1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>八年級數學教案>八年級數學教案

    八年級數學教案

    時間:2022-04-09 21:08:48 八年級數學教案 我要投稿

    八年級數學教案范文九篇

      作為一名辛苦耕耘的教育工作者,通常會被要求編寫教案,教案是備課向課堂教學轉化的關節點。我們該怎么去寫教案呢?以下是小編為大家整理的八年級數學教案9篇,僅供參考,歡迎大家閱讀。

    八年級數學教案范文九篇

    八年級數學教案 篇1

      教學目的

      1. 使學生熟練地運用等腰三角形的性質求等腰三角形內角的角度。

      2. 熟識等邊三角形的性質及判定.

      2.通過例題教學,幫助學生總結代數法求幾何角度,線段長度的方法。

      教學重點

      等腰三角形的性質及其應用。

      教學難點

      簡潔的邏輯推理。

      教學過程

      一、復習鞏固

      1.敘述等腰三角形的性質,它是怎么得到的?

      等腰三角形的兩個底角相等,也可以簡稱等邊對等角。把等腰三角形對折,折疊兩部分是互相重合的,即AB與AC重合,點B與點 C重合,線段BD與CD也重合,所以C。

      等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱三線合一。由于AD為等腰三角形的對稱軸,所以BD= CD,AD為底邊上的中線;BAD=CAD,AD為頂角平分線,ADB=ADC=90,AD又為底邊上的高,因此三線合一。

      2.若等腰三角形的兩邊長為3和4,則其周長為多少?

      二、新課

      在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時,三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。

      等邊三角形具有什么性質呢?

      1.請同學們畫一個等邊三角形,用量角器量出各個內角的度數,并提出猜想。

      2.你能否用已知的知識,通過推理得到你的猜想是正確的?

      等邊三角形是特殊的等腰三角形,由等腰三角形等邊對等角的性質得到B=C,又由B+C=180,從而推出B=C=60。

      3.上面的條件和結論如何敘述?

      等邊三角形的各角都相等,并且每一個角都等于60。

      等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?

      等邊三角形也稱為正三角形。

      例1.在△ABC中,AB=AC,D是BC邊上的中點,B=30,求1和ADC的'度數。

      分析:由AB=AC,D為BC的中點,可知AB為 BC底邊上的中線,由三線合一可知AD是△ABC的頂角平分線,底邊上的高,從而ADC=90,BAC,由于B=30,BAC可求,所以1可求。

      問題1:本題若將D是BC邊上的中點這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計算的結果是否一樣?

      問題2:求1是否還有其它方法?

      三、練習鞏固

      1.判斷下列命題,對的打,錯的打。

      a.等腰三角形的角平分線,中線和高互相重合( )

      b.有一個角是60的等腰三角形,其它兩個內角也為60( )

      2.如圖(2),在△ABC中,已知AB=AC,AD為BAC的平分線,且2=25,求ADB和B的度數。

      四、小結

      由等腰三角形的性質可以推出等邊三角形的各角相等,且都為60。三線合一性質在實際應用中,只要推出其中一個結論成立,其他兩個結論一樣成立,所以關鍵是尋找其中一個結論成立的條件。

      五、作業

      1.課本P127─7,9

      2、補充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求CBD,BOE,BOC,

      EOD的度數。

      (一)課本P127─1、3、4、8題.

    八年級數學教案 篇2

      教學目標:

      1.知道負整數指數冪=(a≠0,n是正整數).

      2.掌握整數指數冪的運算性質.

      3.會用科學計數法表示小于1的數.

      教學重點:

      掌握整數指數冪的運算性質.

      難點:

      會用科學計數法表示小于1的數.

      情感態度與價值觀:

      通過學習課堂知識使學生懂得任何事物之間是相互聯系的,理論來源于實踐,服務于實踐.能利用事物之間的類比性解決問題.

      教學過程:

      一、課堂引入

      1.回憶正整數指數冪的運算性質: (1)同底數的.冪的乘法:am?an = am+n (m,n是正整數); (2)冪的乘方:(am)n = amn (m,n是正整數); (3)積的乘方:(ab)n = anbn (n是正整數); (4)同底數的冪的除法:am÷an = am?n ( a≠0,m,n是正整數,m>n); (5)商的乘方:()n = (n是正整數);

      2.回憶0指數冪的規定,即當a≠0時,a0 = 1.

      3.你還記得1納米=10?9米,即1納米=米嗎?

      4.計算當a≠0時,a3÷a5 ===,另一方面,如果把正整數指數冪的運算性質am÷an = am?n (a≠0,m,n是正整數,m>n)中的m>n這個條件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0).

