1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>八年級數學教案>八年級數學教案

    八年級數學教案

    時間:2022-04-11 10:16:11 八年級數學教案 我要投稿

    八年級數學教案匯總7篇

      在教學工作者實際的教學活動中,往往需要進行教案編寫工作,編寫教案助于積累教學經驗,不斷提高教學質量。快來參考教案是怎么寫的吧!下面是小編為大家收集的八年級數學教案7篇,歡迎大家借鑒與參考,希望對大家有所幫助。

    八年級數學教案匯總7篇

    八年級數學教案 篇1

      一、學生起點分析

      通過前一章《勾股定理》的學習,學生已經明白什么是勾股數,但也發現并不是所有的直角三角形的邊長都是勾股數,甚至有些直角三角形的邊長連有理數都不是,例如:①腰長為1的等腰直角三角形的底邊長不是有理數,②兩條直角邊分別為1,2的直角三角形的斜邊長不是有理數,這為引入“新數”奠定了必要性.

      二、教學任務分析

      《數不夠用了》是義務教育課程標準北師大版實驗教科書八年級(上)第二章《實數》的第一節. 本節內容安排了2個課時完成,第1課時讓學生感受無理數的存在,初步建立無理數的印象,結合勾股定理知識,會根據要求畫線段;第2課時借助計算器感受無理數是無限不循環小數,會判斷一個數是無理數.本課是第1課時,學生將在具體的實例中,通過操作、估算、分析等活動,感受無理數的客觀存在性和引入的必要性,并能判斷一個數是不是有理數.

      本節課的教學目標是:

      ①通過拼圖活動,讓學生感受客觀世界中無理數的存在;

      ②能判斷三角形的某邊長是否為無理數;

      ③學生親自動手做拼圖活動,培養學生的動手能力和探索精神;

      ④能正確地進行判斷某些數是否為有理數,加深對有理數和無理數的理解;

      三、教學過程設計

      本節課設計了6個教學環節:

      第一環節:置疑;第二環節:課題引入;第三環節:獲取新知;第四環節:應用與鞏固;第五環節:課堂小結;第六環節:作業布置.

      第一環節:質疑

      內容:【想一想】

      ⑴一個整數的平方一定是整數嗎?

      ⑵一個分數的平方一定是分數嗎?

      目的:作必要的知識回顧,為第二環節埋下伏筆,便于后續問題的說理.

      效果:為后續環節的進行起了很好的鋪墊的作用

      第二環節:課題引入

      內容:1.【算一算】

      已知一個直角三角形的兩條直角邊長分別為1和2,算一算斜邊長 的平方 ,并提出問題: 是整數(或分數)嗎?

      2.【剪剪拼拼】

      把邊長為1的兩個小正方形通過剪、拼,設法拼成一個大正方形,你會嗎?

      目的:選取客觀存在的“無理數“實例,讓學生深刻感受“數不夠用了”.

      效果:巧設問題背景,順利引入本節課題.

      第三環節:獲取新知

      內容:【議一議】→【釋一釋】→【憶一憶】→【找一找】

      【議一議】: 已知 ,請問:① 可能是整數嗎?② 可能是分數嗎?

      【釋一釋】:釋1.滿足 的 為什么不是整數?

      釋2.滿足 的 為什么不是分數?

      【憶一憶】:讓學生回顧“有理數”概念,既然 不是整數也不是分數,那么 一定不是有理數,這表明:有理數不夠用了,為“新數”(無理數)的學習奠定了基礎

      【找一找】:在下列正方形網格中,先找出長度為有理數的線段,再找出長度不是有理數的線段

      目的:創設從感性到理性的認知過程,讓學生充分感受“新數”(無理數)的存在,從而激發學習新知的興趣

      效果:學生感受到無理數產生的過程,確定存在一種數與以往學過的數不同,產生了學習新數的必要性.

      第四環節:應用與鞏固

      內容:【畫一畫1】→【畫一畫2】→【仿一仿】→【賽一賽】

      【畫一畫1】:在右1的正方形網格中,畫出兩條線段:

      1.長度是有理數的線段

      2.長度不是有理數的線段

      【畫一畫2】:在右2的正方形網格中畫出四個三角形 (右1)

      2.三邊長都是有理數

      2.只有兩邊長是有理數

      3.只有一邊長是有理數

      4.三邊長都不是有理數

      【仿一仿】:例:在數軸上表示滿足 的`

      解: (右2)

      仿:在數軸上表示滿足 的

      【賽一賽】:右3是由五個單位正方形組成的紙片,請你把

      它剪成三塊,然后拼成一個正方形,你會嗎?試試看! (右3)

      目的:進一步感受“新數”的存在,而且能把“新數”表示在數軸上

      效果:加深了對“新知”的理解,鞏固了本課所學知識.

      第五環節:課堂小結

      內容:

      1.通過本課學習,感受有理數又不夠用了, 請問你有什么收獲與體會?

      2.客觀世界中,的確存在不是有理數的數,你能列舉幾個嗎?

