- 八年級數學教案 推薦度:
- 相關推薦
八年級數學教案模板集錦10篇
作為一位不辭辛勞的人民教師,往往需要進行教案編寫工作,借助教案可以恰當地選擇和運用教學方法,調動學生學習的積極性。那么大家知道正規的教案是怎么寫的嗎?下面是小編收集整理的八年級數學教案10篇,歡迎大家分享。
八年級數學教案 篇1
教學目標:
1、經歷對圖形進行觀察、分析、欣賞和動手操作、畫圖過程,掌握有關畫圖的操作技能,發展初步審美能力,增強對圖形欣賞的意識。
2、能按要求把所給出的圖形補成以某直線為軸的軸對稱圖形,能依據圖形的軸對稱關系設計軸對稱圖形。
教學重點:本節課重點是掌握已知對稱軸L和一個點,要畫出點A關于L的軸對稱點的畫法,在此基礎上掌握有關軸對稱圖形畫圖的操作技能,并能利用圖形之間的軸對稱關系來設計軸對稱圖形,掌握有關畫圖的技能及設計軸對稱圖形是本節課的難點。
教學方法:動手實踐、討論。
教學工具:課件
教學過程:
一、 先復習軸對稱圖形的定義,以及軸對稱的相關的性質:
1.如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相________,那么這個圖形叫做________________,這條直線叫做_____________
2.軸對稱的三個重要性質______________________________________________
_____________________________________________________________________
二、提出問題:
二、探索練習:
1. 提出問題:
如圖:給出了一個圖案的一半,其中的虛線是這個圖案的對稱軸。
你能畫出這個圖案的另一半嗎?
吸引學生讓學生有一種解決難點的想法。
2.分析問題:
分析圖案:這個圖案是由重要六個點構成的,要將這個圖案的另一半畫出來,根據軸對稱的性質只要畫出這個圖案中六個點的對應點即可
問題轉化成:已知對稱軸和一個點A,要畫出點A關于L的對應點 ,可采用如下方法:`
在學生掌握已知一個點畫對應點的基礎上,解決上述給出的問題,使學生有一條較明確的思路。
三、對所學內容進行鞏固練習:
1. 如圖,直線L是一個軸對稱圖形的`對稱軸,畫出這個軸對稱圖形的另一半。
2. 試畫出與線段AB關于直線L的線段
3.如圖,已知 直線MN,畫出以MN為對稱軸 的軸對稱圖形
小 結: 本節課學習了已知對稱軸L和一個點如何畫出它的對應點,以及如何補全圖形,并利用軸對稱的性質知道如何設計軸對稱圖形。
教學后記:學生對這節課的內容掌握比較好,但對于利用軸對稱的性質來設計圖形覺得難度比較大。因本節課內容較有趣,許多學生上課積極性較高
八年級數學教案 篇2
學習目標:
1、知道線段的垂直平分線的概念,探索并掌握成軸對稱的兩個圖形全等,對稱軸是對稱點連線的垂直平分線等性質.
2、經歷探索軸對稱的性質的活動過程 ,積累數學活動經驗,進一步發展空間觀念和有條理地思考和表達能力.
3、利用軸對稱的基本性質解決實際問題。
學習重點:靈活運用對應點所連的線段被 對稱軸垂直平分、對應線段相等、對應角相等等性質。
學習難點:軸對稱的性質的理解和拓展運用。
學習過程 :
一、探索活動
如右圖所示,在紙上任意畫一點A,把紙對折,用針在 點A處穿孔,再把紙展開,并連接兩針孔A、A.
兩針孔A、A和線段AA與折痕MN之間有什么關系?
1、請同學們按要求畫點、折紙、扎孔,仔細觀察你 所做的圖形,然后研究:兩針孔A、A與折痕MN之間有什么關系?線段AA與折痕MN之間又有什么關系呢?兩針孔A、A ,直線MN 線段AA.
2、那么 直線MN為什么會垂直平分線段AA呢?
3.垂直并且平分一條線段的直線,叫做線段的垂直平分線(mi dpoint perpendicular).
