1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>八年級數學教案>八年級數學教案

    八年級數學教案

    時間:2022-03-27 11:59:55 八年級數學教案 我要投稿

    八年級數學教案范文集合7篇

      在教學工作者開展教學活動前,常常要寫一份優秀的教案,教案是實施教學的主要依據,有著至關重要的作用。那么什么樣的教案才是好的呢?以下是小編幫大家整理的八年級數學教案7篇,供大家參考借鑒,希望可以幫助到有需要的朋友。

    八年級數學教案范文集合7篇

    八年級數學教案 篇1

      一、教學目的

      1.使學生進一步理解自變量的取值范圍和函數值的意義.

      2.使學生會用描點法畫出簡單函數的圖象.

      二、教學重點、難點

      重點:1.理解與認識函數圖象的意義.

      2.培養學生的看圖、識圖能力.

      難點:在畫圖的三個步驟的列表中,如何恰當地選取自變量與函數的對應值問題.

      三、教學過程

      復習提問

      1.函數有哪三種表示法?(答:解析法、列表法、圖象法.)

      2.結合函數y=x的圖象,說明什么是函數的圖象?

      3.說出下列各點所在象限或坐標軸:

      新課

      1.畫函數圖象的方法是描點法.其步驟:

      (1)列表.要注意適當選取自變量與函數的.對應值.什么叫“適當”?——這就要求能選取表現函數圖象特征的幾個關鍵點.比如畫函數y=3x的圖象,其關鍵點是原點(0,0),只要再選取另一個點如M(3,9)就可以了.

      一般地,我們把自變量與函數的對應值分別作為點的橫坐標和縱坐標,這就要把自變量與函數的對應值列出表來.

      (2)描點.我們把表中給出的有序實數對,看作點的坐標,在直角坐標系中描出相應的點.

      (3)用光滑曲線連線.根據函數解析式比如y=3x,我們把所描的兩個點(0,0),(3,9)連成直線.

      一般地,根據函數解析式,我們列表、描點是有限的幾個,只需在平面直角坐標系中,把這有限的幾個點連成表示函數的曲線(或直線).

      2.講解畫函數圖象的三個步驟和例.畫出函數y=x+0.5的圖象.

      小結

      本節課的重點是讓學生根據函數解析式畫函數圖象的三個步驟,自己動手畫圖.

      練習

      ①選用課本練習(前一節已作:列表、描點,本節要求連線)

      ②補充題:畫出函數y=5x-2的圖象.

      作業

      選用課本習題.

      四、教學注意問題

      1.注意滲透數形結合思想.通過研究函數的圖象,對圖象所表示的一個變量隨另一個變量的變化而變化就更有形象而直觀的認識.把函數的解析式、列表、圖象三者結合起來,更有利于認識函數的本質特征.

      2.注意充分調動學生自己動手畫圖的積極性.

      3.認識到由于計算器和計算機的普及化,代替了手工繪圖功能.故在教學中要傾向培養學生看圖、識圖的能力.

    八年級數學教案 篇2

      教學目標:

      1。經歷探索平行四邊形有關概念和性質的過程,在活動中發展學生的探究意識和合作交流的習慣;

      2。索并掌握平行四邊形的性質,并能簡單應用;

      3。在探索活動過程中發展學生的探究意識。

      教學重點:平行四邊形性質的探索。

      教學難點:平行四邊形性質的理解。

      教學準備:多媒體課件

      教學過程

      第一環節:實踐探索,直觀感知(5分鐘,動手實踐、探索、感知,學生進一步探索了平行四邊形的概念,明確了平行四邊形的本質特征。)

      1。小組活動一

      內容:

      問題1:同學們拿出準備好的剪刀、彩紙或白紙一張。將一張紙對折,剪下兩張疊放的三角形紙片,將它們相等的一邊重合,得到一個四邊形。

      (1)你拼出了怎樣的四邊形?與同桌交流一下;

      (2)給出小明拼出的四邊形,它們的對邊有怎樣的位置關系?說說你的理由,請用簡捷的.語言刻畫這個圖形的特征。

      2。小組活動二

      內容:生活中常見到平行四邊形的實例有什么呢?你能舉例說明嗎?