      3.除了本課所認識的非有理數的數以外,你還能找到嗎?

      目的:引導學生自己小結本節課的知識要點及數學方法,使知識系統化.

      效果:學生總結、相互補充,學會進行概括總結.

      第六環節:布置作業

      習題2.1

      六、教學設計反思

      (一)生活是數學的源泉,興趣是學習的動力

      大量事實都證明一點,與生活貼得越近的東西最容易引起學習者的濃厚興趣,才能激發學習者的學習積極性,學習才可能是主動的.本節課中教師首先用拼圖游戲引發學生學習的欲望,把課程內容通過學生的生活經驗呈現出來,然后進行大膽置疑,生活中的數并不都是有理數,那它們究竟是什么數呢?從而引發了學生的好奇心,為獲取新知,創設了積極的氛圍.在教學中,不要盲目的搶時間,讓學生能夠充分的思考與操作.

      (二)化抽象為具體

      常言道:“數學是鍛煉思維的體操”,數學教師應通過一系列數學活動開啟學生的思維,因此對新數的學習不能僅僅停留于感性認識,還應要求學生充分理解,并能用恰當數學語言進行解釋.正是基于這個原因,在教學過程中,刻意安排了一些環節,加深對新數的理解,充分感受新數的客觀存在,讓學生覺得新數并不抽象.

      (三)強化知識間聯系,注意糾錯

      既然稱之為“新數”,那它當然不是有理數,亦即不是整數,也不是分數,所以“新數”不可以用分數來表示,這為進一步學習“新數”,即第二課時教學埋下了伏筆,在教學中,要著重強調這一點:“新數”不能表示成分數,為無理數的教學奠好基.

    八年級數學教案 篇2

      一、教學目標:

      1、知識目標:能熟練掌握簡單圖形的移動規律,能按要求作出簡單平面圖形平移后的圖形,能夠探索圖形之間的平移關系;

      2、能力目標:①,在實踐操作過程中,逐步探索圖形之間的平移關系;

      ②,對組合圖形要找到一個或者幾個“基本圖案”,并能通過對“基本圖案”的平移,復制所求的圖形;

      3、情感目標:經歷對圖形進行觀察、分析、欣賞和動手操作、畫圖等過程,發展初步的審美能力,增強對圖形欣賞的意識。

      二、重點與難點:

      重點:圖形連續變化的特點;

      難點:圖形的劃分。

      三、教學方法:

      講練結合。使用多媒體課件輔助教學。

      八年級數學上冊教案四、教具準備:

      多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。

      五、教學設計:

      教師活動

      學生活動

      設計意圖

      創設情景,探究新知:

      (演示課件):教材上小狗的圖案。提問:(1)這個圖案有什么特點?(2)它可以通過什么“基本圖案”,經過怎樣的平移而形成?(3)在平移過程中,“基本圖案”的大小、形狀、位置是否發生了變化?

      小組討論,派代表回答。(答案可以多種)

      讓學生充分討論,歸納總結,老師給予適當的指導,并對每種答案都要肯定。

      看磁性黑板,展示教材64頁圖3-9,提問:左圖是一個正六邊形,它經過怎樣的平移能得到右圖?誰到黑板做做看?

      展示教材64頁3-10,提問:左圖是一種“工”字形磚,右圖是怎樣通過左圖得到的?

      小組討論,派代表到臺上給大家講解。

      氣氛要熱烈,充分調動學生的積極性,發掘他們的想象力。

      (演示課件)教材65頁圖3-11,提問:這個圖可以看做是什么“基本圖案”通過平移得到的'?

      暢所欲言,互相補充。

      課堂小結:

      在教師的引導下學生總結本節課的主要內容,并啟發學生在我們周圍尋找平移的例子。

      課堂練習:

      (演示課件)教材65頁“隨堂練習”。

      小組討論。

      小組討論完成。

      例子一定要和大家接觸緊密、典型。

      答案不惟一,對于每種答案,教師都要給予充分的肯定。

      六、教學反思:

      本節的內容并不是很復雜,借助多媒體進行直觀、形象,內容貼近生活,學生興致較高,課堂氣氛活躍,參與意識較強,學生一般都能在教師的指導下掌握。教學過程中滲透數學美學思想,促進學生綜合素質的提高。

    八年級數學教案 篇3

      知識要點

      1、函數的概念:一般地,在某個變化過程中,有兩個 變量x和 y,如果給定一個x值,

      相應地就確定了一個y值,那么稱y是x的函數,其中x是自變量,y是因變量。

      2、一次函數的概念:若兩個變量x,y間的關系式可以表示成y=kx+b(k0,b為常數)的形式,則稱y是x的一次函數, x為自變量,y為因變量。特別地,當b=0 時,稱y 是x的正比例函數。正比例函數是一次函數的特殊形式,因此正比例函數都是一次函數,而 一次函 數不一定都是正比例函數.