例如,如圖,對稱軸MN就是對稱點A、A連線(即線段AA)的垂直 平分線.
4.如圖,在紙上再任畫一點B,同樣地,折紙、穿孔、展開,并連接AB、AB、BB.線段AB與AB有什么關系?線段BB與MN 有什么關系?
5.如圖,再在紙上任畫一點C,并仿照上面進行操作.
(1)線段AC與 AC有什么關系 ? BC與BC呢?線段CC與MN有什么關系?
(2)A與A有什么關系? B與B呢? △ABC 與△ABC有什么關系?為什么?
(3)軸對稱有哪些性質?
6.軸對稱的性質:
(1)成軸對稱的.兩個圖形全等.
(2)如果兩個圖形成軸對稱,那么對稱軸是對稱點連線的垂直平分線.
二、例題講解
例1、(1)如圖,A 、B、C、D的對稱點分別是 ,線段AC、AB的對應線段分別是 ,CD= , CBA= ,ADC= .
(2)連接AF、BE,則線段AF、BE有什么關系?并用測量的方法驗證.
(3)AE與BF平行嗎?為什么?
(4)AE與BF平行,能說明軸對稱圖形對稱點的連線一定 互相平行嗎?
(5)延長線段BC、FG,作直線AB、EG,你有什么發現嗎?
八年級數學教案 篇3
教學目標:
1.學會根據定義判別分式方程與整式方程,了解分式方程增根產生的原因,掌握驗根的方法。
2.掌握可化為一元一次方程或一元二次方程的分式方程的.解法,會用去分母求方程的解。
教學重點:去分母法解可化為一元一次方程或一元二次方程的分式方程。驗根的方法。
教學難點:驗根的方法。分式方程增根產生的原因。
教學準備:小黑板。
教學過程:
復習引入:下列方程中哪些分母中含有未知數?哪些分母中不含有未知數?
(1);(2);(3);(4);
(5);(6);(7);(8)。
講授新課:
1.由上述歸納出分式方程的概念:只含有分式或整式,且分母里含有未知數的方程叫做分式方程。方程兩邊都是整式的方程叫做整式方程。
2.討論分式方程的解法:
(1)復習解方程時,怎樣去分母?
(2)講解例1:解方程(按課文講解)
歸納:解分式方程的基本思想:
分式方程整式方程
(3)講解例2:解方程(按課文講解)
歸納:在去分母時,有時可能產生不適合原方程的根,我們把它叫做增根。因此解分式方程必須檢驗,常把求得得根代入原方程的最簡公分母,看它的值是否為0,若為0,則為增根,必須舍去;若不為0,則為原方程的根。
想一想:產生增根的原因是什么?
鞏固練習:P1451t,2t。
課堂小結:什么叫做分式方程?
解分式方程時,為什么要檢驗?怎樣檢驗?
布置作業:見作業本。
八年級數學教案 篇4
活動1、提出問題
一個運動場要修兩塊長方形草坪,第一塊草坪的長是10米,寬是米,第二塊草坪的長是20米,寬也是米。你能告訴運動場的負責人要準備多少面積的草皮嗎?
問題:10+20是什么運算?
活動2、探究活動
下列3個小題怎樣計算?
問題:1)-還能繼續往下合并嗎?
2)看來二次根式有的能合并,有的不能合并,通過對以上幾個題的觀察,你能說說什么樣的二次根式能合并,什么樣的不能合并嗎?
