,11.

    高一數學教案11

      學習目標 1.函數奇偶性的概念

      2.由函數圖象研究函數的奇偶性

      3.函數奇偶性的判斷

      重點:能運用函數奇偶性的定義判斷函數的奇偶性

      難點:理解函數的奇偶性

      知識梳理:

      1.軸對稱圖形:

      2中心對稱圖形:

      【概念探究】

      1、 畫出函數 ,與 的圖像;并觀察兩個函數圖像的對稱性。

      2、 求出 , 時的函數值,寫出 , 。

      結論: 。

      3、 奇函數:___________________________________________________

      4、 偶函數:______________________________________________________

      【概念深化】

      (1)、強調定義中任意二字,奇偶性是函數在定義域上的整體性質。

      (2)、奇函數偶函數的定義域關于原點對稱。

      5、奇函數與偶函數圖像的對稱性:

      如果一個函數是奇函數,則這個函數的圖像是以坐標原點為對稱中心的__________。反之,如果一個函數的圖像是以坐標原點為對稱中心的中心對稱圖形,則這個函數是___________。

      如果一個函數是偶函數,則這個函數的圖像是以 軸為對稱軸的__________。反之,如果一個函數的`圖像是關于 軸對稱,則這個函數是___________。

      6. 根據函數的奇偶性,函數可以分為____________________________________.

      題型一:判定函數的奇偶性。

      例1、判斷下列函數的奇偶性:

      (1) (2) (3)

      (4) (5)

      練習:教材第49頁,練習A第1題

      總結:根據例題,你能給出用定義判斷函數奇偶性的步驟?

      題型二:利用奇偶性求函數解析式

      例2:若f(x)是定義在R上的奇函數,當x0時,f(x)=x(1-x),求當 時f(x)的解析式。

      練習:若f(x)是定義在R上的奇函數,當x0時,f(x)=x|x-2|,求當x0時f(x)的解析式。

      已知定義在實數集 上的奇函數 滿足:當x0時, ,求 的表達式

      題型三:利用奇偶性作函數圖像

      例3 研究函數 的性質并作出它的圖像

      練習:教材第49練習A第3,4,5題,練習B第1,2題

      當堂檢測

      1 已知 是定義在R上的奇函數,則( D )

      A. B. C. D.

      2 如果偶函數 在區間 上是減函數,且最大值為7,那么 在區間 上是( B )

      A. 增函數且最小值為-7 B. 增函數且最大值為7

      C. 減函數且最小值為-7 D. 減函數且最大值為7

      3 函數 是定義在區間 上的偶函數,且 ,則下列各式一定成立的是(C )

      A. B. C. D.

      4 已知函數 為奇函數,若 ,則 -1

      5 若 是偶函數,則 的單調增區間是

      6 下列函數中不是偶函數的是(D )

      A B C D

      7 設f(x)是R上的偶函數,切在 上單調遞減,則f(-2),f(- ),f(3)的大小關系是( A )

      A B f(- )f(-2) f(3) C f(- )

      8 奇函數 的圖像必經過點( C )

      A (a,f(-a)) B (-a,f(a)) C (-a,-f(a)) D (a,f( ))

      9 已知函數 為偶函數,其圖像與x軸有四個交點,則方程f(x)=0的所有實根之和是( A )

      A 0 B 1 C 2 D 4

      10 設f(x)是定義在R上的奇函數,且x0時,f(x)= ,則f(-2)=_-5__

      11若f(x)在 上是奇函數,且f(3)_f(-1)

      12.解答題

      用定義判斷函數 的奇偶性。

      13定義證明函數的奇偶性

      已知函數 在區間D上是奇函數,函數 在區間D上是偶函數,求證: 是奇函數

      14利用函數的奇偶性求函數的解析式:

      已知分段函數 是奇函數,當 時的解析式為 ,求這個函數在區間 上的解析表達式。

    高一數學教案12

      一、課標要求:

      理解充分條件、必要條件與充要條件的意義,會判斷充分條件、必要條件與充要條件.