      第二環節 探索歸納、合作交流(5分鐘,學生動手、動嘴,全班交流)

      小組活動3:

      用 一張半透明的紙復制你剛才畫的平行四邊形,并將復制 后的四邊形繞一個頂點旋轉180,你能平移該紙片,使它與你畫的平行四邊形重合嗎?由此你能得到哪些結論?四邊形的對邊、對角分別有什么關系?能用別的方法驗證你的結論嗎?

      (1)讓學生動手操作、復制、旋轉 、觀察、分析;

      (2)學生交流、議論;

      (3)教師利用多媒體展示實踐的過程。

      第三環節 推理論證、感悟升華(10分鐘,學生通過說理,由直觀感受上升到理性分析,在操作層面感知的基礎上提升,并了解圖形具有的數學本質。)

      實踐 探索內容

      (1)通過剪紙,拼紙片,及旋轉,可以觀察到平行四邊行的對角線把它分成的兩個三角形全等。

      (2)可以通過推理來證明這個結論,如圖連結AC。

      ∵ 四邊形ABCD是平行四邊形

      AD // BC, AB // CD

      2,4

      △AB C和△CDA中

      1

      AC=C A

      4

      △ABC≌△CDA(ASA)

      AB=DC, AD=CB,B

      又∵2

      4

      3=4

      即BAD=DCB

      第四環節 應用鞏固 深化提高(10分鐘,通過議一議,練一練,學生進一步理解平行四邊形的性質,并進行簡單合情推理,體現性質的應用,同時從不同角度平移、旋轉等再一次認識平行四邊形的本質特征。)

      1。活動內容:

      (1)議一議:如果已知平行四邊形的一個內角度數,能確定其它三個內角的度數嗎?

      A(學生思考、議論)

      B總結歸納:可以確定其它三個內角的度數。

      由平行四邊形對 邊分邊平行 得到鄰角互補;又由于平行四邊形對角相等,由此已知平行四邊形的一個內角的度數,可以確定其它三個角度數。

      (2)練一練(P99隨堂練習)

      練1 如圖:四邊形ABCD是平行四邊形。

      (1)求ADC、BCD度數

      (2)邊AB、BC的度數、長度。

      練2 四邊形ABCD是平行四邊形

      (1)它的四條邊中哪些 線段可以通過平移相到得到?

      (2)設對角線AC、BD交于O;AO與OC、BO與OD有何關系?說說理由。

      歸 納:平行四邊形的性質:平行四邊形的對角線互相平分。

      第五環節 評價反思 概括總結(8分鐘,學生踴躍談感受和收獲)

      活動內容

      師生相互交流、反思、總結。

      (1)經歷了對平行四邊形的特征探索,你有什么感受和收獲?給自己一個評價。

      (2)在與同伴合作交流中練表現,優秀方面有哪些?你看到同伴哪些優點?

      (3)本節學習到了什么?(知識上、方法上)

      考一考:

      1。 ABCD中,B=60,則A= ,C= ,D= 。

      2。 ABCD中,A比B大20,則C= 。

      3。 ABCD中,AB=3,BC=5,則AD= CD= 。

      4。 ABCD中,周長為40cm,△ABC周長為25,則對角線AC=( )cm。

      布置作業

      課本習題4。1

      A組(學優生)1 、2

      B組(中等生)1、2

      C組(后三分之一生)1、2

      教學反思

    八年級數學教案 篇3

      教學指導思想與理論依據

      《基礎教育課程改革綱要(試行)》指出:“大力推進多媒體信息技術在教學過程中的普遍應用,促進信息技術與學科課程的整合,逐步實現教學內容的呈現方式、學生的學習方式、教師的教學方式和師生互動方式的變革,充分發揮信息技術的優勢,為學生的學習和發展提供豐富多彩的教育環境和有力的學習工具。” 教師運用現代多媒體信息技術對教學活動進行創造性設計,發揮計算機輔助教學的特有功能,把信息技術和數學教學的學科特點結合起來,可以使教學的表現形式更加形象化、多樣化、視覺化,有利于充分揭示數學概念的形成與發展,數學思維的過程和實質,展示數學思維的形成過程,使數學課堂教學收到事半功倍的效果。