      二、總結: 一般地,數學中規定: 當n是正整數時,=(a≠0)(注意:適用于m、n可以是全體整數) 教師啟發學生由特殊情形入手,來看這條性質是否成立. 事實上,隨著指數的取值范圍由正整數推廣到全體整數,前面提到的運算性質都可推廣到整數指數冪;am?an = am+n (m,n是整數)這條性質也是成立的.

      三、科學記數法: 我們已經知道,一些較大的數適合用科學記數法表示,有了負整數指數冪后,小于1的正數也可以用科學記數法來表示,例如:0.000012 = 1.2×10?5. 即小于1的正數可以用科學記數法表示為a×10?n的形式,其中a是整數位數只有1位的正數,n是正整數. 啟發學生由特殊情形入手,比如0.012 = 1.2×10?2,0.0012 = 1.2×10?3,0.00012 = 1.2×10?4,以此發現其中的規律,從而有0.0000000012 = 1.2×10?9,即對于一個小于1的正數,如果小數點后到第一個非0數字前有8個0,用科學記數法表示這個數時,10的指數是?9,如果有m個0,則10的指數應該是?m?1.

    八年級數學教案 篇3

      【教學目標】

      1、了解三角形的中位線的概念

      2、了解三角形的中位線的性質

      3、探索三角形的中位線的性質的一些簡單的應用

      【教學重點、難點】

      重點:三角形的中位線定理。

      難點:三角形的中位線定理的證明中添加輔助線的思想方法。

      【教學過程】

      (一)創設情景,引入新課

      1、如圖,為了測量一個池塘的寬BC,在池塘一側的平地上選一點A,再分別找出線段AB、AC的中點D、E,若測出DE的長,就可以求出池塘的寬BC,你知道這是為什么嗎?

      2、動手操作:剪一刀,將一張三角形紙片剪成一張三角形紙片和一張梯形紙片

      (1)如果要求剪得的兩張紙片能拼成平行的四邊形,剪痕的位置有什么要求?

      (2)要把所剪得的兩個圖形拼成一個平行四邊形,可將其中的三角形做怎樣的圖形變換?

      3、引導學生概括出中位線的'概念。

      問題:(1)三角形有幾條中位線?(2)三角形的中位線與中線有什么區別?

      啟發學生得出:三角形的中位線的兩端點都是三角形邊的中點,而三角形中線只有一個端點是邊中點,另一端點上三角形的一個頂點。

      4、猜想:DE與BC的關系?(位置關系與數量關系)

      (二)、師生互動,探究新知

      1、證明你的猜想

      引導學生寫出已知,求證,并啟發分析。

      (已知:⊿ABC中,D、E分別是AB、AC的中點,求證:DE∥BC,DE=1/2BC)

      啟發1:證明直線平行的方法有哪些?(由角的相等或互補得出平行,由平行四邊形得出平行等)

      啟發2:證明線段的倍分的方法有哪些?(截長或補短)

      學生分小組討論,教師巡回指導,經過分析后,師生共同完成推理過程,板書證明過程,強調有其他證法。

      證明:如圖,以點E為旋轉中心,把⊿ADE繞點E,按順時針方向旋轉180゜,得到⊿CFE,則D,E,F同在一直線上,DE=EF,且⊿ADE≌⊿CFE。

      ∴∠ADE=∠F,AD=CF,

      ∴AB∥CF。

      又∵BD=AD=CF,

      ∴四邊形BCFD是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形),

      ∴DF∥BC(根據什么?),

      ∴DE 1/2BC

      2、啟發學生歸納定理,并用文字語言表達:三角形中位線平行于第三邊且等于第三邊的一半。

      (三)學以致用、落實新知

      1、練一練:已知三角形邊長分別為6、8、10,順次連結各邊中點所得的三角形周長是多少?

      2、想一想:如果⊿ABC的三邊長分別為a、b、c,AB、BC、AC各邊中點分別為D、E、F,則⊿DEF的周長是多少?

      3、例題:已知:如圖,在四邊形ABCD中,E,F,G,H分別是AB,BC,CD,DA的中點。

      求證:四邊形EFGH是平行四邊形。

      啟發1:由E,F分別是AB,BC的中點,你會聯想到什么圖形?

      啟發2:要使EF成為三角的中位線,應如何添加輔助線?應用三角形的中位線定理,能得到什么?你能得出EF∥GH嗎?為什么?