      二、知識與方法回顧:

      1、充分條件、必要條件與充要條件的概念:

      2、從邏輯推理關系上看充分不必要條件、必要不充分條件與充要條件:

      3、從集合與集合之間關系上看充分條件、必要條件與充要條件:

      4、特殊值法:判斷充分條件與必要條件時,往往用特殊值法來否定結論

      5、化歸思想:

      表示p等價于q,等價命題可以進行相互轉化,當我們要證明p成立時,就可以轉化為證明q成立;

      這里要注意原命題 逆否命題、逆命題 否命題只是等價形式之一,對于條件或結論是不等式關系(否定式)的命題一般應用化歸思想.

      6、數形結合思想:

      利用韋恩圖(即集合的包含關系)來判斷充分不必要條件,必要不充分條件,充要條件.

      三、基礎訓練:

      1、 設命題若p則q為假,而若q則p為真,則p是q的 ( )

      A.充分不必要條件 B.必要不充分條件

      C.充要條件 D.既不充分也不必要條件

      2、 設集合M,N為是全集U的兩個子集,則 是 的 ( )

      A.充分不必要條件 B.必要不充分條件

      C.充要條件 D.既不充分也不必要條件

      3、 若 是實數,則 是 的 ( )

      A.充分不必要條件 B.必要不充分條件

      C.充要條件 D.既不充分也不必要條件

      四、例題講解

      例1 已知實系數一元二次方程 ,下列結論中正確的是 ( )

      (1) 是這個方程有實根的充分不必要條件

      (2) 是這個方程有實根的必要不充分條件

      (3) 是這個方程有實根的充要條件

      (4) 是這個方程有實根的充分不必要條件

      A.(1)(3) B.(3)(4) C.(1)(3)(4) D.(2)(3)(4)

      例2 (1)已知h 0,a,bR,設命題甲: ,命題乙: 且 ,問甲是乙的 ( )

      (2)已知p:兩條直線的斜率互為負倒數,q:兩條直線互相垂直,則p是q的 ( )

      A.充分不必要條件 B.必要不充分條件

      C.充要條件 D.既不充分也不必要條件

      變式:a = 0是直線 與 平行的 條件;

      例3 如果命題p、q都是命題r的必要條件,命題s是命題r的充分條件,命題q是命題s

      的充分條件,那么命題p是命題q的 條件;命題s是命題q的 條件;命題r是命題q的 條件.

      例4 設命題p:|4x-3| 1,命題q:x2-(2a+1)x+a(a+1) 0,若﹁p是﹁q的必要不充分條件,求實數a的取值范圍;

      例5 設 是方程 的兩個實根,試分析 是兩實根 均大于1的什么條件?并給予證明.

      五、課堂練習

      1、設命題p: ,命題q: ,則p是q的 ( )

      A.充分不必要條件 B.必要不充分條件

      C.充要條件 D.既不充分也不必要條件

      2、給出以下四個命題:①若p則q②若﹁r則﹁q③ 若r則﹁s

      ④若﹁s則q若它們都是真命題,則﹁p是s的 條件;

      3、是否存在實數p,使 是 的充分條件?若存在,求出p的取值范圍;若不存在說明理由.

      六、課堂小結:

      七、教學后記:

      高三 班 學號 姓名 日期: 月 日

      1、 A B是AB=B的 ( )

      A.充分不必要條件 B.必要不充分條件

      C.充要條件 D.既不充分也不必要條件

      2、 是 的 ( )

      A.充分不必要條件 B.必要不充分條件

      C.充要條件 D.既不充分也不必要條件

      3、 2x2-5x-30的一個必要不充分條件是 ( )

      A.-

      4、2且b是a+b4且ab的` ( )

      A.充分不必要條件 B.必要不充分條件

      C.充要條件 D.既不充分也不必要條件

      5、設a1、b1、c1、a2、b2、c2均為非零實數,不等式a1x2+b1x+c10和a2x2+b2x+c20的解集分別為集合M和N,那么 是 M=N 的 ( )

      A.充分不必要條件 B.必要不充分條件

      C.充要條件 D.既不充分又不必要條件

      6、若命題A: ,命題B: ,則命題A是B的 條件;