二次根式加減時,先將二次根式化簡成最簡二次根式后,再將被開方數相同的.進行合并。
活動3
練習1指出下列每組的二次根式中,哪些是可以合并的二次根式?(字母均為正數)
創設問題情景,引起學生思考。
學生回答:這個運動場要準備(10+20)平方米的草皮。
教師提問:學生思考并回答教師出示課題并說明今天我們就共同來研究該如何進行二次根式的加減法運算。
我們可以利用已學知識或已有經驗來分組討論、交流,看看+到底等于什么?小組展示討論結果。
教師引導驗證:
①設=,類比合并同類項或面積法;
②學生思考,得出先化簡,再合并的解題思路
③先化簡,再合并
學生觀察并歸納:二次根式化為最簡二次根式后,被開方數相同的能合并。
教師巡視、指導,學生完成、交流,師生評價。
提醒學生注意先化簡成最簡二次根式后再判斷。
八年級數學教案 篇5
一、學習目標及重、難點:
1、了解方差的定義和計算公式。
2、理解方差概念的產生和形成的過程。
3、會用方差計算公式來比較兩組數據的波動大小。
重點:方差產生的必要性和應用方差公式解決實際問題。
難點:理解方差公式
二、自主學習:
(一)知識我先懂:
方差:設有n個數據 ,各數據與它們的平均數的差的平方分別是
我們用它們的平均數,表示這組數據的方差:即用
來表示。
給力小貼士:方差越小說明這組數據越 。波動性越 。
(二)自主檢測小練習:
1、已知一組數據為2、0、-1、3、-4,則這組數據的方差為 。
2、甲、乙兩組數據如下:
甲組:10 9 11 8 12 13 10 7;
乙組:7 8 9 10 11 12 11 12.
分別計算出這兩組數據的極差和方差,并說明哪一組數據波動較小.
三、新課講解:
引例:問題: 從甲、乙兩種農作物中各抽取10株苗,分別測得它的苗高如下:(單位:cm)
甲:9、10、 10、13、7、13、10、8、11、8;
乙:8、13、12、11、10、12、7、7、10、10;
問:(1)哪種農作物的苗長的比較高(我們可以計算它們的平均數: = )
(2)哪種農作物的苗長得比較整齊?(我們可以計算它們的極差,你發現了 )
歸納: 方差:設有n個數據 ,各數據與它們的平均數的差的平方分別是
我們用它們的平均數,表示這組數據的方差:即用 來表示。
(一)例題講解:
例1、 段巍和金志強兩人參加體育項目訓練,近期的5次測試成績如下表所示,誰的'成績比較穩定?為什么?、
測試次數 第1次 第2次 第3次 第4次 第5次
段巍 13 14 13 12 13
金志強 10 13 16 14 12
給力提示:先求平均數,在利用公式求解方差。
(二)小試身手
1、.甲、乙兩名學生在相同的條件下各射靶10次,命中的環數如下:
甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7
經過計算,兩人射擊環數的平均數是 ,但S = ,S = ,則S S ,所以確定
去參加比賽。
1、求下列數據的眾數:
(1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2
2、8年級一班46個同學中,13歲的有5人,14歲的有20人,15歲的15人,16歲的6人。8年級一班學生年齡的平均數,中位數,眾數分別是多少?
四、課堂小結
方差公式:
給力提示:方差越小說明這組數據越 。波動性越 。
每課一首詩:求方差,有公式;先平均,再求差;
求平方,再平均;所得數,是方差。
五、課堂檢測:
1、小爽和小兵在10次百米跑步練習中成績如表所示:(單位:秒)
小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9
小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8
如果根據這幾次成績選拔一人參加比賽,你會選誰呢?
六、課后作業:必做題:教材141頁 練習1、2 選做題:練習冊對應部分習題
七、學習小札記:
寫下你的收獲,交流你的經驗,分享你的成果,你會感到無比的快樂!
