1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>八年級數學教案>八年級數學教案

    八年級數學教案

    時間:2022-04-15 22:29:55 八年級數學教案 我要投稿

    八年級數學教案集錦7篇

      作為一名無私奉獻的老師,常常需要準備教案,借助教案可以提高教學質量,收到預期的教學效果。來參考自己需要的教案吧!以下是小編精心整理的八年級數學教案7篇,僅供參考,希望能夠幫助到大家。

    八年級數學教案集錦7篇

    八年級數學教案 篇1

      教學目標:

      學會可化為一元一次方程或一元二次方程的分式方程的解法,會用去分母求方程的解、掌握解分式方程的一般步驟。

      教學重點:

      去分母法解可化為一元一次方程或一元二次方程的分式方程、驗根的方法、

      教學難點:

      解分式方程的一般步驟。

      教學過程:

      復習引入:

      1、什么叫分式方程?

      2、解分式方程的'基本思想:

      分式方程整式方程

      3、解方程(學生板演)

      講授新課:

      1、由上述學生的板演歸納出解分式方程的一般步驟

      (1)去分母:在方程的兩邊都乘以最簡公分母,化為整式方程;

      (2)解這個整式方程;

      (3)檢驗:將所得的解代入原方程的最簡公分母,若最簡公分母為0,則為增根,必須舍去;若不為0,則為原方程的根、

      2、范例講解

      (學生嘗試練習后,教師講評)

      例1:解方程例2:解方程例3:解方程講評時強調:

      1、怎樣確定最簡公分母?(先將各分母因式分解)

      2、解分式方程的步驟、

      鞏固練習:P1471t,2t、

      課堂小結:解分式方程的一般步驟

      布置作業:見作業本。

    八年級數學教案 篇2

      學習目標:

      1、知道線段的垂直平分線的概念,探索并掌握成軸對稱的兩個圖形全等,對稱軸是對稱點連線的垂直平分線等性質.

      2、經歷探索軸對稱的.性質的活動過程 ,積累數學活動經驗,進一步發展空間觀念和有條理地思考和表達能力.

      3、利用軸對稱的基本性質解決實際問題。

      學習重點:靈活運用對應點所連的線段被 對稱軸垂直平分、對應線段相等、對應角相等等性質。

      學習難點:軸對稱的性質的理解和拓展運用。

      學習過程 :

      一、探索活動

      如右圖所示,在紙上任意畫一點A,把紙對折,用針在 點A處穿孔,再把紙展開,并連接兩針孔A、A.

      兩針孔A、A和線段AA與折痕MN之間有什么關系?

      1、請同學們按要求畫點、折紙、扎孔,仔細觀察你 所做的圖形,然后研究:兩針孔A、A與折痕MN之間有什么關系?線段AA與折痕MN之間又有什么關系呢?兩針孔A、A ,直線MN 線段AA.

      2、那么 直線MN為什么會垂直平分線段AA呢?

      3.垂直并且平分一條線段的直線,叫做線段的垂直平分線(mi dpoint perpendicular).

      例如,如圖,對稱軸MN就是對稱點A、A連線(即線段AA)的垂直 平分線.

      4.如圖,在紙上再任畫一點B,同樣地,折紙、穿孔、展開,并連接AB、AB、BB.線段AB與AB有什么關系?線段BB與MN 有什么關系?

      5.如圖,再在紙上任畫一點C,并仿照上面進行操作.

      (1)線段AC與 AC有什么關系 ? BC與BC呢?線段CC與MN有什么關系?

      (2)A與A有什么關系? B與B呢? △ABC 與△ABC有什么關系?為什么?

      (3)軸對稱有哪些性質?

      6.軸對稱的性質:

      (1)成軸對稱的兩個圖形全等.

      (2)如果兩個圖形成軸對稱,那么對稱軸是對稱點連線的垂直平分線.

      二、例題講解

      例1、(1)如圖,A 、B、C、D的對稱點分別是 ,線段AC、AB的對應線段分別是 ,CD= , CBA= ,ADC= .

      (2)連接AF、BE,則線段AF、BE有什么關系?并用測量的方法驗證.

      (3)AE與BF平行嗎?為什么?

      (4)AE與BF平行,能說明軸對稱圖形對稱點的連線一定 互相平行嗎?

      (5)延長線段BC、FG,作直線AB、EG,你有什么發現嗎?