      3、正比例函數y=kx的性質

      (1)、正比例函數y=kx的圖象都經過

      原點(0,0),(1,k)兩點的一條直線;

      (2)、當k0時,圖象都經過一、三象限;

      當k0時,圖象都經過二、四象限

      (3)、當k0時,y隨x的增大而增大;

      當k0時,y隨x的增大而減小。

      4、一次函數y=kx+b的性質

      (1)、經過特殊點:與x軸的交點坐標是 ,

      與y軸的交點坐標是 .

      (2)、當k0時,y隨x的增大而增大

      當k0時,y隨x的增大而減小

      (3)、k值相同,圖象是互相平行

      (4)、b值相同,圖象相交于同一點(0,b)

      (5)、影響圖象的兩個因素是k和b

      ①k的正負決定直線的方向

      ②b的正負決定y軸交點在原點上方或下方

      5.五種類型一次函數解析式的確定

      確定一次函數的解析式,是一次函數學習的重要內容。

      (1)、根據直線的解析式和圖像上一個點的坐標,確定函數的解析式

      例1、若函數y=3x+b經過點(2,-6),求函數的解析式。

      解:把點(2,-6)代入y=3x+b,得

      -6=32+b 解得:b=-12

      函數的解析式為:y=3x-12

      (2)、根據直線經過兩個點的坐標,確定函數的解析式

      例2、直線y=kx+b的圖像經過A(3,4)和點B(2,7),

      求函數的表達式。

      解:把點A(3,4)、點B(2,7)代入y=kx+b,得

      ,解得:

      函數的解析式為:y=-3x+13

      (3)、根據函數的圖像,確定函數的解析式

      例3、如圖1表示一輛汽車油箱里剩余油量y(升)與行駛時間x

      (小時)之間的關系.求油箱里所剩油y(升)與行駛時間x

      (小時)之間的函數關系式,并且確定自變量x的取值范圍。

      (4)、根據平移規律,確定函數的解析式

      例4、如圖2,將直線 向上平移1個單位,得到一個一次

      函數的圖像,那么這個一次函數的解析式是 .

      解:直線 經過點(0,0)、點(2,4),直線 向上平移1個單位

      后,這兩點變為(0,1)、(2,5),設這個一次函數的解析式為 y=kx+b,

      得 ,解得: ,函數的解析式為:y=2x+1

      (5)、根據直線的對稱性,確定函數的解析式

      例5、已知直線y=kx+b與直線y=-3x+6關于y軸對稱,求k、b的值。

      例6、已知直線y=kx+b與直線y=-3x+6關于x軸對稱,求k、b的值。

      例7、已知直線y=kx+b與直線y=-3x+6關于原點對稱,求k、b的值。

      經典訓練:

      訓練1:

      1、已知梯形上底的長為x,下底的長是10,高是 6,梯形的面積y隨上底x的變化而變化。

      (1)梯形的面積y與上底的長x之間的關系是否是函數關系?為什么?

      (2)若y是x的函數,試寫出y與x之間的函數關系式 。

      訓練2:

      1.函數:①y=- x x;②y= -1;③y= ;④y=x2+3x-1;⑤y=x+4;⑥y=3. 6x,

      一次函數有___ __;正比例函數有____________(填序號).

      2.函數y=(k2-1)x+3是一次函數,則k的取值范圍是( )

      A.k1 B.k-1 C.k1 D.k為任意實數.

      3.若一次函數y=(1+2k)x+2k-1是正比 例函數,則k=_______.

      訓練3:

      1 . 正比例函數y=k x,若y隨x的增大而減 小,則k______.

      2. 一次函數y=mx+n的圖象如圖,則下面正確的是( )

      A.m0 B.m0 C.m0 D.m0

      3.一次函數y=-2x+ 4的圖象經過的象限是____,它與x軸的交 點坐標是____,與y軸的交點坐標是____.

      4.已知一次函 數y =(k-2)x+(k+2),若它的圖象經過原點,則k=_____;

      若y隨x的增大而增大,則k__________.

      5.若一次函數y=kx-b滿足kb0,且函數值隨x的減小而增大,則它的大致圖象是圖中的( )

      訓練4:

      1、 正比例函數的圖象經過點A(-3,5),寫出這正比例函數的解析式.

      2、已知一次函數的圖象經過點(2,1)和(-1,-3).求此一次函數的解析式 .

      3、一次函數y=kx+b的圖象如上圖所示,求此一次函數的解析式。

      4、已知一次函數y=kx+b,在x=0時的值為4,在x=-1時的值為-2,求這個一次函數的解析式。

      5、已知y-1與x成正比例,且 x=-2時,y=-4.

      (1)求出y與x之間的函數關系式;

      (2)當x=3時,求y的值.

      一、填空題(每題2分,共26分)

      1、已知 是整數,且一次函數 的圖象不過第二象限,則 為 .

      2、若直線 和直線 的交點坐標為 ,則 .

      3、一次函數 和 的圖象與 軸分別相交于 點和 點, 、 關于 軸對稱,則 .

