1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>

    八年級數(shù)學(xué)教案

    時間:2022-03-26 21:21:56 八年級數(shù)學(xué)教案 我要投稿

    關(guān)于八年級數(shù)學(xué)教案范文匯編八篇

      作為一名專為他人授業(yè)解惑的人民教師,編寫教案是必不可少的,編寫教案助于積累教學(xué)經(jīng)驗,不斷提高教學(xué)質(zhì)量。寫教案需要注意哪些格式呢?下面是小編收集整理的八年級數(shù)學(xué)教案8篇,希望對大家有所幫助。

    關(guān)于八年級數(shù)學(xué)教案范文匯編八篇

    八年級數(shù)學(xué)教案 篇1

      一、教學(xué)目標(biāo)

      1.理解一個數(shù)平方根和算術(shù)平方根的意義;

      2.理解根號的意義,會用根號表示一個數(shù)的平方根和算術(shù)平方根;

      3.通過本節(jié)的訓(xùn)練,提高學(xué)生的邏輯思維能力;

      4.通過學(xué)習(xí)乘方和開方運算是互為逆運算,體驗各事物間的對立統(tǒng)一的辯證關(guān)系,激發(fā)學(xué)生探索數(shù)學(xué)奧秘的興趣。

      二、教學(xué)重點和難點

      教學(xué)重點:平方根和算術(shù)平方根的概念及求法。

      教學(xué)難點:平方根與算術(shù)平方根聯(lián)系與區(qū)別。

      三、教學(xué)方法

      講練結(jié)合

      四、教學(xué)手段

      幻燈片

      五、教學(xué)過程

      (一)提問

      1、已知一正方形面積為50平方米,那么它的邊長應(yīng)為多少?

      2、已知一個數(shù)的平方等于1000,那么這個數(shù)是多少?

      3、一只容積為0。125立方米的正方體容器,它的棱長應(yīng)為多少?

      這些問題的共同特點是:已知乘方的結(jié)果,求底數(shù)的值,如何解決這些問題呢?這就是本節(jié)內(nèi)容所要學(xué)習(xí)的。下面作一個小練習(xí):填空

      1、()2=9; 2、()2 =0、25;

      3、

      5、()2=0、0081

      學(xué)生在完成此練習(xí)時,最容易出現(xiàn)的錯誤是丟掉負(fù)數(shù)解,在教學(xué)時應(yīng)注意糾正。

      由練習(xí)引出平方根的概念。

      (二)平方根概念

      如果一個數(shù)的平方等于a,那么這個數(shù)就叫做a的平方根(二次方根)。

      用數(shù)學(xué)語言表達即為:若x2=a,則x叫做a的平方根。

      由練習(xí)知:±3是9的平方根;

      ±0.5是0。25的平方根;

      0的平方根是0;

      ±0.09是0。0081的平方根。

      由此我們看到+3與—3均為9的平方根,0的平方根是0,下面看這樣一道題,填空:

      ( )2=—4

      學(xué)生思考后,得到結(jié)論此題無答案。反問學(xué)生為什么?因為正數(shù)、0、負(fù)數(shù)的平方為非負(fù)數(shù)。由此我們可以得到結(jié)論,負(fù)數(shù)是沒有平方根的。下面總結(jié)一下平方根的性質(zhì)(可由學(xué)生總結(jié),教師整理)。

      (三)平方根性質(zhì)

      1.一個正數(shù)有兩個平方根,它們互為相反數(shù)。

      2.0有一個平方根,它是0本身。

      3.負(fù)數(shù)沒有平方根。

      (四)開平方

      求一個數(shù)a的平方根的運算,叫做開平方的運算。

      由練習(xí)我們看到+3與—3的平方是9,9的平方根是+3和—3,可見平方運算與開平方運算互為逆運算。根據(jù)這種關(guān)系,我們可以通過平方運算來求一個數(shù)的平方根。與其他運算法則不同之處在于只能對非負(fù)數(shù)進行運算,而且正數(shù)的運算結(jié)果是兩個。