      7、設條件p:|x|=x,條件q:x2-x,則p是q的 條件;

      8、方程mx2+2x+1=0至少有一個負根的充要條件是 ;

      9、關于x的方程x2+mx+n = 0有兩個小于1的正根的一個充要條件是 ;

      10、已知 ,求證: 的充要條件是 ;

      11、已知p:-210,q:1-m1+m,若﹁p是﹁q的必要不充分條件,求實數m的取值范圍。

      12、已知關于x的方程(1-a)x2+(a+2)x-4=0,aR,求:

      (1)方程有兩個正根的充要條件;

      (2)方程至少有一正根的充要條件.

    高一數學教案13

      一、指導思想:

      使學生在九年義務教育數學課程的基礎上,進一步提高作為未來公民所必要的數學素養,以滿足個人發展與社會進步的需要。具體目標如下。

      1。獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在后續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。

      2。提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。

      3。提高數學地提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。

      4。發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。

      5。提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態度。

      6。具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

      二、教材特點:

      我們所使用的教材是人教版《普通高中課程標準實驗教科書數學(a版)》,它在堅持我國數學教育優良傳統的前提下,認真處理繼承,借簽,發展,創新之間的關系,體現基礎性,時代性,典型性和可接受性等到,具有如下特點:

      1。親和力:以生動活潑的呈現方式,激發興趣和美感,引發學習激情。

      2。問題性:以恰時恰點的問題引導數學活動,培養問題意識,孕育創新精神。

      3。科學性與思想性:通過不同數學內容的聯系與啟發,強調類比,推廣,特殊化,化歸等思想方法的運用,學習數學地思考問題的方式,提高數學思維能力,培育理性精神。

      4。時代性與應用性:以具有時代性和現實感的素材創設情境,加強數學活動,發展應用意識。

      三、教法分析:

      1。選取與內容密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創設能夠體現數學的概念和結論,數學的思想和方法,以及數學應用的學習情境,使學生產生對數學的親切感,引發學生看個究竟的沖動,以達到培養其興趣的目的。

      2。通過觀察,思考,探究等欄目,引發學生的思考和探索活動,切實改進學生的學習方式。

      3。在教學中強調類比,推廣,特殊化,化歸等數學思想方法,盡可能養成其邏輯思維的習慣。

      四、學情分析:

      1、基本情況:12班共人,男生人,女生人;本班相對而言,數學尖子約人,中上等生約人,中等生約人,中下生約人,后進生約人。

      14班共人,男生人,女生人;本班相對而言,數學尖子約人,中上等生約人,中等生約人,中下生約人,后進生約人。

      2、兩個班均屬普高班,學習情況良好,但學生自覺性差,自我控制能力弱,因此在教學中需時時提醒學生,培養其自覺性。班級存在的.最大問題是計算能力太差,學生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學中,重點在于培養學生的計算能力,同時要進一步提高其思維能力。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機補充一些內容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學時只能注重基礎再基礎,爭取每一堂課落實一個知識點,掌握一個知識點。

      五、教學措施:

      1、激發學生的學習興趣。由數學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。

      2、注意從實例出發,從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。

      3、加強培養學生的邏輯思維能力就解決實際問題的能力,以及培養提高學生的自學能力,養成善于分析問題的習慣,進行辨證唯物主義教育。

      4、抓住公式的推導和內在聯系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。

      5、自始至終貫徹教學四環節,針對不同的教材內容選擇不同教法。

      6、重視數學應用意識及應用能力的培養。

    高一數學教案14

      教材分析:冪函數作為一類重要的函數模型,是學生在系統地學習了指數函數、對數函數之后研究的又一類基本的初等函數。本課的教學重點是掌握常見冪函數的概念和性質,難點是根據冪函數的單調性比較兩個同指數的指數式的大小。 冪函數模型在生活中是比較常見的,學習時結合生活中的具體實例來引出常見的冪函數 。

      組織學生畫出他們的圖象,根據圖象觀察、總結這幾個常見冪函數的性質。對于冪函數,只需重點掌握 這五個函數的圖象和性質。 學習中學生容易將冪函數和指數函數混淆,因此在引出冪函數的概念之后,可以組織學生對兩類不同函數的表達式進行辨析。