      4、已知 , 與 成正比例, 與 成反比例,當 時 , 時, ,則當 時, .

      5、函數 ,如果 ,那么 的取值范圍是 .

      6、一個長 ,寬 的矩形場地要擴建成一個正方形場地,設長增加 ,寬增加 ,則 與 的函數關系是 .自變量的取值范圍是 .且 是 的 函數.

      7、如圖 是函數 的一部分圖像,(1)自變量 的取值范圍是 ;(2)當 取 時, 的最小值為 ;(3)在(1)中 的取值范圍內, 隨 的增大而 .

      8、已知一次函數 和 的圖象交點的橫坐標為 ,則 ,一次函數 的圖象與兩坐標軸所圍成的`三角形的面積為 ,則 .

      9、已知一次函數 的圖象經過點 ,且它與 軸的交點和直線 與 軸的交點關于 軸對稱,那么這個一次函數的解析式為 .

      10、一次函數 的圖象過點 和 兩點,且 ,則 , 的取值范圍是 .

      11、一次函數 的圖象如圖 ,則 與 的大小關系是 ,當 時, 是正比例函數.

      12、 為 時,直線 與直線 的交點在 軸上.

      13、已知直線 與直線 的交點在第三象限內,則 的取值范圍是 .

      二、選擇題(每題3分,共36分)

      14、圖3中,表示一次函數 與正比例函數 、 是常數,且 的圖象的是( )

      15、若直線 與 的交點在 軸上,那么 等于( )

      A.4 B.-4 C. D.

      16、直線 經過一、二、四象限,則直線 的圖象只能是圖4中的( )

      17、直線 如圖5,則下列條件正確的是( )

      18、直線 經過點 , ,則必有( )

      A.

      19、如果 , ,則直線 不通過( )

      A.第一象限 B.第二象限 C.第三象限 D.第四象限

      20、已知關于 的一次函數 在 上的函數值總是正數,則 的取值范圍是

      A. B. C. D.都不對

      21、如圖6,兩直線 和 在同一坐標系內圖象的位置可能是( )

      圖6

      22、已知一次函數 與 的圖像都經過 ,且與 軸分別交于點B, ,則 的面積為( )

      A.4 B.5 C.6 D.7

      23、已知直線 與 軸的交點在 軸的正半軸,下列結論:① ;② ;③ ;④ ,其中正確的個數是( )

      A.1個 B.2個 C.3個 D.4個

      24、已知 ,那么 的圖象一定不經過( )

      A.第一象限 B.第二象限 C.第三象限 D.第四象限

      25、如圖7,A、B兩站相距42千米,甲騎自行車勻速行駛,由A站經P處去B站,上午8時,甲位于距A站18千米處的P處,若再向前行駛15分鐘,使可到達距A站22千米處.設甲從P處出發 小時,距A站 千米,則 與 之間的關系可用圖象表示為( )

      三、解答題(1~6題每題8分,7題10分,共58分)

      26、如圖8,在直角坐標系內,一次函數 的圖象分別與 軸、 軸和直線 相交于 、 、 三點,直線 與 軸交于點D,四邊形OBCD(O是坐標原點)的面積是10,若點A的橫坐標是 ,求這個一次函數解析式.

      27、一次函數 ,當 時,函數圖象有何特征?請通過不同的取值得出結論?

      28、某油庫有一大型儲油罐,在開始的8分鐘內,只開進油管,不開出油管,油罐的油進至24噸(原油罐沒儲油)后將進油管和出油管同時打開16分鐘,油罐內的油從24噸增至40噸,隨后又關閉進油管,只開出油管,直到將油罐內的油放完,假設在單位時間內進油管與出油管的流量分別保持不變.

      (1)試分別寫出這一段時間內油的儲油量Q(噸)與進出油的時間t(分)的函數關系式.

      (2)在同一坐標系中,畫出這三個函數的圖象.

      29、某市電力公司為了鼓勵居民用電,采用分段計費的方法計算電費:每月不超過100度時,按每度0.57元計費;每月用電超過100度時,其中的100度按原標準收費;超過部分按每度0.50元計費.

      (1)設用電 度時,應交電費 元,當 100和 100時,分別寫出 關于 的函數關系式.

      (2)小王家第一季度交納電費情況如下:

      月份 一月份 二月份 三月份 合計

      交費金額 76元 63元 45元6角 184元6角

      問小王家第一季度共用電多少度?

      30、某地上年度電價為0.8元,年用電量為1億度.本年度計劃將電價調至0.55~0.75元之間,經測算,若電價調至 元,則本年度新增用電量 (億度)與( 0.4)(元)成反比例,又當 =0.65時, =0.8.

      (1)求 與 之間的函數關系式;

      (2)若每度電的成本價為0.3元,則電價調至多少時,本年度電力部門的收益將比上年度增加20%?[收益=用電量(實際電價-成本價)]

      31、汽車從A站經B站后勻速開往C站,已知離開B站9分時,汽車離A站10千米,又行駛一刻鐘,離A站20千米.(1)寫出汽車與B站距離 與B站開出時間 的關系;(2)如果汽車再行駛30分,離A站多少千米?