八年級數學教案 篇6
課題:一元二次方程實數根錯例剖析課
【教學目的】 精選學生在解一元二次方程有關問題時出現的典型錯例加以剖析,幫助學生找出產生錯誤的原因和糾正錯誤的方法,使學生在解題時少犯錯誤,從而培養學生思維的批判性和深刻性。
【課前練習】
1、關于x的方程ax2+bx+c=0,當a_____時,方程為一元一次方程;當 a_____時,方程為一元二次方程。
2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當△_______時,方程有兩個相等的實數根,當△_______時,方程有兩個不相等的實數根,當△________時,方程沒有實數根。
【典型例題】
例1 下列方程中兩實數根之和為2的方程是()
(A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0
錯答: B
正解: C
錯因剖析:由根與系數的關系得x1+x2=2,極易誤選B,又考慮到方程有實數根,故由△可知,方程B無實數根,方程C合適。
例2 若關于x的方程x2+2(k+2)x+k2=0 兩個實數根之和大于-4,則k的取值范圍是( )
(A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0
錯解 :B
正解:D
錯因剖析:漏掉了方程有實數根的前提是△≥0
例3(20xx廣西中考題) 已知關于x的一元二次方程(1-2k)x2-2 x-1=0有兩個不相等的實根,求k的取值范圍。
錯解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2
錯因剖析:漏掉了二次項系數1-2k≠0這個前提。事實上,當1-2k=0即k= 時,原方程變為一次方程,不可能有兩個實根。
正解: -1≤k<2且k≠
例4 (20xx山東太原中考題) 已知x1,x2是關于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個實數根,當x12+x22=15時,求m的值。
錯解:由根與系數的關系得
x1+x2= -(2m+1), x1x2=m2+1,
∵x12+x22=(x1+x2)2-2 x1x2
=[-(2m+1)]2-2(m2+1)
=2 m2+4 m-1
又∵ x12+x22=15
∴ 2 m2+4 m-1=15
∴ m1 = -4 m2 = 2
錯因剖析:漏掉了一元二次方程有兩個實根的前提條件是判別式△≥0。因為當m = -4時,方程為x2-7x+17=0,此時△=(-7)2-4×17×1= -19<0,方程無實數根,不符合題意。
正解:m = 2
例5 若關于 x的方程(m2-1)x2-2 (m+2)x+1=0有實數根,求m的取值范圍。
錯解:△=[-2(m+2)]2-4(m2-1) =16 m+20
∵ △≥0
∴ 16 m+20≥0,
∴ m≥ -5/4
又 ∵ m2-1≠0,
∴ m≠±1
∴ m的.取值范圍是m≠±1且m≥ -
錯因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關于未知數x的方程,而未限定方程的次數,所以在解題時就必須考慮m2-1=0和m2-1≠0兩種情況。當m2-1=0時,即m=±1時,方程變為一元一次方程,仍有實數根。
正解:m的取值范圍是m≥-
例6 已知二次方程x2+3 x+a=0有整數根,a是非負數,求方程的整數根。
錯解:∵方程有整數根,
∴△=9-4a>0,則a<2.25
又∵a是非負數,∴a=1或a=2
令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2
∴方程的整數根是x1= -1, x2= -2
錯因剖析:概念模糊。非負整數應包括零和正整數。上面答案僅是一部分,當a=0時,還可以求出方程的另兩個整數根,x3=0, x4= -3
正解:方程的整數根是x1= -1, x2= -2 , x3=0, x4= -3
【練習】
練習1、(01濟南中考題)已知關于x的方程k2x2+(2k-1)x+1=0有兩個不相等的實數根x1、x2。
(1)求k的取值范圍;
(2)是否存在實數k,使方程的兩實數根互為相反數?如果存在,求出k的值;如果不存在,請說明理由。
解:(1)根據題意,得△=(2k-1)2-4 k2>0 解得k<
∴當k< 時,方程有兩個不相等的實數根。
(2)存在。
如果方程的兩實數根x1、x2互為相反數,則x1+ x2=- =0,得k= 。經檢驗k= 是方程- 的解。
∴當k= 時,方程的兩實數根x1、x2互為相反數。
讀了上面的解題過程,請判斷是否有錯誤?如果有,請指出錯誤之處,并直接寫出正確答案。
解:上面解法錯在如下兩個方面:
(1)漏掉k≠0,正確答案為:當k< 時且k≠0時,方程有兩個不相等的實數根。
(2)k= 。不滿足△>0,正確答案為:不存在實數k,使方程的兩實數根互為相反數
練習2(02廣州市)當a取什么值時,關于未知數x的方程ax2+4x-1=0只有正實數根 ?