      學生已經有了學習冪函數和對象函數的學習經歷,這為學習冪函數做好了方法上的準備。因此,學習過程中,引入冪函數的概念之后,嘗試放手讓學生自己進行合作探究學習。

      教學目標:

      ㈠知識和技能

      1、了解冪函數的概念,會畫冪函數 ,的圖象,并能結合這幾個冪函數的圖象,了解冪函數圖象的變化情況和性質。

      2、了解幾個常見的冪函數的性質。

      ㈡過程與方法

      1、通過觀察、總結冪函數的性質,培養學生概括抽象和識圖能力。

      2、使學生進一步體會數形結合的思想。

      ㈢情感、態度與價值觀

      1、通過生活實例引出冪函數的概念,使學生體會到生活中處處有數學,激發學生的學習興趣。

      2、利用計算機等工具,了解冪函數和指數函數的本質差別,使學生充分認識到現代技術在人們認識世界的過程中的作用,從而激發學生的學習欲望。 教學重點 常見冪函數的概念和性質 教學難點 冪函數的單調性與冪指數的關系

      教學過程

      一、創設情景,引入新課

      問題1:如果張紅購買了每千克1元的水果w千克,那么她需要付的錢數p(元)和購買的'水果量w(千克)之間有何關系? (總結:根據函數的定義可知,這里p是w的函數)

      問題2:如果正方形的邊長為a,那么正方形的面積 ,這里S是a的函數。

      問題3:如果正方體的邊長為a,那么正方體的體積 ,這里V是a的函數。

      問題4:如果正方形場地面積為S,那么正方形的邊長xx,這里a是S的函數

      問題5:如果某人xxs內騎車行進了xxkm,那么他騎車的速度,這里v是t的函數。

      以上是我們生活中經常遇到的幾個數學模型,你能發現以上幾個函數解析式有什么共同點嗎?(右邊指數式,且底數都是變量)這只是我們生活中常用到的一類函數的幾個具體代表,如果讓你給他們起一個名字的話,你將會給他們起個什么名字呢?(變量在底數位置,解析式右邊都是冪的形式)(適當引導:從自變量所處的位置這個角度)(引入新課,書寫課題)

      二、新課講解

      (一)冪函數的概念如果設變量為,函數值為xx,你能根據以上的生活實例得到怎樣的一些具體的函數式?這里所得到的函數是冪函數的幾個典型代表,你能根據此給出冪函數的一般式嗎?這就是冪函數的一般式,你能根據指數函數、對數函數的定義,給出冪函數的定義嗎?xx冪函數的定義:一般地,我們把形如xx的函數稱為冪函數(power function),其中xx是自變量,xx是常數。

      【探究一】冪函數與指數函數有什么區別?(組織學生回顧指數函數的概念)

      結論:冪函數和指數函數都是我們高中數學中研究的兩類重要的基本初等函數,從它們的解析式看有如下區別:對冪函數來說,底數是自變量,指數是常數對指數函數來說,指數是自變量,底數是常數

      試一試:判斷下列函數那些是冪函數(1)(2)(3)(4)我們已經對冪函數的概念有了比較深刻的認識,根據我們前面學習指數函數、對數函數的學習經歷,你認為我們下面應該研究什么呢?(研究圖象和性質)

      (二)幾個常見冪函數的圖象和性質 在初中我們已經學習了冪函數x的圖象和性質,請同學們在同一坐標系中畫出它們的圖象。根據你的學習經歷,你能在同一坐標系內畫出函數x的圖象嗎?