      32、甲乙兩個倉庫要向A、B兩地運送水泥,已知甲庫可調出100噸水泥,乙庫可調出80噸水泥,A地需70噸水泥,B地需110噸水泥,兩庫到A,B兩地的路程和運費如下表(表中運費欄元/(噸、千米)表示每噸水泥運送1千米所需人民幣)

      路程/千米 運費(元/噸、千米)

      甲庫 乙庫 甲庫 乙庫

      A地 20 15 12 12

      B地 25 20 10 8

      (1)設甲庫運往A地水泥 噸,求總運費 (元)關于 (噸)的函數關系式,畫出它的圖象(草圖).

      (2)當甲、乙兩庫各運往A、B兩地多少噸水泥時,總運費最省?最省的總運費是多少?

    八年級數學教案 篇4

      教材分析

      1本節課的主題:通過一系列的探究活動,引導學生從計算結果中總結出完全平方公式的兩種形式

      1、以教材作為出發點,依據《數學課程標準》,引導學生體會、參與科學探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關系。通過學生自主、獨立的發現問題,對可能的答案做出假設與猜想,并通過多次的檢驗,得出正確的結論。學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態度特別是創新精神和實踐能力等方面的發展。

      2、用標準的數學語言得出結論,使學生感受科學的.嚴謹,啟迪學習態度和方法。

      學情分析

      1、在學習本課之前應具備的基本知識和技能:

      ①同類項的定義。

      ②合并同類項法則

      ③多項式乘以多項式法則。

      2、學習者對即將學習的內容已經具備的水平:

      在學習完全平方公式之前,學生已經能夠整理出公式的右邊形式。這節課的目的就是讓學生從等號的左邊形式和右邊形式之間的關系,總結出公式的應用方法。

      教學目標

      (一)教學目標:

      1、經歷探索完全平方公式的過程,進一步發展符號感和推力能力。

      2、會推導完全平方公式,并能運用公式進行簡單的計算。

      (二)知識與技能:經歷從具體情境中抽象出符號的過程,認識有理

      數、實數、代數式、、;掌握必要的運算,(包括估算)技能;探索具體問題中的數量關系和變化規律,并能運用代數式、、不等式、函數等進行描述。

      (四)解決問題:能結合具體情景發現并提出數學問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經驗。

      (五)情感與態度:敢于面對數學活動中的困難,并有獨立克服困難和運用知識解決問題的成功體驗,有學好數學的自信心;并尊重與理解他人的見解;能從交流中獲益。

      教學重點和難點

      重點:能運用完全平方公式進行簡單的計算。

      難點:會推導完全平方公式

      教學過程

      教學過程設計如下:

      〈一〉、提出問題

      [引入]同學們,前面我們學習了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結出結果與多項式中兩個單項式的關系嗎?

      (2m+3n)2=_______________,(-2m-3n)2=______________,

      (2m-3n)2=_______________,(-2m+3n)2=_______________。

      〈二〉、分析問題

      1、[學生回答]分組交流、討論

      (2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,

      (2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。

      (1)原式的特點。

      (2)結果的項數特點。

      (3)三項系數的特點(特別是符號的特點)。

      (4)三項與原多項式中兩個單項式的關系。

      2、[學生回答]總結完全平方公式的語言描述:

      兩數和的平方,等于它們平方的和,加上它們乘積的兩倍;

      兩數差的平方,等于它們平方的和,減去它們乘積的兩倍。

      3、[學生回答]完全平方公式的數學表達式:

      (a+b)2=a2+2ab+b2;

      (a-b)2=a2-2ab+b2.

      〈三〉、運用公式,解決問題

      1、口答:(搶答形式,活躍課堂氣氛,激發學生的學習積極性)

      (m+n)2=____________, (m-n)2=_______________,

      (-m+n)2=____________, (-m-n)2=______________,

      (a+3)2=______________, (-c+5)2=______________,

      (-7-a)2=______________, (0.5-a)2=______________.

      2、判斷:

      ( )① (a-2b)2= a2-2ab+b2

      ( )② (2m+n)2= 2m2+4mn+n2

      ( )③ (-n-3m)2= n2-6mn+9m2

      ( )④ (5a+0.2b)2= 25a2+5ab+0.4b2

      ( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2

      ( )⑥ (-a-2b)2=(a+2b)2

      ( )⑦ (2a-4b)2=(4a-2b)2

      ( )⑧ (-5m+n)2=(-n+5m)2

      3、一現身手

      ① (x+y)2 =______________;② (-y-x)2 =_______________;

      ③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;

      ⑤ (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;

      ⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.

      〈四〉、[學生小結]

      你認為完全平方公式在應用過程中,需要注意那些問題?