      (五)平方根的表示方法

      一個正數(shù)a的正的平方根,用符號“ ”表示,a叫做被開方數(shù),2叫做根指數(shù),正數(shù)a的負(fù)的平方根用符號“— ”表示,a的平方根合起來記作 ,其中 讀作“二次根號”, 讀作“二次根號下a”。根指數(shù)為2時,通常將這個2省略不寫,所以正數(shù)a的平方根也可記作“ ”讀作“正、負(fù)根號a”。

      練習(xí):1.用正確的符號表示下列各數(shù)的平方根:

      ①26 ②247 ③0。2 ④3 ⑤

      解:①26 的'平方根是

      ②247的平方根是

      ③0。2的平方根是

      ④3的平方根是

      ⑤ 的平方根是

      由學(xué)生說出上式的讀法。

      例1。下列各數(shù)的平方根:

      (1)81; (2) ; (3) ; (4)0。49

      解:(1)∵(±9)2=81,

      ∴81的平方根為±9。即:

      (2)

      的平方根是 ,即

      (3)

      的平方根是 ,即

      (4)∵(±0。7)2=0。49,

      ∴0。49的平方根為±0。7。

      小結(jié):讓學(xué)生熟悉平方根的概念,掌握一個正數(shù)的平方根有兩個。

      六、總結(jié)

      本節(jié)課主要學(xué)習(xí)了平方根的概念、性質(zhì),以及表示方法,回去后要仔細(xì)閱讀教科書,鞏固所學(xué)知識。

      七、作業(yè)

      教材P。127練習(xí)1、2、3、4。

      八、板書設(shè)計

      平方根

      (一)概念 (四)表示方法 例1

      (二)性質(zhì)

      (三)開平方

      探究活動

      求平方根近似值的一種方法

      求一個正數(shù)的平方根的近似值,通常是查表。這里研究一種筆算求法。

      例1。求 的值。

      解 ∵92102,

      兩邊平方并整理得

      ∵x1為純小數(shù)。

      18x1≈16,解得x1≈0。9,

      便可依次得到精確度

      為0。01,0。001,……的近似值,如:

      兩邊平方,舍去x2得19.8x2≈—1.01

    八年級數(shù)學(xué)教案 篇2

      教學(xué)目標(biāo):

      1。經(jīng)歷探索平行四邊形有關(guān)概念和性質(zhì)的過程,在活動中發(fā)展學(xué)生的探究意識和合作交流的習(xí)慣;

      2。索并掌握平行四邊形的性質(zhì),并能簡單應(yīng)用;

      3。在探索活動過程中發(fā)展學(xué)生的探究意識。

      教學(xué)重點:平行四邊形性質(zhì)的探索。

      教學(xué)難點:平行四邊形性質(zhì)的理解。

      教學(xué)準(zhǔn)備:多媒體課件

      教學(xué)過程

      第一環(huán)節(jié):實踐探索,直觀感知(5分鐘,動手實踐、探索、感知,學(xué)生進一步探索了平行四邊形的概念,明確了平行四邊形的本質(zhì)特征。)

      1。小組活動一

      內(nèi)容:

      問題1:同學(xué)們拿出準(zhǔn)備好的剪刀、彩紙或白紙一張。將一張紙對折,剪下兩張疊放的三角形紙片,將它們相等的一邊重合,得到一個四邊形。

      (1)你拼出了怎樣的四邊形?與同桌交流一下;

      (2)給出小明拼出的四邊形,它們的對邊有怎樣的位置關(guān)系?說說你的理由,請用簡捷的語言刻畫這個圖形的特征。

      2。小組活動二

      內(nèi)容:生活中常見到平行四邊形的實例有什么呢?你能舉例說明嗎?