    八年級數學教案 篇3

      教學目標:

      1.學會根據定義判別分式方程與整式方程,了解分式方程增根產生的原因,掌握驗根的方法。

      2.掌握可化為一元一次方程或一元二次方程的分式方程的解法,會用去分母求方程的解。

      教學重點:去分母法解可化為一元一次方程或一元二次方程的分式方程。驗根的方法。

      教學難點:驗根的方法。分式方程增根產生的原因。

      教學準備:小黑板。

      教學過程:

      復習引入:下列方程中哪些分母中含有未知數?哪些分母中不含有未知數?

      (1);(2);(3);(4);

      (5);(6);(7);(8)。

      講授新課:

      1.由上述歸納出分式方程的.概念:只含有分式或整式,且分母里含有未知數的方程叫做分式方程。方程兩邊都是整式的方程叫做整式方程。

      2.討論分式方程的解法:

      (1)復習解方程時,怎樣去分母?

      (2)講解例1:解方程(按課文講解)

      歸納:解分式方程的基本思想:

      分式方程整式方程

      (3)講解例2:解方程(按課文講解)

      歸納:在去分母時,有時可能產生不適合原方程的根,我們把它叫做增根。因此解分式方程必須檢驗,常把求得得根代入原方程的最簡公分母,看它的值是否為0,若為0,則為增根,必須舍去;若不為0,則為原方程的根。

      想一想:產生增根的原因是什么?

      鞏固練習:P1451t,2t。

      課堂小結:什么叫做分式方程?

      解分式方程時,為什么要檢驗?怎樣檢驗?

      布置作業:見作業本。

    八年級數學教案 篇4

      知識結構

      重點與難點分析:

      本節課教學方法主要是“自學輔導與發現探究法”。力求體現知識結構完整、知識理解完整;注重學生的參與度,在師生共同參與下,探索問題、動手試驗、發現規律、做出歸納。讓學生直接參加課堂活動,將教與學融為一體。具體說明如下:

      (1)由“先教后學”轉向“先學后教

      本節課開始,讓同學們自己思考問題:判定三角形全等的方法有四種,如果這兩個三角形是直角三角形,那么判定它們全等的方法有哪些呢?學生展開討論,初步形成意見,然后由教師答疑。這樣促進了學生學習,體現了以“學生為主體”的教育思想。

      (2)在層次教學中培養學生的思維能力

      本節課的層次主要表現為兩個方面:一是對公理的多層次理解;二是綜合練習的多層次變化。

      公理的多層次理解包括:明確公理的條件及結論;公理的文字語言、圖形語言、符號語言的理解及掌握;公理的作用。這里特別強調三個方面:1、特殊三角形的特殊性;2、歸納總結判定直角三角形全等的方法。

      綜合練習的多層次變化:首先給出直接應用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應用題目。這里注意兩點:一是給出題目后先讓學生獨立思考,并按教材的.形式嚴格書寫。二是給出的綜合題目有一定的難度,教學時,要注意引導學生分析問題解決問題的思考方法。

      教法建議:

      由“先教后學”轉向“先學后教”

      本節課開始,讓同學們自己思考問題:判定三角形全等的方法有四種,如果這兩個三角形是直角三角形,那么判定它們全等的方法有哪些呢?學生展開討論,初步形成意見,然后由教師答疑。這樣促進了學生學習,體現了以“學生為主體”的教育思想。

      (2)在層次教學中培養學生的思維能力

      本節課的層次主要表現為兩個方面:一是對公理的多層次理解;二是綜合練習的多層次變化。

      公理的多層次理解包括:明確公理的條件及結論;公理的文字語言、圖形語言、符號語言的理解及掌握;公理的作用。這里特別強調三個方面:1、特殊三角形的特殊性;2、歸納總結判定直角三角形全等的方法。

      綜合練習的多層次變化:首先給出直接應用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應用題目。

      這里注意兩點:

      一是給出題目后先讓學生獨立思考,并按教材的形式嚴格書寫。

      二是給出的綜合題目有一定的難度,教學時,要注意引導學生分析問題解決問題的思考方法。

    八年級數學教案 篇5

      菱形

      學習目標(學習重點):

      1.經歷探索菱形的識別方法的過程,在活動中培養探究意識與合作交流的習慣;

      2.運用菱形的識別方法進行有關推理.

      補充例題:

      例1. 如圖,在△ABC中,AD是△ABC的角平分線。DE∥AC交AB于E,DF∥AB交AC于F.四邊形AEDF是菱形嗎?說明你的'理由.

      例2.如圖,平行四邊形ABCD的對 角線AC的垂直平分線與邊AD、BC分別交于E、F.

      四邊形AFCE是菱形嗎?說明理由.