      教學內容分析:

      本節課內容是學生在小學階段初步了解特殊四邊形以及學過《三角形》這章的基礎上進行的,在知識結構上打破了教材的編寫順序,從整體的角度探究特殊四邊形性質。運用多媒體教學體現出直觀、課容量大、容易接受的特點,為進一步的理論證明及應用起著提供數據和宏觀指導作用,使學生學習本章具體內容時知道身在何處,使知識體系更加系統。本節課內容是四邊形這章的理論基礎,在該章占有非常重要的地位。

      學生情況分析:

      本班經歷了一年多課改實踐,學生對運用現代多媒體信息技術的教學方式有濃厚的興趣,能運用《幾何畫板》這一工具進行簡單的操作,形成自主探索和合作交流的學風,從而樂于在教師的指導下主動與同學探索、發現、歸納、經歷數學知識于實踐的過程。

      教學方式與教學手段說明:

      本節課充分利用現有的先進教學設備(兩名學生一臺電腦),利用筆者自制,借助《幾何畫板》把學生帶入數學模擬實驗室,以研究電動門的機械原理為切入點,從學生已有的生活經驗出發,讓學生親身經歷數學知識的形成并進行解釋與應用過程。組員相互配合分別測量、搜集、分析、整理特殊四邊形的邊長、角度、對角線長度等數據,并總結其性質,通過人機對話方式把靜態、抽象的幾何圖形變為動態、直觀地演示出來。在此過程中教師當好課堂教學的組織者、決策者、創造者和參與者,教給學生自覺主動地探究新知識的方法,激發學生的思維,培養學生的'科學精神和創新思維習慣,使學生獲得對數學理解的同時,在思維能力、情感態度與價值觀等多方面得到發展。

      知識與技能:

      1、初步理解特殊四邊形性質;

      2、培養學生自主收集、描述和分析數據的能力;

      過程與方法:

      1、了解特殊四邊形性質的形成過程;

      2、初步了解探究新知識的一些方法;

      情感與價值觀:

      1、了解特殊四邊形在日常生活中的應用;

      2、學生在觀察、歸納、類比及實驗教學活動中,體會成功后的喜悅;

      3、初步具有感性認識上升到理性認識的辯證唯物主義思想。

      教學環境:

      多媒體計算機網絡教室

      教學課型:

      試驗探究式

      教學重點:

      特殊四邊形性質

      教學難點:

      特殊四邊形性質的發現

      一、設置情景,提出問題

      提出問題:

      知識已生活,又服務于生活。我們經過校門時,是否注意到電動門的機械工作原理(教師用幾何畫板演示)?

      1、電動門的網格和結點能組成哪些四邊形?

      2、在開(關)門過程中這些四邊形是如何變化的?

      3、你還發現了什么?

      解決問題:

      學生猜想:包括平行四邊形、矩形、菱形、等腰梯形、直角梯形……;

      當我們學習完本節知識后,其他問題就容易解決了。

      (意圖:用《幾何畫板》的動態演示生活事例,充分展示了數學的美妙,可以使學生容易進入情境和保持積極學習狀態,激起學生探究解決問題的求知欲望。)

      二、整體了解,形成系統

      本節課從整體角度研究特殊四邊形性質,為今后的個體研究打下良好的基礎。我們先研究四邊形中的特殊與一般的關系。

      提出問題:

      1、本章主要研究哪些特殊四邊形?

      2、從哪幾方面研究這些特殊四邊形?