      第二環(huán)節(jié) 探索歸納、合作交流(5分鐘,學(xué)生動手、動嘴,全班交流)

      小組活動3:

      用 一張半透明的紙復(fù)制你剛才畫的平行四邊形,并將復(fù)制 后的'四邊形繞一個頂點旋轉(zhuǎn)180,你能平移該紙片,使它與你畫的平行四邊形重合嗎?由此你能得到哪些結(jié)論?四邊形的對邊、對角分別有什么關(guān)系?能用別的方法驗證你的結(jié)論嗎?

      (1)讓學(xué)生動手操作、復(fù)制、旋轉(zhuǎn) 、觀察、分析;

      (2)學(xué)生交流、議論;

      (3)教師利用多媒體展示實踐的過程。

      第三環(huán)節(jié) 推理論證、感悟升華(10分鐘,學(xué)生通過說理,由直觀感受上升到理性分析,在操作層面感知的基礎(chǔ)上提升,并了解圖形具有的數(shù)學(xué)本質(zhì)。)

      實踐 探索內(nèi)容

      (1)通過剪紙,拼紙片,及旋轉(zhuǎn),可以觀察到平行四邊行的對角線把它分成的兩個三角形全等。

      (2)可以通過推理來證明這個結(jié)論,如圖連結(jié)AC。

      ∵ 四邊形ABCD是平行四邊形

      AD // BC, AB // CD

      2,4

      △AB C和△CDA中

      1

      AC=C A

      4

      △ABC≌△CDA(ASA)

      AB=DC, AD=CB,B

      又∵2

      4

      3=4

      即BAD=DCB

      第四環(huán)節(jié) 應(yīng)用鞏固 深化提高(10分鐘,通過議一議,練一練,學(xué)生進一步理解平行四邊形的性質(zhì),并進行簡單合情推理,體現(xiàn)性質(zhì)的應(yīng)用,同時從不同角度平移、旋轉(zhuǎn)等再一次認(rèn)識平行四邊形的本質(zhì)特征。)

      1。活動內(nèi)容:

      (1)議一議:如果已知平行四邊形的一個內(nèi)角度數(shù),能確定其它三個內(nèi)角的度數(shù)嗎?

      A(學(xué)生思考、議論)

      B總結(jié)歸納:可以確定其它三個內(nèi)角的度數(shù)。

      由平行四邊形對 邊分邊平行 得到鄰角互補;又由于平行四邊形對角相等,由此已知平行四邊形的一個內(nèi)角的度數(shù),可以確定其它三個角度數(shù)。

      (2)練一練(P99隨堂練習(xí))

      練1 如圖:四邊形ABCD是平行四邊形。

      (1)求ADC、BCD度數(shù)

      (2)邊AB、BC的度數(shù)、長度。

      練2 四邊形ABCD是平行四邊形

      (1)它的四條邊中哪些 線段可以通過平移相到得到?

      (2)設(shè)對角線AC、BD交于O;AO與OC、BO與OD有何關(guān)系?說說理由。

      歸 納:平行四邊形的性質(zhì):平行四邊形的對角線互相平分。

      第五環(huán)節(jié) 評價反思 概括總結(jié)(8分鐘,學(xué)生踴躍談感受和收獲)

      活動內(nèi)容

      師生相互交流、反思、總結(jié)。

      (1)經(jīng)歷了對平行四邊形的特征探索,你有什么感受和收獲?給自己一個評價。

      (2)在與同伴合作交流中練表現(xiàn),優(yōu)秀方面有哪些?你看到同伴哪些優(yōu)點?

      (3)本節(jié)學(xué)習(xí)到了什么?(知識上、方法上)

      考一考:

      1。 ABCD中,B=60,則A= ,C= ,D= 。

      2。 ABCD中,A比B大20,則C= 。

      3。 ABCD中,AB=3,BC=5,則AD= CD= 。

      4。 ABCD中,周長為40cm,△ABC周長為25,則對角線AC=( )cm。

      布置作業(yè)

      課本習(xí)題4。1

      A組(學(xué)優(yōu)生)1 、2

      B組(中等生)1、2

      C組(后三分之一生)1、2

      教學(xué)反思

    八年級數(shù)學(xué)教案 篇3

      教學(xué)目的

      1. 使學(xué)生熟練地運用等腰三角形的性質(zhì)求等腰三角形內(nèi)角的角度。

      2. 熟識等邊三角形的性質(zhì)及判定.