      證明:如圖,連接AC。

      ∵EF是⊿ABC的中位線,

      ∴EF 1/2AC(三角形的中位線平行于第三邊,并且等于第三邊的一半)。

      同理,HG 1/2AC。

      ∴EF HG。

      ∴四邊形EFGH是平行四邊形(一組對邊平行并且相等的四邊形是平行四邊形)

      挑戰:順次連結上題中,所得到的四邊形EFGH四邊中點得到一個四邊形,繼續作下去。。。你能得出什么結論?

      (四)學生練習,鞏固新知

      1、請回答引例中的問題(1)

      2、如圖,在四邊形ABCD中,AB=CD,M,N,P分別是AD,BC, BD的中點。求證:∠PNM=∠PMN

      (五)小結回顧,反思提高

      今天你學到了什么?還有什么困惑?

    八年級數學教案 篇4

      一、教學目標

      1.使學生理解并掌握反比例函數的概念

      2.能判斷一個給定的函數是否為反比例函數,并會用待定系數法求函數解析式

      3.能根據實際問題中的條件確定反比例函數的解析式,體會函數的模型思想

      二、重、難點

      1.重點:理解反比例函數的概念,能根據已知條件寫出函數解析式

      2.難點:理解反比例函數的概念

      3.難點的突破方法:

      (1)在引入反比例函數的概念時,可適當復習一下第11章的正比例函數、一次函數等相關知識,這樣以舊帶新,相互對比,能加深對反比例函數概念的理解

      (2)注意引導學生對反比例函數概念的理解,看形式,等號左邊是函數y,等號右邊是一個分式,自變量x在分母上,且x的指數是1,分子是不為0的常數k;看自變量x的取值范圍,由于x在分母上,故取x≠0的一切實數;看函數y的取值范圍,因為k≠0,且x≠0,所以函數值y也不可能為0。講解時可對照正比例函數y=kx(k≠0),比較二者解析式的相同點和不同點。

      (3)(k≠0)還可以寫成(k≠0)或xy=k(k≠0)的形式

      三、例題的意圖分析

      教材第46頁的思考題是為引入反比例函數的`概念而設置的,目的是讓學生從實際問題出發,探索其中的數量關系和變化規律,通過觀察、討論、歸納,最后得出反比例函數的概念,體會函數的模型思想。

      教材第47頁的例1是一道用待定系數法求反比例函數解析式的題,此題的目的一是要加深學生對反比例函數概念的理解,掌握求函數解析式的方法;二是讓學生進一步體會函數所蘊含的“變化與對應”的思想,特別是函數與自變量之間的單值對應關系。

      補充例1、例2都是常見的題型,能幫助學生更好地理解反比例函數的概念。補充例3是一道綜合題,此題是用待定系數法確定由兩個函數組合而成的新的函數關系式,有一定難度,但能提高學生分析、解決問題的能力。

      四、課堂引入

      1.回憶一下什么是正比例函數、一次函數?它們的一般形式是怎樣的?

      2.體育課上,老師測試了百米賽跑,那么,時間與平均速度的關系是怎樣的?

      五、例習題分析

      例1.見教材P47

      分析:因為y是x的反比例函數,所以先設,再把x=2和y=6代入上式求出常數k,即利用了待定系數法確定函數解析式。

      例1.(補充)下列等式中,哪些是反比例函數

      (1)(2)(3)xy=21(4)(5)(6)(7)y=x-4

      分析:根據反比例函數的定義,關鍵看上面各式能否改寫成(k為常數,k≠0)的形式,這里(1)、(7)是整式,(4)的分母不是只單獨含x,(6)改寫后是,分子不是常數,只有(2)、(3)、(5)能寫成定義的形式

      例2.(補充)當m取什么值時,函數是反比例函數?

      分析:反比例函數(k≠0)的另一種表達式是(k≠0),后一種寫法中x的次數是-1,因此m的取值必須滿足兩個條件,即m-2≠0且3-m2=-1,特別注意不要遺漏k≠0這一條件,也要防止出現3-m2=1的錯誤

    八年級數學教案 篇5

      一、平移:在平面內,將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。

      1.平移

      2.平移的性質:⑴經過平移,對應點所連的線段平行且相等;⑵對應線段平行且相等,對應角相等。⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。(4)平移后的圖形與原圖形全等。

      3.簡單的平移作圖

      ①確定個圖形平移后的位置的條件:

      ⑴需要原圖形的位置;⑵需要平移的方向;⑶需要平移的距離或一個對應點的位置。

      ②作平移后的圖形的方法:

      ⑴找出關鍵點;⑵作出這些點平移后的對應點;⑶將所作的對應點按原來方式順次連接,所得的;

      二、旋轉:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉,這個定點稱為旋轉中心,轉動的角稱為旋轉角。