      (1)公式右邊共有3項。

      (2)兩個平方項符號永遠為正。

      (3)中間項的符號由等號左邊的兩項符號是否相同決定。

      (4)中間項是等號左邊兩項乘積的2倍。

      〈五〉、探險之旅

      (1)(-3a+2b)2=________________________________

      (2)(-7-2m) 2 =__________________________________

      (3)(-0.5m+2n) 2=_______________________________

      (4)(3/5a-1/2b) 2=________________________________

      (5)(mn+3) 2=__________________________________

      (6)(a2b-0.2) 2=_________________________________

      (7)(2xy2-3x2y) 2=_______________________________

      (8)(2n3-3m3) 2=________________________________

      板書設計

      完全平方公式

      兩數和的平方,等于它們平方的和,加上它們乘積的兩倍;(a+b)2=a2+2ab+b2;

      兩數差的平方,等于它們平方的和,減去它們乘積的兩倍。(a-b)2=a2-2ab+b2

    八年級數學教案 篇5

      教學目標

      一、教學知識點:

      1.旋轉的定義.2.旋轉的基本性質.

      二、能力訓練要求:

      1.通過具體實例認識旋轉,理解旋轉的基本涵義.

      2.探索旋轉的基本性質,理解旋轉前后兩個圖形對應點到旋轉中心的距離相等,對應點與旋轉中心的連線所成的角彼此相等的性質.

      三、情感與價值觀要求

      1.經歷對生活中與旋轉現象有關的圖形進行觀察、分析、欣賞以及動手操作、畫圖等過程,掌握有關畫圖的操作技能,發展初步的審美能力,增強對圖形欣賞的意識.

      2.通過學習使學生能用數學的眼光看待生活中的有關問題,進一步發展學生的數學觀.

      教學重點:旋轉的基本性質.

      教學難點:探索旋轉的基本性質.

      教學方法:

      1、遵循學生是學習的主人的原則,在為學生創造大量實例的基礎上,引導學生自主思考、交流、討論、歸納、學習。

      2、采用多媒體課件輔助教學。

      教學過程:

      一.巧設情景問題,引入課題

      日常生活中,我們經常見到以下情景(出示圖示:鐘表、汽車方向盤、轆轤或電腦演示:鐘表指針的轉動、汽車方向盤的轉動、轆轤打水的情景). (1)上面情景中的轉動現象,有什么共同特征?(2)鐘表的指針、鐘擺在轉動過程中,其形狀、大小、位置是否發生改變?汽車方向盤的轉動呢?

      1.在這些轉動的現象中,它們都是繞著一個點轉動的.

      2.每個物體的轉動都是向同一個方向轉動.

      3.鐘表的指針、鐘擺在轉動過程中,它的形狀、大小沒有變化,只是它的位置有所改變.

      4.汽車的方向盤在轉動過程中,同樣它的形狀、大小沒有改變,方向盤上的每點的位置所變化.同學們觀察得很仔細,我們把這樣的轉動叫旋轉(circumrotate),這節課我們就來探討生活中的旋轉.

      二.講授新課

      在數學中,如何定義旋轉呢?在平面內,將一個圖形繞著一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉(circumrotate).這個定點稱為旋轉中心,轉動的角稱為旋轉角.注意:“將一個圖形繞一個定點沿某個方向轉動一個角度”意味著圖形上的每個點同時都按相同的方式轉動相同的角度.在物體繞著一個定點轉動時,它的形狀和大小不變.因此,旋轉具有不改變圖形的大小和形狀的特征.

      議一議:(課本67頁)答:(1)旋轉中心是O點,旋轉角是∠AOD.旋轉角還可以是∠BOE.

      (2)四邊形AOBC繞O點旋轉到四邊形DOEF的位置.這時點A旋轉到點D的'位置,點B旋轉到點E的位置.

      (3)可以把OA看作鐘表的指針,它OA的位置旋轉到OD的位置,指針的長短、形狀沒有變化,所以OA與OD是相等的.同樣,線段OB與OE是相等的.

      (4)因為四邊形AOBC繞O點旋轉到四邊形DOEF的位置,在旋轉的過程中,圖形上的每個點同時都按相同的方向旋轉相同的角度,所以∠AOD與∠BOE是相等的.

      (4)也可以這樣理解:因為四邊形AOBC繞O點旋轉到四邊形DOEF的位置,所以∠AOB與∠DOE是相等的,又因為∠BOD是公共角,所以,∠AOD與∠BOE是相等的.

      看上圖,四邊形DOEF是由四邊形AOBC繞O點旋轉得到的,經過旋轉,點A移動到點D的位置,點B移動到點E的位置,點C移動到點F的位置,則點A與點D、點B與點E、點C與點F就是對應點.從剛才大家得出的結論中,能否總結出旋轉的性質呢?

      答:因為O是旋轉中心,點A與點D是對應點,點B與點E是對應點,且OA=OD,OB=OE,所以可以知道:對應點與旋轉中心所連的線段的長度是相等的.

      因為點A與點D、點B與點E是對應點,且∠AOD=∠BOE,所以由此可以知道:對應點與旋轉中心的連線所成的角是互相相等的.