      2.通過例題教學(xué),幫助學(xué)生總結(jié)代數(shù)法求幾何角度,線段長度的方法。

      教學(xué)重點

      等腰三角形的性質(zhì)及其應(yīng)用。

      教學(xué)難點

      簡潔的邏輯推理。

      教學(xué)過程

      一、復(fù)習(xí)鞏固

      1.敘述等腰三角形的性質(zhì),它是怎么得到的?

      等腰三角形的兩個底角相等,也可以簡稱等邊對等角。把等腰三角形對折,折疊兩部分是互相重合的,即AB與AC重合,點B與點 C重合,線段BD與CD也重合,所以C。

      等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱三線合一。由于AD為等腰三角形的對稱軸,所以BD= CD,AD為底邊上的中線;BAD=CAD,AD為頂角平分線,ADB=ADC=90,AD又為底邊上的高,因此三線合一。

      2.若等腰三角形的兩邊長為3和4,則其周長為多少?

      二、新課

      在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時,三角形三邊都相等。我們把三條邊都相等的'三角形叫做等邊三角形。

      等邊三角形具有什么性質(zhì)呢?

      1.請同學(xué)們畫一個等邊三角形,用量角器量出各個內(nèi)角的度數(shù),并提出猜想。

      2.你能否用已知的知識,通過推理得到你的猜想是正確的?

      等邊三角形是特殊的等腰三角形,由等腰三角形等邊對等角的性質(zhì)得到B=C,又由B+C=180,從而推出B=C=60。

      3.上面的條件和結(jié)論如何敘述?

      等邊三角形的各角都相等,并且每一個角都等于60。

      等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?

      等邊三角形也稱為正三角形。

      例1.在△ABC中,AB=AC,D是BC邊上的中點,B=30,求1和ADC的度數(shù)。

      分析:由AB=AC,D為BC的中點,可知AB為 BC底邊上的中線,由三線合一可知AD是△ABC的頂角平分線,底邊上的高,從而ADC=90,BAC,由于B=30,BAC可求,所以1可求。

      問題1:本題若將D是BC邊上的中點這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計算的結(jié)果是否一樣?

      問題2:求1是否還有其它方法?

      三、練習(xí)鞏固

      1.判斷下列命題,對的打,錯的打。

      a.等腰三角形的角平分線,中線和高互相重合( )

      b.有一個角是60的等腰三角形,其它兩個內(nèi)角也為60( )

      2.如圖(2),在△ABC中,已知AB=AC,AD為BAC的平分線,且2=25,求ADB和B的度數(shù)。

      四、小結(jié)

      由等腰三角形的性質(zhì)可以推出等邊三角形的各角相等,且都為60。三線合一性質(zhì)在實際應(yīng)用中,只要推出其中一個結(jié)論成立,其他兩個結(jié)論一樣成立,所以關(guān)鍵是尋找其中一個結(jié)論成立的條件。

      五、作業(yè)

      1.課本P127─7,9

      2、補充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求CBD,BOE,BOC,

      EOD的度數(shù)。

      (一)課本P127─1、3、4、8題.

    八年級數(shù)學(xué)教案 篇4

      一、教學(xué)目標(biāo):

      1、知識目標(biāo):能熟練掌握簡單圖形的移動規(guī)律,能按要求作出簡單平面圖形平移后的圖形,能夠探索圖形之間的平移關(guān)系;

      2、能力目標(biāo):①,在實踐操作過程中,逐步探索圖形之間的平移關(guān)系;

      ②,對組合圖形要找到一個或者幾個“基本圖案”,并能通過對“基本圖案”的平移,復(fù)制所求的圖形;

      3、情感目標(biāo):經(jīng)歷對圖形進行觀察、分析、欣賞和動手操作、畫圖等過程,發(fā)展初步的審美能力,增強對圖形欣賞的意識。

      二、重點與難點:

      重點:圖形連續(xù)變化的特點;

      難點:圖形的劃分。

      三、教學(xué)方法:

      講練結(jié)合。使用多媒體課件輔助教學(xué)。

      八年級數(shù)學(xué)上冊教案四、教具準(zhǔn)備:

      多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。

      五、教學(xué)設(shè)計:

      教師活動

      學(xué)生活動

      設(shè)計意圖

      創(chuàng)設(shè)情景,探究新知:

      (演示課件):教材上小狗的圖案。提問:(1)這個圖案有什么特點?(2)它可以通過什么“基本圖案”,經(jīng)過怎樣的平移而形成?(3)在平移過程中,“基本圖案”的大小、形狀、位置是否發(fā)生了變化?

      小組討論,派代表回答。(答案可以多種)

      讓學(xué)生充分討論,歸納總結(jié),老師給予適當(dāng)?shù)闹笇?dǎo),并對每種答案都要肯定。

      看磁性黑板,展示教材64頁圖3-9,提問:左圖是一個正六邊形,它經(jīng)過怎樣的平移能得到右圖?誰到黑板做做看?

      展示教材64頁3-10,提問:左圖是一種“工”字形磚,右圖是怎樣通過左圖得到的?

      小組討論,派代表到臺上給大家講解。

      氣氛要熱烈,充分調(diào)動學(xué)生的積極性,發(fā)掘他們的.想象力。

      (演示課件)教材65頁圖3-11,提問:這個圖可以看做是什么“基本圖案”通過平移得到的?

      暢所欲言,互相補充。

      課堂小結(jié):

      在教師的引導(dǎo)下學(xué)生總結(jié)本節(jié)課的主要內(nèi)容,并啟發(fā)學(xué)生在我們周圍尋找平移的例子。

      課堂練習(xí):

      (演示課件)教材65頁“隨堂練習(xí)”。

      小組討論。

      小組討論完成。

      例子一定要和大家接觸緊密、典型。

      答案不惟一,對于每種答案,教師都要給予充分的肯定。

      六、教學(xué)反思:

      本節(jié)的內(nèi)容并不是很復(fù)雜,借助多媒體進行直觀、形象,內(nèi)容貼近生活,學(xué)生興致較高,課堂氣氛活躍,參與意識較強,學(xué)生一般都能在教師的指導(dǎo)下掌握。教學(xué)過程中滲透數(shù)學(xué)美學(xué)思想,促進學(xué)生綜合素質(zhì)的提高。

    八年級數(shù)學(xué)教案 篇5

      一、教學(xué)目標(biāo):

      1、會根據(jù)頻數(shù)分布表求加權(quán)平均數(shù),從而解決一些實際問題

      2、會用計算器求加權(quán)平均數(shù)的值

      3、會運用樣本估計總體的方法來獲得對總體的認(rèn)識

      二、重點、難點:

      1、重點:根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)

      2、難點:根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)

      三、教學(xué)過程:

      1、復(fù)習(xí)

      組中值的定義:上限與下限之間的中點數(shù)值稱為組中值,它是各組上下限數(shù)值的簡單平均,即組中值=(上限+上限)/2.

      因為在根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值過程中要用到組中值去代替一組數(shù)據(jù)中的每個數(shù)據(jù)的值,所以有必要在這里復(fù)習(xí)組中值定義.

      應(yīng)給學(xué)生介紹為什么可以利用組中值代替一組數(shù)據(jù)中的每個數(shù)據(jù)的值,以及這樣代替的好處、不妨舉一個例子,在一組中如果數(shù)據(jù)分布較為均勻時,比如教材P140探究問題的表格中的第三組數(shù)據(jù),它的范圍是41≤X≤61,共有20個數(shù)據(jù),若分布較為平均,41、42、43、44…60個出現(xiàn)1次,那么這組數(shù)據(jù)的和為41+42+…+60=1010.而用組中值51去乘以頻數(shù)20恰好為1020≈1010,即當(dāng)數(shù)據(jù)分布較為平均時組中值恰好近似等于它的平均數(shù).所以利用組中值X頻數(shù)去代替這組數(shù)據(jù)的和還是比較合理的,而且這樣做的最大好處是簡化了計算量.