      1.旋轉

      2.旋轉的性質

      ⑴旋轉變化前后,對應線段,對應角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。

      ⑵旋轉過程中,圖形上每一個點都繞旋轉中心沿相同方向轉動了相同的角度。

      ⑶任意一對對應點與旋轉中心的連線所成的角都是旋轉角,對應點到旋轉中心的.距離相等。

      ⑷旋轉前后的兩個圖形全等。

      3.簡單的旋轉作圖

      ⑴已知原圖,旋轉中心和一對對應點,求作旋轉后的圖形。

      ⑵已知原圖,旋轉中心和一對對應線段,求作旋轉后的圖形。

      ⑶已知原圖,旋轉中心和旋轉角,求作旋轉后的圖形。

      三、分析組合圖案的形成

      ①確定組合圖案中的“基本圖案”

      ②發現該圖案各組成部分之間的內在聯系

      ③探索該圖案的形成過程,類型有:⑴平移變換;⑵旋轉變換;⑶軸對稱變換;⑷旋轉變換與平移變換的組合;

      ⑸旋轉變換與軸對稱變換的組合;⑹軸對稱變換與平移變換的組合。

    八年級數學教案 篇6

      一、教學目標

      1.靈活應用勾股定理及逆定理解決實際問題.

      2.進一步加深性質定理與判定定理之間關系的認識.

      二、重點、難點

      1.重點:靈活應用勾股定理及逆定理解決實際問題.

      2.難點:靈活應用勾股定理及逆定理解決實際問題.

      3.難點的突破方法:

      三、課堂引入

      創設情境:在軍事和航海上經常要確定方向和位置,從而使用一些數學知識和數學方法.

      四、例習題分析

      例1(P83例2)

      分析:⑴了解方位角,及方位名詞;

      ⑵依題意畫出圖形;

      ⑶依題意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;

      ⑷因為242+182=302,PQ2+PR2=QR2,根據勾股定理的'逆定理,知∠QPR=90°;

      ⑸∠PRS=∠QPR—∠QPS=45°.

      小結:讓學生養成“已知三邊求角,利用勾股定理的逆定理”的意識.

      例2(補充)一根30米長的細繩折成3段,圍成一個三角形,其中一條邊的長度比較短邊長7米,比較長邊短1米,請你試判斷這個三角形的形狀.

      分析:⑴若判斷三角形的形狀,先求三角形的三邊長;

      ⑵設未知數列方程,求出三角形的三邊長5、12、13;

      ⑶根據勾股定理的逆定理,由52+122=132,知三角形為直角三角形.

      解略.

      本題幫助培養學生利用方程思想解決問題,進一步養成利用勾股定理的逆定理解決實際問題的意識.

    八年級數學教案 篇7

      教學目標

      (一)知識與技能目標

      使學生理解并掌握分式的基本性質,并能運用這些性質進行分式化簡.

      (二)過程與方法目標

      通過分式的化簡提高學生的運算能力.

      (三)情感與價值目標.

      滲透類比轉化的數學思想方法.

      教學重點和難點

      1.重點:使學生理解并掌握分式的基本性質,這是學好本章的關鍵.

      2.難點:靈活運用分式的基本性質進行分式化簡.

      教學方法:分組討論.

      教學過程

      (一)情境引入

      1.數學小笑話:

      從前有個不學無術的富家子弟,有一次,父母出遠門去辦事,把他交給廚師照看,廚師問他:“我每天三餐每頓給你做兩個饅頭,夠嗎?”他哭喪著臉說:“不夠,不夠!”廚師又問:“那我就一天給你吃六個,怎么樣?”他馬上欣喜地說:“夠了!夠了!”

      2.問:這個富家子弟為什么會犯這樣的錯誤?

      3.分數約分的方法及依據是什么?

      (1)的依據是什么?呢?

      (2)你認為分式與相等嗎?與呢?

      (二)新課

      1.類比分數的基本性質,由學生小結出分式的基本性質:

      分式的分子與分母都乘以(或除以)同一個不等于零的整式,分式的值不變,即:

      =,=(其中M是不等于零的`整式)

      2.加深對分式基本性質的理解:

      例1下列等式的右邊是怎樣從左邊得到的?

      由學生口述分析,并反問:為什么c≠0?

      解:∵c≠0,∴==(2)=學生口答,教師設疑:為什么題目未給x≠0的條件?(引導學生學會分析題目中的隱含條件.)