解:(1)當a=0時,方程為4x-1=0,∴x=
(2)當a≠0時,∵△=16+4a≥0 ∴a≥ -4
∴當a≥ -4且a≠0時,方程有實數根。
又因為方程只有正實數根,設為x1,x2,則:
x1+x2=- >0 ;
x1. x2=- >0 解得 :a<0
綜上所述,當a=0、a≥ -4、a<0時,即當-4≤a≤0時,原方程只有正實數根。
【小結】
以上數例,說明我們在求解有關二次方程的問題時,往往急于尋求結論而忽視了實數根的存在與“△”之間的關系。
1、運用根的判別式時,若二次項系數為字母,要注意字母不為零的條件。
2、運用根與系數關系時,△≥0是前提條件。
3、條件多面時(如例5、例6)考慮要周全。
【布置作業】
1、當m為何值時,關于x的方程x2+2(m-1)x+ m2-9=0有兩個正根?
2、已知,關于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實數根。
求證:關于x的方程
(m-5)x2-2(m+2)x + m=0一定有一個或兩個實數根。
考題匯編
1、(20xx年廣東省中考題)設x1、 x2是方程x2-5x+3=0的兩個根,不解方程,利用根與系數的關系,求(x1-x2)2的值。
2、(20xx年廣東省中考題)已知關于x的方程x2-2x+m-1=0
(1)若方程的一個根為1,求m的值。
(2)m=5時,原方程是否有實數根,如果有,求出它的實數根;如果沒有,請說明理由。
3、(20xx年廣東省中考題)已知關于x的方程x2+2(m-2)x+ m2=0有兩個實數根,且兩根的平方和比兩根的積大33,求m的值。
4、(20xx年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個根,且x1+x2=6,x12+x22=20,求p和q的值。
八年級數學教案 篇7
教學目標
知識與技能
用二元一次方程組解決有趣場景中的數字問 題和行程問題,歸納用方程(組)解決實際問題的一般步驟.
過程與方法
1.通過設置問題串,讓學生體會分析復雜問題的思考方法.
2.讓學生進一步經歷和體驗列方程組解決實際問題的過程,體會方程組是刻畫現實世界 的有效數學模型.
情感態度與價值觀
在學習過程中讓學生體驗把復雜問題化為簡單問題的策略,體驗成功感,同時培養學生克服困難的意志和勇氣, 樹立自信心,并鼓勵學生合作 交流,培養學生的團隊精神.
教學重點
1.初步體會列方程組解決實際問題的步驟.
2.學會用圖表 分析較復雜的數量關系問題。
教學難點
將實際問題轉化 成二元一次方程組的`數學模型;會用圖表分析數 量關系。
教學準備:
教具:教材,課件,電腦(視頻播放器)
學具:教材,練習本
教學過程
第一環節:復習提問(5分鐘,學生口答)
內容:填空:
(1)一個兩位數,個位數字是 ,十位數字是 ,則這個兩位數用代數式表示為 ;若交換個位和十位上的數字得到一個新的兩位數,用代數式表示為 .
(2)一個兩位數,個位上的數為 ,十位上的數為 ,如果在它們之間添上一個0,就得到一個三位數,這個三位數用代數式可以表示為 .
(3)有兩個兩位數 和 ,如果將 放在 的左邊,就得到一個四位數,那么這個四位數用代數式表示為 ;如果將 放在 的右邊,將得到一個新的四位數,那么這個四位數用代數式可表示為 .
第二環節:情境引入(10分鐘,學生動腦思考,全班交流)
內容:小明爸爸騎著摩托車帶著小明在公路上勻速行駛,下圖是小明每隔1小時看到的里程情況.你能 確定小明在12:00時看到的里程碑上的數嗎?
第三環節:合作學習(10分鐘,小組討論,找等量關系,解決 問題)
內容:例1
兩個兩位數的和是68,在較大的兩位數的右邊接著寫較小的兩位數,得到一個四位數;在較大的兩位數的左邊寫上較小的兩位數,也得到一個四位數.已知前一個四位數比后一個四位數大2178,求這兩個兩位數.
學生先獨立思考例1,在此基礎上,教師根據學生思考情況組織交流與討論.