      為了更好的理解這種近似計算的方法和合理性,可以讓學(xué)生去讀統(tǒng)計表,體會表格的實際意義.

      2、教材P140探究欄目的意圖

      ①、主要是想引出根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值的'計算方法.

      ②、加深了對“權(quán)”意義的理解:當(dāng)利用組中值近似取代替一組數(shù)據(jù)中的平均值時,頻數(shù)恰好反映這組數(shù)據(jù)的輕重程度,即權(quán).

      這個探究欄目也可以幫助學(xué)生去回憶、復(fù)習(xí)七年級下的關(guān)于頻數(shù)分布表的一些內(nèi)容,比如組、組中值及頻數(shù)在表中的具體意義.

      3、教材P140的思考的意圖.

      ①、使學(xué)生通過思考這兩個問題過程中體會利用統(tǒng)計知識可以解決生活中的許多實際問題.

      ②、幫助學(xué)生理解表中所表達出來的信息,培養(yǎng)學(xué)生分析數(shù)據(jù)的能力.

      4、利用計算器計算平均值

      這部分篇幅較小,與傳統(tǒng)教材那種詳細(xì)介紹計算器使用方法產(chǎn)生明顯對比.一則由于學(xué)校中學(xué)生使用計算器不同,其操作過程有差別亦不同,再者,各種計算器的使用說明書都有詳盡介紹,同時也說明在今后中考趨勢仍是不允許使用計算器.所以本節(jié)課的重點內(nèi)容不是利用計算器求加權(quán)平均數(shù),但是掌握其使用方法確實可以運算變得簡單.統(tǒng)計中一些數(shù)據(jù)較大、較多的計算也變得容易些了.

      5、運用樣本估計總體

      要使學(xué)生掌握在哪些情況下需要通過用樣本估計總體的方法來獲得對總體的認(rèn)識;一是所要考察的對象很多,二是考察本身帶有破壞性;教材P142例3,這個例子就屬于考察本身帶有破壞性的情況.

    八年級數(shù)學(xué)教案 篇6

      11.1 與三角形有關(guān)的線段

      11.1.1 三角形的邊

      1.理解三角形的概念,認(rèn)識三角形的頂點、邊、角,會數(shù)三角形的個數(shù).(重點)

      2.能利用三角形的三邊關(guān)系判斷三條線段能否構(gòu)成三角形.(重點)

      3.三角形在實際生活中的應(yīng)用.(難點)

      一、情境導(dǎo)入

      出示金字塔、戰(zhàn)機、大橋等圖片,讓學(xué)生感受生活中的三角形,體會生活中處處有數(shù)學(xué).

      教師利用多媒體演示三角形的形成過程,讓學(xué)生觀察.

      問:你能不能給三角形下一個完整的定義?

      二、合作探究

      探究點一:三角形的概念

      圖中的銳角三角形有( )

      A.2個

      B.3個

      C.4個

      D.5個

      解析:(1)以A為頂點的銳角三角形有△ABC、△ADC共2個;(2)以E為頂點的銳角三角形有△EDC共1個.所以圖中銳角三角形的個數(shù)有2+1=3(個).故選B.

      方法總結(jié):數(shù)三角形的個數(shù),可以按照數(shù)線段條數(shù)的方法,如果一條線段上有n個點,那么就有n(n-1)2條線段,也可以與線段外的.一點組成n(n-1)2個三角形.

      探究點二:三角形的三邊關(guān)系

      【類型一】 判定三條線段能否組成三角形

      以下列各組線段為邊,能組成三角形的是( )

      A.2c,3c,5c

      B.5c,6c,10c

      C.1c,1c,3c

      D.3c,4c,9c

      解析:選項A中2+3=5,不能組成三角形,故此選項錯誤;選項B中5+6>10,能組成三角形,故此選項正確;選項C中1+1<3,不能組成三角形,故此選項錯誤;選項D中3+4<9,不能組成三角形,故此選項錯誤.故選B.