      由此我們得到了旋轉的基本性質:經過旋轉,圖形上的每一點都繞旋轉中心沿相同方向轉動了相同的角度.任意一對對應點與旋轉中心的連線所成的角都是旋轉角,旋轉角彼此相等.對應點到旋轉中心的距離相等.

      [例1](課本68頁例1)

      [師生共析]經演示(鐘表實物或教具)可以知道,分針是繞著表面盤的中心位置,即鐘表的軸心旋轉的,它旋轉一周時的度數是360°,一周需要60分,因此每分鐘分針所轉過的度數是6°,這樣20分時,分針逆轉的角度即可求出.

      解:(見課本68頁)

      書上68頁做一做

      三.課堂練習

      課本P69隨堂練習.

      1.解:旋轉5次得到,旋轉的角度分別等于60°、120°、180°、240°、300°.

      四.課時小結

      五.課后作業:課本P69習題3.4 1、2、3.

      六.活動與探究

      1.分析圖中的旋轉現象.過程:讓學生畫圖、找規律,也可讓他們通過剪切,找到旋轉規律.

      結果:旋轉現象為:

      整個圖形可以看做是圖形的八分之一(一組大小不等的三個“角”)繞中心位置,按照同一方向連續旋轉45°、90°、135°、180°、225°、270°、315°前后的圖形共同組成的.

      整個圖形也可以看做是圖形的四分之一(兩組相鄰的“角”)繞中心位置連續旋轉90°、180°、270°前后的圖形共同組成的.

      整個圖形還可以看做是圖形的二分之一(四組相鄰的“角”)繞中心位置旋轉180°前后的圖形共同組成的.

      2.圖中是否存在這樣的兩個三角形,其中一個是另一個通過旋轉得到的?

      過程:同樣讓學生在畫圖過程中體會圖形中每個三角形之間的關系;或讓學生仔細觀察圖形,分析圖形,找出關系.

      結果:圖中存在這樣的三角形,其中一個是另一個通過旋轉得到的.

      整個圖形可以看做圖形的四分之一(一組“樓梯”)繞中心連續旋轉90°、180°、 270°.前后的圖形共同組成的.

      整個圖形也可以看做圖形的二分之一(兩組“樓梯”)繞中心位置旋轉180°前后的圖形共同組成的.

      板書設計:

      教學反思:本節課仍然是圖形的基本變換。借助多媒體教學直觀生動形象。學生一般都能在教師的指導下掌握。也在培養學生的空間想象能力。

    八年級數學教案 篇6

      教學目標:

      知識與技能目標:

      1.掌握矩形的概念、性質和判別條件.

      2.提高對矩形的性質和判別在實際生活中的應用能力.

      過程與方法目標:

      1.經歷探索矩形的有關性質和判別條件的過程,在直觀操作活動和簡單的說理過程中發展學生的合情推理能力,主觀探索習慣,逐步掌握說理的基本方法.

      2.知道解決矩形問題的基本思想是化為三角形問題來解決,滲透轉化歸思想.

      情感與態度目標:

      1.在操作活動過程中,加深對矩形的的認識,并以此激發學生的探索精神.2.通過對矩形的探索學習,體會它的內在美和應用美.

      教學重點:矩形的性質和常用判別方法的理解和掌握.

      教學難點:矩形的性質和常用判別方法的綜合應用.

      教學方法:分析啟發法

      教具準:像框,平行四邊形框架教具,多媒體課件.

      教學過程設計:

      一.情境導入:

      演示平行四邊形活動框架,引入課題.

      二.講授新課:

      1.歸納矩形的定義:

      問題:從上面的演示過程可以發現:平行四邊形具備什么條件時,就成了矩形?(學生思考、回答.)

      結論:有一個內角是直角的平行四邊形是矩形.

      八年級數學上冊教案2.探究矩形的性質:

      (1).問題:像框除了“有一個內角是直角”外,還具有哪些一般平行四邊形不具備的性質?(學生思考、回答.)

      結論:矩形的四個角都是直角.

      (2).探索矩形對角線的性質:

      讓學生進行如下操作后,思考以下問題:(幻燈片展示)

      在一個平行四邊形活動框架上,用兩根橡皮筋分別套在相對的兩個頂點上,拉動一對不相鄰的頂點,改變平行四邊形的形狀.

      ①.隨著∠α的變化,兩條對角線的長度分別是怎樣變化的?

      ②.當∠α是銳角時,兩條對角線的長度有什么關系?當∠α是鈍角時呢?

      ③.當∠α是直角時,平行四邊形變成矩形,此時兩條對角線的長度有什么關系?

      (學生操作,思考、交流、歸納.)

      結論:矩形的兩條對角線相等.

      (3).議一議:(展示問題,引導學生討論解決.)

      ①.矩形是軸對稱圖形嗎?如果是,它有幾條對稱軸?如果不是,簡述你的理由.