      3、矩形、菱形后面有正方形,那么等腰梯形和直角梯形后面是否有圖形呢?假設有是什么圖形呢?如果沒有,為什么?

      解決問題:

      學生操作電腦(用幾何畫板),了解本章研究的主要圖形;教師個別指導。

      1、包括:平行四邊形、矩形、菱形、梯形、等腰梯形、直角梯形

      2、從邊、角、對角線、面積、周長、……等方面研究。本節課主要從邊、角、對角線三方面考慮;

      3、等腰梯形和直角梯形后面應該是矩形,但不符合梯形定義,所以沒有圖形。

      (意圖: 學生自主觀察、分組討論了解本章知識結構,從而形成系統;通過假設、猜想、推理、論證、否定假設獲得新知識)

      三、個體研究、總結性質

      1、平行四邊形性質

      提出問題:

      在平行四邊形的形狀、位置、大小變化過程中,請觀察數據并找出邊長、角度、對角線長度相對不變的性質。

      解決問題:

      教師引導學生拖動B點(學生操作電腦),改變平行四邊形的形狀、位置、大小,并觀察數據的變化,從中找出相對不變的要素。

      在圖形變化過程中,

      (1)對邊相等;

      (2)對角相等;

      (3)通過AO=CO 、BO=DO,可得對角線互相平分;

      (4)通過鄰角互補,可得對邊平行;

      (5)內外角和都等于360度;

      (6)鄰角互補;

      ……

      指導學生填表:

      平行四邊形性質矩形性質正方形性質

      菱形性質

      梯形性質等腰梯形性質

      直角梯形性質

      (既屬于平行四邊形性質又屬于矩形性質可以畫箭頭)

      按照平行四邊形性質的探索思路,分別研究:

      2、矩形性質;

      3、菱形性質;

      4、正方形性質;

      5、梯形性質;

      6、等腰梯形性質;

      7、直角梯形的性質。

      (意圖: 學生運用電腦自主收集、描述、分析數據,把抽象的性質變為直觀化、形象化,培養獨立探究,自主自信,使學生體驗到科學探索的樂趣。)

      教師總結:

      (意圖: 掌握畫箭頭的方法,使學生了解事物個體既有該事物一般性質,又有自己的特點。既清楚地表達,又節省時間。)

      四、聯系生活,解決問題

      解決問題:

      學生操作電腦,觀察圖形、分組討論,教師個別指導。

      學生在分別演示開(關)門過程中,觀察數據并總結:邊長、角度、對角線長度的變化引起四邊形的形狀、大小、位置的變化。

      四邊形具有不穩定性,而三角形沒有這個特點……

      (意圖:使學生體會到數學于生活、又服務于生活,更重要的是培養學生應用知識解決實際問題的能力,體會成功后的喜悅。)

      五、小結

      1.研究問題從整體到局部的方法;

      2.主要從邊長、角度、對角線長度三方面研究特殊四邊形性質。

      六、作業

      1.平行四邊形內角中,既有兩個相鄰的角相等,又有一組鄰邊相等,試判斷它是什么圖形。

      2.觀察實際生活中的電動門,在開(關)門過程中特殊四邊形的變化。

      學習效果評價

      針對教學內容、學生特點及設計方案,預計下列學習效果:

      利用多媒體信息技術圖文并茂、形象直觀的特點,通過學生自主測量、分析、整理數據并總結其性質,培養學生收集、描述和分析數據的能力,并達到初步理解特殊四邊形性質的目標。

      在問題引入、了解整體、測量個體、總結性質的過程中,符合事物的認識規律及探究新知識的一般方法,初步形成感性認識上升到理性認識的辯證唯物主義思想。

      學生演示開(關)門過程中,了解特殊四邊形在日常生活中的應用,并用所學的知識解釋實際問題,使自身價值得以實現并體會成功后的喜悅;

      由于個體差異,針對教學目標難以達到的個別學生,根據教學的進展,通過師生之間、學生之間的對話交流及時指導,使教學目標得以實現。

    八年級數學教案 篇4

      復習第一步::

      勾股定理的有關計算

      例1:(20xx年甘肅省定西市中考題)下圖陰影部分是一個正方形,則此正方形的面積為.