    八年級數學教案 篇8

      一、目標要求

      1.理解掌握異分母分式加減法法則。

      2.能正確熟練地進行異分母分式的加減運算。

      二、重點難點

      重點:異分母分式的加減法法則及其運用。

      難點:正確確定最簡公分母和靈活運用法則。

      1.異分母分式的加減法法則:異分母分式相加減,先通分,變為同分母分式,然后再加減。用式子表示為:±=。

      2.分式通分時,要注意幾點:(1)如果各分母的系數都是整數時通分,常取它們的系數的最小公倍數,作為最簡公分母的系數;(2)若分母的系數不是整數時,先用分式的.基本性質將其化為整數,再求最小公倍數;(3)分母的系數若是負數時,應利用符號法則,把負號提取到分式前面;(4)若分母是多項式時,先按某一字母順序排列,然后再進行因式分解,再確定最簡公分母。

      三、解題方法指導

      【例1】計算:(1)++;

      (2)-x-1;

      (3)--。

      分析:(1)把分母的各多項式按x的降冪排列,能先分解因式的將其分解因式,找最簡公分母,轉化為同分母的分式加減法。(2)一個整式與一個分式相加減,應把這個整式看作一個分母是1的式子來進行通分,注意-x-1=,要注意負號問題。

      解:(1)原式=-+=-+====;

      (2)原式======;

      (3)原式=--===。

      【例2】計算:。+++。

      分析:此題若將4個分式同時通分,分子將是很復雜的,計算也是比較復雜的。各式的分母適用于平方差公式,所以采取分步通分的方法進行加減。

      解:原式=++=++=+=+==。

      四、激活思維訓練

      ▲知識點:異分母分式的加減

      【例】計算:-+。

      分析:此題如果直接通分,運算勢必十分復雜。當各分子的次數大于或等于分母的次數時,可利用多項式的除法,將其分離為整式部分與分式部分的和,再加減會使運算簡便。

      解:原式=[x+2-]-[x+3+]

      +[+1]

      =x+2--x-3-++1

      =--+=====。

      五、基礎知識檢測

      1.填空題:

    八年級數學教案 篇9

      教學目標:完全平方公式的推導及其應用;完全平方公式的幾何解釋;視學生對算理的理解,有意識地培養學生的思維條理性和表達能力.

      教學重點與難點:完全平方公式的推導過程、結構特點、幾何解釋,靈活應用.

      教學過程:

      一、提出問題,學生自學

      問題:根據乘方的定義,我們知道:a2=aa,那么(a+b)2應該寫成什么樣的形式呢?(a+b)2的運算結果有什么規律?計算下列各式,你能發現什么規律?

      (1)(p+1)2=(p+1)(p+1)=_______;(m+2)2=_______;

      (2)(p1)2=(p1)(p1)=_______;(m2)2=_______;

      學生討論,教師歸納,得出結果:

      (1)(p+1)2=(p+1)(p+1)=p2+2p+1

      (m+2)2=(m+2)(m+2)=m2+4m+4

      (2)(p1)2=(p1)(p1)=p22p+1

      (m2)2=(m2)(m2)=m24m+4

      分析推廣:結果中有兩個數的平方和,而2p=2p1,4m=2m2,恰好是兩個數乘積的二倍(1)(2)之間只差一個符號.

      推廣:計算(a+b)2=__________;(ab)2=__________.

      得到公式,分析公式

      結論:(a+b)2=a2+2ab+b2(ab)2=a22ab+b2

      即:兩數和(或差)的平方,等于它們的.平方和,加(或減)它們的積的2倍.

      二、幾何分析

      你能根據圖(1)和圖(2)的面積說明完全平方公式嗎?

      圖(1)大正方形的邊長為(a+b),面積就是(a+b)2,同時,大正方形可以分成圖中①②③④四個部分,它們分別的面積為a2、ab、ab、b2,因此,整個面積為a2+ab+ab+b2=a2+2ab+b2,即說明(a+b)2=a2+2ab+b2. 請點擊下載Word版完整教案:新人教版八年級數學上冊《完全平方公式》教案教案《新人教版八年級數學上冊《完全平方公式》教案》,來自網!

    【八年級數學教案】相關文章:

    八年級的數學教案12-14

    八年級數學教案06-18

    初中八年級數學教案11-03

    人教版八年級數學教案11-04

    八年級上冊數學教案11-09

    八年級的數學教案15篇12-14

    八年級下冊數學教案01-01

    八年級數學教案人教版01-03

    八年級數學教案【熱門】12-03

    【熱門】八年級數學教案11-29

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      亚洲尤物精品自产拍在线观看 | 中文亚洲免费一区二区三区 | 一本一道DVD在线观看免费视频 | 亚洲国产欧美在线一区 | 日本亚欧精品在线视频 | 亚洲国产资源在线26u |