第四環節:鞏固練習(10分鐘,學生嘗試獨立解決問題,全班交流)
內容:練習
1.一個兩位數,減去它的各位數字之和的3倍,結果是23;這個兩位數除以它的各位數字 之和,商是5,余數是1.這個兩位數是多少?
2.一個兩位數是另一個兩位數的3倍,如果把這個兩位數放在另一個兩位數的左 邊與放在右邊所得的數之和為8484.求這個兩位數.
第五環節:課堂小結(5分鐘,教師引導學生總結一般步驟)
內容:
1.教師提問:本節課我們學習了那些內容,對這些內容你有什么體會和想法?請與同伴交流.
2.師生互相交流總結出列方程(組)解決實際問題的一般步驟.
第 六環節:布置作業
內容:習題7.6
A組(優等生) 2,3,4
B組(中等生)2、3
C組(后三分之一生)2
八年級數學教案 篇8
一、教學目標
知識與技能
1、了解立方根的概念,初步學會用根號表示一個數的立方根.
2、了解開立方與立方互為逆運算,會用立方運算求某些數的立方根.
過程與方法
1讓學生體會一個數的立方根的惟一性.
2培養學生用類比的思想求立方根的能力,體會立方與開立方運算的互逆性,滲透數學的轉化思想。
情感態度與價值觀
通過立方根符號的引入體會數學的簡潔美。
二、重點難點
重點
立方根的概念和求法。
難點
立方根與平方根的區別,立方根的求法
三、學情分析
前面已經學過了平方根的知識,由于平方根與立方根的學習有很多相似之處,所以在教學設計上,主要還是采取類比的思想,在全面回顧平方根的基礎上,再來引導學生進行立方根知識的學習,讓學生感覺到其實立方根知識并不難,可以與平方根知識對比著學,這樣可以克服學生學習新知識的陌生心理。在學習方法上,提倡讓學生在反思中學習,在概念的得出,歸納性質,解題之后都要進行適當的反思,在反思中看待與理解新知識和新問題,會更理性和全面,會有更大的進步。
四、教學過程設計
教學環節問題設計師生活動備注
情境創設問題:要制作一種容積為27m3的正方體形狀的包裝箱,這種包裝箱的邊長應該是多少?
設這種包裝箱的邊長為xm,則=27這就是求一個數,使它的立方等于27.
因為=27,所以x=3.即這種包裝箱的邊長應為3m
歸納:
立方根的概念:
創設問題情境,引起學生學習的興趣,經小組討論后引出概念。
通過具體問題得出立方根的概念
探究一:
根據立方根的`意義填空,看看正數、0、負數的立方根各有什么特點?
因為(),所以0.125的立方根是()
因為(),所以-8的立方根是()
因為(),所以-0.125的立方根是()
因為(),所以0的立方根是()
一個正數有一個正的立方根
0有一個立方根,是它本身
一個負數有一個負的立方根
任何數都有唯一的立方根
【總結歸納】
一個數的立方根,記作,讀作:“三次根號”,其中叫被開方數,3叫根指數,不能省略,若省略表示平方。.
探究二:
因為所以=
因為,所以=總結:
利用開立方和立方互為逆運算關系,求一個數的立方根,就可以利用這種互逆關系,檢驗其正確性,求負數的立方根,可以先求出這個負數的絕對值的立方根,再取其相反數,即。
八年級數學教案 篇9
1、教材分析
(1)知識結構
(2)重點、難點分析
本節內容的重點是線段垂直平分線定理及其逆定理. 定理反映了線段垂直平分線的性質,是證明兩條線段相等的依據;逆定理反映了線段垂直平分線的判定,是證明某點在某條直線上及一條直線是已知線段的垂直平分線的依據.
本節內容的難點是定理及逆定理的關系. 垂直平分線定理和其逆定理,題設與結論正好相反. 學生在應用它們的時候,容易混淆,幫助學生認識定理及其逆定理的區別,這是本節的難點.