      析解:圖中陰影是一個正方形,面積正好是直角三角形一條直角邊的平方,因此由勾股定理得正方形邊長平方為:172-152=64,故正方形面積為6

      勾股定理解實際問題

      例2.(20xx年吉林省中考試題)圖①是一面矩形彩旗完全展平時的尺寸圖(單位:cm).其中矩形ABCD是由雙層白布縫制的穿旗桿用的旗褲,陰影部分DCEF為矩形綢緞旗面,將穿好彩旗的旗桿垂直插在操場上,旗桿旗頂到地面的高度為220cm.在無風的天氣里,彩旗自然下垂,如圖②.求彩旗下垂時最低處離地面的最小高度h.

      析解:彩旗自然下垂的長度就是矩形DCEF

      的對角線DE的長度,連接DE,在Rt△DEF中,根據勾股定理,

      得DE=h=220-150=70(cm)

      所以彩旗下垂時的最低處離地面的最小高度h為70cm

      與展開圖有關的計算

      例3、(20xx年青島市中考試題)如圖,在棱長為1的正方體ABCD—A’B’C’D’的表面上,求從頂點A到頂點C’的最短距離.

      析解:正方體是由平面圖形折疊而成,反之,一個正方體也可以把它展開成平面圖形,如圖是正方體展開成平面圖形的一部分,在矩形ACC’A’中,線段AC’是點A到點C’的最短距離.而在正方體中,線段AC’變成了折線,但長度沒有改變,所以頂點A到頂點C’的最短距離就是在圖2中線段AC’的.長度.

      在矩形ACC’A’中,因為AC=2,CC’=1

      所以由勾股定理得AC’=.

      ∴從頂點A到頂點C’的最短距離為

      復習第二步:

      1.易錯點:本節同學們的易錯點是:在用勾股定理求第三邊時,分不清直角三角形的斜邊和直角邊;另外不論是否是直角三角形就用勾股定理;為了避免這些錯誤的出現,在解題中,同學們一定要找準直角邊和斜邊,同時要弄清楚解題中的三角形是否為直角三角形.

      例4:在Rt△ABC中,a,b,c分別是三條邊,∠B=90°,已知a=6,b=10,求邊長c.

      錯解:因為a=6,b=10,根據勾股定理得c=剖析:上面解法,由于審題不仔細,忽視了∠B=90°,這一條件而導致沒有分清直角三角形的斜邊和直角邊,錯把c當成了斜邊.

      正解:因為a=6,b=10,根據勾股定理得,c=溫馨提示:運用勾股定理時,一定分清斜邊和直角邊,不能機械套用c2=a2+b2

      例5:已知一個Rt△ABC的兩邊長分別為3和4,則第三邊長的平方是

      錯解:因為Rt△ABC的兩邊長分別為3和4,根據勾股定理得:第三邊長的平方是32+42=25

      剖析:此題并沒有告訴我們已知的邊長4一定是直角邊,而4有可能是斜邊,因此要分類討論.

      正解:當4為直角邊時,根據勾股定理第三邊長的平方是25;當4為斜邊時,第三邊長的平方為:42-32=7,因此第三邊長的平方為:25或7.

      溫馨提示:在用勾股定理時,當斜邊沒有確定時,應進行分類討論.

      例6:已知a,b,c為⊿ABC三邊,a=6,b=8,bc,且c為整數,則c=.

      錯解:由勾股定理得c=剖析:此題并沒有告訴你⊿ABC為直角三角形

    八年級數學教案 篇5

      課題:三角形全等的判定(三)

      教學目標:

      1、知識目標:

      (1)掌握已知三邊畫三角形的方法;

      (2)掌握邊邊邊公理,能用邊邊邊公理證明兩個三角形全等;

      (3)會添加較明顯的輔助線.