      ②.直角三角形斜邊上的中線等于斜邊長的一半,你能用矩形的有關性質解釋這結論嗎?

      (4).歸納矩形的性質:(引導學生歸納,并體會矩形的“對稱美”.)

      矩形的對邊平行且相等;矩形的四個角都是直角;矩形的'對角線相等且互相平分;矩形是軸對稱圖形.

      例解:(性質的運用,滲透矩形對角線的“化歸”功能.)

      如圖,在矩形ABCD中,兩條對角線AC,BD相交于點O,AB=OA=4

      厘米.求BD與AD的長.

      (引導學生分析、解答.)

      探索矩形的判別條件:(由修理桌子引出)

      (1).想一想:(學生討論、交流、共同學習)

      對角線相等的平行四邊形是怎樣的四邊形?為什么?

      結論:對角線相等的平行四邊形是矩形.

      (理由可由師生共同分析,然后用幻燈片展示完整過程.)

      (2).歸納矩形的判別方法:(引導學生歸納)

      有一個內角是直角的平行四邊形是矩形.

      對角線相等的平行四邊形是矩形.

      三.課堂練習:(出示P98隨堂練習題,學生思考、解答.)

      四.新課小結:

      通過本節課的學習,你有什么收獲?

      (師生共同從知識與思想方法兩方面小結.)

      五.作業設計:P99習題4.6第1、2、3題.

      板書設計:

      4.矩形

      矩形的定義:

      矩形的性質:

      前面知識的小系統圖示:

      三.矩形的判別條件:

      例1

      課后反思:在平行四邊形及菱形的教學后。學生已經學會自主探索的方法,自己動手猜想驗證一些矩形的特殊性質。一些相關矩形的計算也學會應用轉化為直角三角形的方法來解決。總的看來這節課學生掌握的還不錯。當然合情推理的能力要慢慢的熟練。不可能一下就掌握熟練。

    八年級數學教案 篇7

      教學目標:

      1.了解算術平方根的概念,會用根號表示正數的算術平方根,并了解算術平方根的非負性。

      2.了解開方與乘方互為逆運算,會用平方運算求某些非負數的算術平方根。

      教學重點:

      算術平方根的概念。

      教學難點:

      根據算術平方根的概念正確求出非負數的算術平方根。

      教學過程

      一、情境導入

      請同學們欣賞本節導圖,并回答問題,學校要舉行金秋美術作品比賽,小歐很高興,他想裁出一塊面積為25 的正方形畫布,畫上自己的得意之作參加比賽,這塊正方形畫布的邊長應取多少 ?如果這塊畫布的面積是 ?這個問題實際上是已知一個正數的平方,求這個正數的問題?

      這就要用到平方根的概念,也就是本章的主要學習內容.這節課我們先學習有關算術平方根的概念.

      二、導入新課:

      1、提出問題:(書P68頁的問題)

      你是怎樣算出畫框的邊長等于5dm的呢?(學生思考并交流解法)

      這個問題相當于在等式擴=25中求出正數x的值.

      一般地,如果一個正數x的平方等于a,即 =a,那么這個正數x叫做a的算術平方根.a的算術平方根記為 ,讀作根號a,a叫做被開方數.規定:0的算術平方根是0.

      也就是,在等式 =a (x0)中,規定x = .

      2、 試一試:你能根據等式: =144說出144的算術平方根是多少嗎?并用等式表示出來.

      3、 想一想:下列式子表示什么意思?你能求出它們的值嗎?

      建議:求值時,要按照算術平方根的意義,寫出應該滿足的關系式,然后按照算術平方根的記法寫出對應的值.例如 表示25的算術平方根。

      4、例1 求下列各數的`算術平方根:

      (1)100;(2)1;(3) ;(4)0.0001

      三、練習

      P69練習 1、2

      四、探究:(課本第69頁)

      怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?

      方法1:課本中的方法,略;

      方法2:

      可還有其他方法,鼓勵學生探究。

      問題:這個大正方形的邊長應該是多少呢?

      大正方形的邊長是 ,表示2的算術平方根,它到底是個多大的數?你能求出它的值嗎?

      建議學生觀察圖形感受 的大小.小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節課探究.

      五、小結:

      1、這節課學習了什么呢?

      2、算術平方根的具體意義是怎么樣的?

      3、怎樣求一個正數的算術平方根

      六、課外作業:

      P75習題13.1活動第1、2、3題

    【八年級數學教案】相關文章:

    八年級的數學教案12-14

    八年級數學教案06-18

    【熱】八年級數學教案12-07

    八年級的數學教案15篇12-14

    八年級數學教案【推薦】12-04

    八年級數學教案【薦】12-06

    【精】八年級數學教案12-04

    八年級數學教案【精】12-04

    【熱門】八年級數學教案11-29

    【推薦】八年級數學教案12-05

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      亚洲精品一本中文字幕 | 亚洲国产精品线播放 | 久久er99精品 | 在线观看日本亚洲一区 | 午夜亚洲在在线观看 | 最新亚洲中文字幕无线 |