2、 教法建議
本節課教學模式主要采用“學生主體性學習”的教學模式. 提出問題讓學生想,設計問題讓學生做,錯誤原因讓學生說,方法與規律讓學生歸納. 教師的作用在于組織、點撥、引導,促進學生主動探索,積極思考,大膽想象,總結規律,充分發揮學生的主體作用,讓學生真正成為教學活動的主人. 具體說明如下:
(1)參與探索發現,領略知識形成過程
學生前面,學習過線段垂直平分線的概念,這樣由復習概念入手,順其自然提出問題:在垂直平分線上任取一點P,它到線段兩端的距離有何關系?學生會很容易得出“相等”. 然后學生完成證明,找一名學生的證明過程,進行投影總結. 最后,由學生將上述問題,用文字的形式進行歸納,即得線段垂直平分線定理. 這樣讓學生親自動手實踐,積極參與發現,激發了學生的認識沖突,使學生克服思維和探求的惰性,獲得鍛煉機會,對定理的產生過程,真正做到心領神會.
(2)采用“類比”的學習方法,獲取逆定理
線段垂直平分線的'定理及逆定理的證明都比較簡單,學生學習一般沒有什么困難,這一節的難點仍然的定理及逆定理的關系,為了很好的突破這一難點,教學時采用與角的平分線的性質定理和逆定理對照,類比的方法進行教學,使學生進一步認識這兩個定理的區別和聯系.
(3) 通過問題的解決,讓學生學會從不同角度分析問題、解決問題;讓學生學會引申、變更問題,以培養學生發現問題、提出問題的創造性能力.
八年級數學教案 篇10
教學目標:
1、本節課使學生掌握可化為一元二次方程的分式方程的解法,能用去分母的方法或換元的方法求此類方程的解,并會驗根.
2、使學生掌握運用去分母或換元的方法解可化為一元二次方程的分式方程;使學生理解轉化的數學基本思想;
3、使學生能夠利用最簡公分母進行驗根.
教學重點:
可化為一元二次方程的分式方程的解法.
教學難點:
教學難點:解分式方程,學生不容易理解為什么必須進行檢驗.
教學過程:
在初二我們已經學過分式方程的概念及可化為一元一次方程的分式方程的解法,知道了解可化為一元一次方程的分式方程的解題步驟以及驗根的目的,了解了轉化的思想方法的基本運用.今天,我們將在此基礎上,來學習可化為一元二次方程的分式方程的解法.“12.7節”是在學生已經掌握的同類型的方程的解法,直接點出可化為一元二次方程的分式方程的解法與可化為一元一次方程的分式方程的`解法相類同,及產生增根的原因,以激發學生歸納總結的欲望,使學生理解類比方法在數學解題中的重要性,使學生進一步加深對“轉化”這一基本數學思想的理解,抓住學生的注意力,同時可以激起學生探索知識的欲望.
為了使學生能進一步加深對“類比”、“轉化”的理解,可以通過回憶復習可化為一元一次方程的分式方程的解法,探求解可化為一元二次方程的分式方程的解法,同時通過對產生增根的分析,來達到學生對“類比”的方法及“轉化”的基本數學思想在數學學習中的重要性的理解,從而調動學生能積極主動地參與到教學活動中去.
一、新課引入:
1.什么叫做分式方程?解可化為一元一次方程的分化方程的方法與步驟是什么?
2.解可化為一元一次方程的分式方程為什么要檢驗?檢驗的方法是什么?
3、產生增根的原因是什么?.
二、新課講解:
通過新課引入,可直接點出本節的內容:可化為一元二次方程的分式方程及其解法,類比地提出可化為一元二次方程的分式方程的解法與可化為一元一次方程的分式方程的解法相同.
點出本節內容的處理方法與以前所學的知識完全類同后,讓全體學生對照前面復習過的分式方程的解,來進一步加深對“類比”法的理解,以便學生全面地參與到教學活動中去,全面提高教學質量.
在前面的基礎上,為了加深學生對新知識的理解,與學生共同分析解決例題,以提高學生分析問題和解決問題的能力.