      2、能力目標:

      (1)通過尺規作圖使學生得到技能的訓練;

      (2)通過公理的初步應用,初步培養學生的邏輯推理能力.

      3、情感目標:

      (1)在公理的形成過程中滲透:實驗、觀察、歸納;

      (2)通過變式訓練,培養學生“舉一反三”的學習習慣.

      教學重點:SSS公理、靈活地應用學過的各種判定方法判定三角形全等。

      教學難點:如何根據題目條件和求證的結論,靈活地選擇四種判定方法中最適當的方法判定兩個三角形全等。

      教學用具:直尺,微機

      教學方法:自學輔導

      教學過程:

      1、新課引入

      投影顯示

      問題:有一塊三角形玻璃窗戶破碎了,要去配一塊新的,你最少要對窗框測量哪幾個數據?如果你手頭沒有測量角度的儀器,只有尺子,你能保證新配的玻璃恰好不大不小嗎?

      這個問題讓學生議論后回答,他們的'答案或許只是一種感覺。于是教師要引導學生,抓住問題的本質:三角形的三個元素――三條邊。

      2、公理的獲得

      問:通過上面問題的分析,滿足什么條件的兩個三角形全等?

      讓學生粗略地概括出邊邊邊的公理。然后和學生一起畫圖做實驗,根據三角形全等定義對公理進行驗證。(這里用尺規畫圖法)

      公理:有三邊對應相等的兩個三角形全等。

      應用格式: (略)

      強調說明:

      (1)、格式要求:先指出在哪兩個三角形中證全等;再按公理順序列出三個條件,并用括號把它們括在一起;寫出結論。

      (2)、在應用時,怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時圖形中隱含的(如公共邊)

      (3)、此公理與前面學過的公理區別與聯系

      (4)、三角形的穩定性:演示三角形的穩定性與四邊形的不穩定性。在演示中,其實可以去掉組成三角形的一根小木條,以顯示三角形條件不可減少,這也為下面總結“三角形全等需要有3全獨立的條件”做好了準備,進行了溝通。

      (5)說明AAA與SSA不能判定三角形全等。

      3、公理的應用

      (1) 講解例1。學生分析完成,教師注重完成后的點評。

      例1 如圖△ABC是一個鋼架,AB=ACAD是連接點A與BC中點D的支架

      求證:AD⊥BC

      分析:(設問程序)

      (1)要證AD⊥BC只要證什么?

      (2)要證∠1=

      只要證什么?(3)要證∠1=∠2只要證什么?

      (4)△ABD和△ACD全等的條件具備嗎?依據是什么?

      證明:(略)

    八年級數學教案 篇6

      教材分析

      本章屬于“數與代數”領域,整式的乘除運算和因式分解是基本而重要的代數初步知識,在后續的數學學習中具有重要的意義。本章內容建立在已經學習了有理數的運算,列簡單的代數式、一次方程及不等式、整式的加減運算等知識的基礎上,而本節課的知識是學習本章的基礎,為后續章節的學習作鋪墊,因此,學得好壞直接關乎到后續章節的學習效果。

      學情分析

      本節課知識是學習整章的基礎,因此,教學的好壞直接影響了后續章節的學習。學生在學習本章前,已經掌握了用字母表示數,列簡單的代數式,掌握了乘方的意義及相關概念,并且本節課的知識相對較簡單,學生比較容易理解和掌握,但是教師在教學中要注意引導學生導出同底數冪的乘法的運算性質的過程是一個由特殊到一般的認識過程,并且注意導出這一性質的'每一步的根據。

      從學生做練習和作業來看,大部分學生都已經掌握本節課的知識,并且掌握的很好,但是還是存在一些問題,那就是符號問題,這方面還有待加強。

      教學目標

      1、知識與技能:

      掌握同底數冪乘法的運算性質,能熟練運用性質進行同底數冪乘法運算。

      2、過程與方法:

      (1)通過同底數冪乘法性質的推導過程,體會不完全歸納法的運用,進一步發展演繹推理能力;