      例3.如圖 , ABCD是矩形紙片,翻折B、D,使BC、AD恰好落在AC上,設F、H分別是B、D落在AC上的兩點,E、G分別是折痕CE、AG與AB、CD的交點

      (1)試說明四邊形AECG是平行四邊形;

      (2)若AB=4cm,BC=3cm,求線段EF的長;

      (3)當矩形兩邊AB、BC具備怎樣的關系時,四邊形AECG是菱形.

      課后續助:

      一、填空題

      1.如果四邊形ABCD是平行四邊形,加上條件___________________,就可以是矩形;加上條件_______________________,就可以是菱形

      2.如圖,D、E、F分別是△ABC的邊BC、CA、AB上的點,

      且DE∥BA,DF∥ CA

      (1)要使四邊形AFDE是菱形,則要增加條件______________________

      (2)要使四邊形AFDE是矩形,則要增加條件______________________

      二、解答題

      1.如圖,在□ABCD中 ,若2,判斷□ABCD是矩形還是菱形?并說明理由。

      2.如圖 ,平行四邊形A BCD的兩條對角線AC,BD相交于點O,OA=4,OB=3,AB=5.

      (1) AC,BD互相垂直嗎?為什么?

      (2) 四邊形ABCD是菱形 嗎?

      3.如圖,在□ABCD中,已知ADAB,ABC的平分線交AD于E,EF∥AB交BC于F,試問: 四 邊形ABFE是菱形嗎?請說明理由。

      4.如圖,把一張矩形的紙ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F.

      ⑴求證:ABF≌

      ⑵若將折疊的圖形恢復原狀,點F與BC邊上的點M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由.

    八年級數學教案 篇6

      教學建議

      知識結構

      重難點分析

      本節的重點是中位線定理.三角形中位線定理和梯形中位線定理不但給出了三角形或梯形中線段的位置關系,而且給出了線段的數量關系,為平面幾何中證明線段平行和線段相等提供了新的思路.

      本節的難點是中位線定理的證明.中位線定理的證明教材中采用了同一法,同一法學生初次接觸,思維上不容易理解,而其他證明方法都需要添加2條或2條以上的輔助線,添加的目的性和必要性,同以前遇到的情況對比有一定的難度.

      教法建議

      1. 對于中位線定理的引入和證明可采用發現法,由學生自己觀察、猜想、測量、論證,實際掌握效果比應用講授法應好些,教師可根據學生情況參考采用

      2.對于定理的證明,有條件的教師可考慮利用多媒體課件來進行演示知識的形成及證明過程,效果可能會更直接更易于理解

      教學設計示例

      一、教學目標

      1.掌握中位線的概念和三角形中位線定理

      2.掌握定理“過三角形一邊中點且平行另一邊的直線平分第三邊”

      3.能夠應用三角形中位線概念及定理進行有關的論證和計算,進一步提高學生的計算能力

      4.通過定理證明及一題多解,逐步培養學生的分析問題和解決問題的能力

      5. 通過一題多解,培養學生對數學的興趣

      二、教學設計

      畫圖測量,猜想討論,啟發引導.

      三、重點、難點

      1.教學重點:三角形中位線的概論與三角形中位線性質.

      2.教學難點:三角形中位線定理的'證明.

      四、課時安排

      1課時

      五、教具學具準備

      投影儀、膠片、常用畫圖工具

      六、教學步驟

      【復習提問】

      1.敘述平行線等分線段定理及推論的內容(結合學生的敘述,教師畫出草圖,結合圖形,加以說明).

      2.說明定理的證明思路.

      3.如圖所示,在平行四邊形ABCD中,M、N分別為BC、DA中點,AM、CN分別交BD于點E、F,如何證明 ?

      分析:要證三條線段相等,一般情況下證兩兩線段相等即可.如要證 ,只要 即可.首先證出四邊形AMCN是平行四邊形,然后用平行線等分線段定理即可證出.

      4.什么叫三角形中線?(以上復習用投影儀打出)

      【引入新課】

      1.三角形中位線:連結三角形兩邊中點的線段叫做三角形中位線.

      (結合三角形中線的定義,讓學生明確兩者區別,可做一練習,在 中,畫出中線、中位線)

      2.三角形中位線性質

      了解了三角形中位線的定義后,我們來研究一下,三角形中位線有什么性質.

      如圖所示,DE是 的一條中位線,如果過D作 ,交AC于 ,那么根據平行線等分線段定理推論2,得 是AC的中點,可見 與DE重合,所以 .由此得到:三角形中位線平行于第三邊.同樣,過D作 ,且DE FC,所以DE .因此,又得出一個結論,那就是:三角形中位線等于第三邊的一半.由此得到三角形中位線定理.