      【探究二】觀察函數x的圖象,將你發現的結論寫在下表內。定義域,值域,奇偶性,單調性,定點,圖象范圍

      【探究三】根據上表的內容并結合圖象,試總結函數:x的共同性質。

      (1)函數x的圖象都過點

      (2)函數x在x上單調遞增;

      歸納:冪函數x圖象的基本特征是,當x是,圖象過點x,且在第一象限隨x的增大而上升,函數在區間x上是單調增函數。(演示幾何畫板制作課件:冪函數。asp)

      請同學們模仿我們探究冪函數x圖象的基本特征x的情況探討x時冪函數x圖象的基本特征。(利用drawtools軟件作圖研究)

      歸納:xx時冪函數x圖象的基本特征:過點x,且在第一象限隨x的增大而下降,函數在區間x上是單調減函數,且向右無限接近X軸,向上無限接近Y軸。

      (三)例題剖析

      【例1】求下列冪函數的定義域,并指出其奇偶性、單調性。(1) (2) (3)

      分析:根據你的學習經歷,你覺得求一個函數的定義域應該從哪些方面來考慮?

      方法引導:解決有關函數求定義域的問題時,可以從以下幾個方面來考慮,列出相應不等式或不等式組,解不等式或不等式組即可得到所求函數的定義域。

      (1)若函數解析式中含有分母,分母不能為0;

      (2)若函數解析式中含有根號,要注意偶次根號下非負;

      (3)0的0次冪沒有意義;

      (4)若函數解析式中含有對數式,要注意對數的真數大于0;求函數的定義域的本質是解不等式或不等式組。

      結論:在函數解析式中含有分數指數時,可以把它們的解析式化成根式,根據“偶次根號下非負”這一條件來求出對應函數的定義域;當函數解析式的冪指數為負數時,根據負指數冪的意義將其轉化為分式形式,根據分式的分母不能為0這一限制條件來求出對應函數的定義域。歸納分析如果判斷冪函數的單調性(第一象限利用性質,其余象限利用函數奇偶性與單調性的關系)

      【例2】比較下列各組數中兩個值的大小(在橫線上填上“<”或“>”)

      (1)________

      (2)________

      (3)__________

      (4)____________

      分析:利用考察其相對應的冪函數和指數函數來比較大小

      三、課堂小結

      1、冪函數的概念及其指數函數表達式的區別

      2、常見冪函數的圖象和冪函數的性質。

      四、布置作業

      ㈠課本第73頁習題2.4

      第1、2、3題

      ㈡思考題:根據下列條件對于冪函數x的有關性質的敘述,分別指出冪函數x的圖象具有下列特點之一時的x的值,其中:

      (1)圖象過原點,且隨x的增大而上升;

      (2)圖象不過原點,不與坐標軸相交,且隨x的增大而下降;

      (3)圖象關于x軸對稱,且與坐標軸相交;

      (4)圖象關于x軸對稱,但不與坐標軸相交;

      (5)圖象關于原點對稱,且過原點;

      (6)圖象關于原點對稱,但不過原點;

      檢測與反饋

      1、下列函數中,是冪函數的是( )

      A、 B、 C、 D、

      2、下列結論正確的是( )

      A、冪函數的圖象一定過原點

      B、當xx時,冪函數x是減函數

      C、當xx時,冪函數x是增函數

      D、函數 既是二次函數,也是冪函數

      3、下列函數中,在 是增函數的是( )

      A、 B、 C、 D、

      4、函數 的圖象大致是( )

      5、已知某冪函數的圖象經過點 ,則這個函數的解析式為_______________________

      6、寫出下列函數的定義域,并指出它們的單調性:

      同伴評 (優、良、中、須努力)

      自 評 (優、良、中、須努力)

      教師評 (優、良、中、須努力)

    高一數學教案15

      本文題目:高一數學教案:對數函數及其性質

      2.2.2 對數函數及其性質(二)

      內容與解析

      (一) 內容:對數函數及其性質(二)。

      (二) 解析:從近幾年高考試題看,主要考查對數函數的性質,一般綜合在對數函數中考查.題型主要是選擇題和填空題,命題靈活.學習本部分時,要重點掌握對數的運算性質和技巧,并熟練應用.

      一、 目標及其解析:

      (一) 教學目標

      (1) 了解對數函數在生產實際中的簡單應用.進一步理解對數函數的圖象和性質;

      (2) 學習反函數的概念,理解對數函數和指數函數互為反函數,能夠在同一坐標上看出互為反函數的兩個函數的圖象性質..