      (2)通過性質運用幫助學生理解字母表達式所代表的數量關系,進一步積累選擇適當的程序和算法解決用符號所表達問題的經驗。

      3、情感態度與價值觀:

      (1)通過引例問題情境的創設,誘發學生的求知欲,進一步認識數學與生活的密切聯系;

      (2)通過性質的推導體會“特殊。

    八年級數學教案 篇7

      一、教學目標

      (一)、知識與技能:

      (1)使學生了解因式分解的意義,理解因式分解的概念。

      (2)認識因式分解與整式乘法的相互關系——互逆關系,并能運用這種關系尋求因式分解的方法。

      (二)、過程與方法:

      (1)由學生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數分解之間的關系,培養學生的觀察能力,進一步發展學生的類比思想。

      (2)由整式乘法的逆運算過渡到因式分解,發展學生的逆向思維能力。

      (3)通過對分解因式與整式的乘法的觀察與比較,培養學生的分析問題能力與綜合應用能力。

      (三)、情感態度與價值觀:讓學生初步感受對立統一的辨證觀點以及實事求是的科學態度。

      二、教學重點和難點

      重點:因式分解的概念及提公因式法。

      難點:正確找出多項式各項的公因式及分解因式與整式乘法的區別和聯系。

      三、教學過程

      教學環節:

      活動1:復習引入

      看誰算得快:用簡便方法計算:

      (1)7/9 ×13-7/9 ×6+7/9 ×2= ;

      (2)-2.67×132+25×2.67+7×2.67= ;

      (3)992–1= 。

      設計意圖:

      如果說學生對因式分解還相當陌生的話,相信學生對用簡便方法進行計算應該相當熟悉.引入這一步的目的旨在讓學生通過回顧用簡便方法計算——因數分解這一特殊算法,使學生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環節設計的計算992–1的值是為了降低下一環節的難度,為下一環節的理解搭一個臺階.

      注意事項:學生對于(1)(2)兩小題逆向利用乘法的分配律進行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導學生復習七年級所學過的整式的`乘法運算中的平方差公式,幫助他們順利地逆向運用平方差公式。

      活動2:導入課題

      P165的探究(略);

      2. 看誰想得快:993–99能被哪些數整除?你是怎么得出來的?

      設計意圖:

      引導學生把這個式子分解成幾個數的積的形式,繼續強化學生對因數分解的理解,為學生類比因式分解提供必要的精神準備。

      活動3:探究新知

      看誰算得準:

      計算下列式子:

      (1)3x(x-1)= ;

      (2)(a+b+c)= ;

      (3)(+4)(-4)= ;

      (4)(-3)2= ;

      (5)a(a+1)(a-1)= ;

      根據上面的算式填空:

      (1)a+b+c= ;

      (2)3x2-3x= ;

      (3)2-16= ;

      (4)a3-a= ;

      (5)2-6+9= 。

      在第一組的整式乘法的計算上,學生通過對第一組式子的觀察得出第二組式子的結果,然后通過對這兩組式子的結果的比較,使學生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發展學生的逆向思維能力。

      活動4:歸納、得出新知

      比較以下兩種運算的聯系與區別:

      a(a+1)(a-1)= a3-a

      a3-a= a(a+1)(a-1)

      在第三環節的運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?

    【八年級數學教案】相關文章:

    八年級的數學教案12-14

    八年級數學教案06-18

    初中八年級數學教案11-03

    【薦】八年級數學教案12-03

    八年級下冊數學教案01-01

    八年級上冊人教版數學教案02-27

    人教版八年級數學教案11-04

    八年級上冊數學教案11-09

    八年級數學教案人教版01-03

    八年級數學教案【薦】12-06

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      亚洲欧美无线码中文字母 | 中文字幕在线永久91 | 亚洲第一区久久丁香 | 日本有码三级欧美国产 | 一本色道久久综合亚洲精品高清 | 亚洲第一区中文字幕在线播放 |