      三角形中位線定理:三角形中位城平行于第三邊,并且等于它的一半.

      應注意的兩個問題:①為便于同學對定理能更好的掌握和應用,可引導學生分析此定理的特點,即同一個題設下有兩個結論,第一個結論是表明中位線與第三邊的位置關系,第二個結論是說明中位線與第三邊的數量關系,在應用時可根據需要來選用其中的結論(可以單獨用其中結論).②這個定理的證明方法很多,關鍵在于如何添加輔助線.可以引導學生用不同的方法來證明以活躍學生的思維,開闊學生思路,從而提高分析問題和解決問題的能力.但也應指出,當一個命題有多種證明方法時,要選用比較簡捷的方法證明.

      由學生討論,說出幾種證明方法,然后教師總結如下圖所示(用投影儀演示).

      (l)延長DE到F,使 ,連結CF,由 可得AD FC.

      (2)延長DE到F,使 ,利用對角線互相平分的四邊形是平行四邊形,可得AD FC.

      (3)過點C作 ,與DE延長線交于F,通過證 可得AD FC.

      上面通過三種不同方法得出AD FC,再由 得BD FC,所以四邊形DBCF是平行四邊形,DF BC,又因DE ,所以DE .

      (證明過程略)

      例 求證:順次連結四邊形四條邊的中點,所得的四邊形是平行四邊形.

      (由學生根據命題,說出已知、求證)

      已知:如圖所示,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點.

      求證:四邊形EFGH是平行四邊形.‘

      分析:因為已知點分別是四邊形各邊中點,如果連結對角線就可以把四邊形分成三角形,這樣就可以用三角形中位線定理來證明出四邊形EFGH對邊的關系,從而證出四邊形EFGH是平行四邊形.

      證明:連結AC.

      ∴ (三角形中位線定理).

      同理,

      ∴GH EF

      ∴四邊形EFGH是平行四邊形.

      【小結】

      1.三角形中位線及三角形中位線與三角形中線的區別.

      2.三角形中位線定理及證明思路.

      七、布置作業

      教材P188中1(2)、4、7

    八年級數學教案 篇7

      一、學習目標:

      1、會推導兩數差的平方公式,會用式子表示及用文字語言敘述;

      2、會運用兩數差的平方公式進行計算。

      二、學習過程:

      請同學們快速閱讀課本第27—28頁的內容,并完成下面的練習題:

      (一)探索

      1、計算: (a - b) =

      方法一: 方法二:

      方法三:

      2、兩數差的平方用式子表示為_________________________;

      用文字語言敘述為___________________________ 。

      3、兩數差的平方公式結構特征是什么?

      (二)現學現用

      利用兩數差的平方公式計算:

      1、(3 - a) 2、 (2a -1) 3、(3y-x)

      4、(2x – 4y) 5、( 3a - )

      (三)合作攻關

      靈活運用兩數差的平方公式計算:

      1、(999) 2、( a – b – c )

      3、(a + 1) -(a-1)

      (四)達標訓練

      1、、選擇:下列各式中,與(a - 2b) 一定相等的是( )

      A、a -2ab + 4b B、a -4b

      C、a +4b D、 a - 4ab +4b

      2、填空:

      (1)9x + + 16y = (4y - 3x )

      (2) ( ) = m - 8m + 16

      2、計算:

      ( a - b) ( x -2y )

      3、有一邊長為a米的.正方形空地,現準備將這塊空地四周均留出b米寬修筑圍壩,中間修建噴泉水池,你能計算出噴泉水池的面積嗎?

      (四)提升

      1、本節課你學到了什么?

      2、已知a – b = 1,a + b = 25,求ab 的值

    【八年級數學教案】相關文章:

    八年級的數學教案12-14

    八年級數學教案06-18

    初中八年級數學教案11-03

    人教版八年級數學教案11-04

    八年級上冊數學教案11-09

    八年級的數學教案15篇12-14

    八年級下冊數學教案01-01

    八年級數學教案人教版01-03

    八年級數學教案【熱門】12-03

    【熱門】八年級數學教案11-29

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      日本高清中文字幕免费一区二区 | 伊人久久大香线蕉综合极速 | 亚洲欧洲日本在线视频 | 综合欧美日韩一区二区 | 亚洲在在线观看免费视频 | 亚洲每日更新在线国产精品原创巨作AV |