      (二) 解析

      (1)在對數函數 中,底數 且 ,自變量 ,函數值 .作為對數函數的三個要點,要做到道理明白、記憶牢固、運用準確.

      (2)反函數求法:①確定原函數的值域即新函數的定義域.②把原函數y=f(x)視為方程,用y表示出x.③把x、y互換,同時標明反函數的定義域.

      二、 問題診斷分析

      在本節課的教學中,學生可能遇到的問題是不易理解反函數,熟練掌握其轉化關系是學好對數函數與反函數的`基礎。

      三、 教學支持條件分析

      在本節課一次遞推的教學中,準備使用PowerPoint 20xx。因為使用PowerPoint 20xx,有利于提供準確、最核心的文字信息,有利于幫助學生順利抓住老師上課思路,節省老師板書時間,讓學生盡快地進入對問題的分析當中。

      四、 教學過程

      問題一. 對數函數模型思想及應用:

      ① 出示例題:溶液酸堿度的測量問題:溶液酸堿度pH的計算公式 ,其中 表示溶液中氫離子的濃度,單位是摩爾/升.

      (Ⅰ)分析溶液酸堿讀與溶液中氫離子濃度之間的關系?

      (Ⅱ)純凈水 摩爾/升,計算純凈水的酸堿度.

      ②討論:抽象出的函數模型? 如何應用函數模型解決問題? 強調數學應用思想

      問題二.反函數:

      ① 引言:當一個函數是一一映射時, 可以把這個函數的因變量作為一個新函數的自變量, 而把這個函數的自變量新的函數的因變量. 我們稱這兩個函數為反函數(inverse function)

      ② 探究:如何由 求出x?

      ③ 分析:函數 由 解出,是把指數函數 中的自變量與因變量對調位置而得出的. 習慣上我們通常用x表示自變量,y表示函數,即寫為 .

      那么我們就說指數函數 與對數函數 互為反函數

      ④ 在同一平面直角坐標系中,畫出指數函數 及其反函數 圖象,發現什么性質?

      ⑤ 分析:取 圖象上的幾個點,說出它們關于直線 的對稱點的坐標,并判斷它們是否在 的圖象上,為什么?

      ⑥ 探究:如果 在函數 的圖象上,那么P0關于直線 的對稱點在函數 的圖象上嗎,為什么?

      由上述過程可以得到什么結論?(互為反函數的兩個函數的圖象關于直線 對稱)

      ⑦練習:求下列函數的反函數: ;

      (師生共練 小結步驟:解x ;習慣表示;定義域)

      (二)小結:函數模型應用思想;反函數概念;閱讀P84材料

      五、 目標檢測

      1.(20xx全國卷Ⅱ文)函數y= (x 0)的反函數是

      A. (x 0) B. (x 0) C. (x 0) D. (x 0)

      1.B 解析:本題考查反函數概念及求法,由原函數x 0可知A、C錯,原函數y 0可知D錯,選B.

      2. (20xx廣東卷理)若函數 是函數 的反函數,其圖像經過點 ,則 ( )

      A. B. C. D.

      2. B 解析: ,代入 ,解得 ,所以 ,選B.

      3. 求函數 的反函數

      3.解析:顯然y0,反解 可得, ,將x,y互換可得 .可得原函數的反函數為 .

      【總結】20xx年已經到來,新的一年數學網會為您整理更多更好的文章,希望本文高一數學教案:對數函數及其性質能給您帶來幫助!

    【高一數學教案】相關文章:

    高一數學教案11-05

    高一優秀數學教案09-28

    【推薦】高一數學教案12-04

    【熱】高一數學教案12-05

    高一數學教案函數12-28

    高一數學教案數列12-29

    【薦】高一數學教案11-27

    高一數學教案【熱】12-03

    【熱門】高一數學教案11-26

    高一數學教案【推薦】11-30

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      中文字幕国产综合 | 亚洲欧美色中文字幕在线 | 日韩影片一区二区三区 | 最新国产精品精品视频 | 亚洲午夜福利717 | 中文字幕午夜乱理片 |