      方法總結(jié):判定三條線段能否組成三角形,只要判定兩條較短的線段長度之和大于第三條線段的長度即可.

      【類型二】 判斷三角形邊的取值范圍

      一個三角形的三邊長分別為4,7,x,那么x的取值范圍是( )

      A.3<x<11 B.4<x<7

      C.-3<x<11 D.x>3

      解析:∵三角形的三邊長分別為4,7,x,∴7-4<x<7+4,即3<x<11.故選A.

      方法總結(jié):判斷三角形邊的取值范圍要同時運用兩邊之和大于第三邊,兩邊之差小于第三邊.有時還要結(jié)合不等式的知識進行解決.

      【類型三】 等腰三角形的三邊關(guān)系

      已知一個等腰三角形的兩邊長分別為4和9,求這個三角形的周長.

      解析:先根據(jù)等腰三角形兩腰相等的性質(zhì)可得出第三邊長的兩種情況,再根據(jù)兩邊和大于第三邊來判斷能否構(gòu)成三角形,從而求解.

      解:根據(jù)題意可知等腰三角形的三邊可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能構(gòu)成三角形,應(yīng)舍去;4+9>9,故4,9,9能構(gòu)成三角形,∴它的周長是4+9+9=22.

      方法總結(jié):在求三角形的邊長時,要注意利用三角形的三邊關(guān)系驗證所求出的邊長能否組成三角形.

      【類型四】 三角形三邊關(guān)系與絕對值的綜合

      若a,b,c是△ABC的三邊長,化簡|a-b-c|+|b-c-a|+|c+a-b|.

      解析:根據(jù)三角形三邊關(guān)系:兩邊之和大于第三邊,兩邊之差小于第三邊,來判定絕對值里的式子的正負(fù),然后去絕對值符號進行計算即可.

      解:根據(jù)三角形的三邊關(guān)系,兩邊之和大于第三邊,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.

      方法總結(jié):絕對值的化簡首先要判斷絕對值符號里面的式子的正負(fù),然后根據(jù)絕對值的性質(zhì)將絕對值的符號去掉,最后進行化簡.此類問題就是根據(jù)三角形的三邊關(guān)系,判斷絕對值符號里面式子的正負(fù),然后進行化簡.

      三、板書設(shè)計

      三角形的邊

      1.三角形的概念:

      由不在同一直線上的三條線段首尾順次相接所組成的圖形.

      2.三角形的三邊關(guān)系:

      兩邊之和大于第三邊,兩邊之差小于第三邊.

      本節(jié)課讓學(xué)生經(jīng)歷一個探究解決問題的過程,抓住“任意的三條線段能不能圍成一個三角形”引發(fā)學(xué)生探究的欲望,圍繞這個問題讓學(xué)生自己動手操作,發(fā)現(xiàn)有的能圍成,有的不能圍成,由學(xué)生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關(guān)系,重點研究“能圍成三角形的三條邊之間到底有什么關(guān)系”.通過觀察、驗證、再操作,最終發(fā)現(xiàn)三角形任意兩邊之和大于第三邊這一結(jié)論.這樣教學(xué)符合學(xué)生的認(rèn)知特點,既提高了學(xué)生學(xué)習(xí)的興趣,又增強了學(xué)生的動手能力.

    八年級數(shù)學(xué)教案 篇7

      教學(xué)目標(biāo):

      1、經(jīng)歷對圖形進行觀察、分析、欣賞和動手操作、畫圖過程,掌握有關(guān)畫圖的操作技能,發(fā)展初步審美能力,增強對圖形欣賞的意識。

      2、能按要求把所給出的圖形補成以某直線為軸的軸對稱圖形,能依據(jù)圖形的軸對稱關(guān)系設(shè)計軸對稱圖形。

      教學(xué)重點:本節(jié)課重點是掌握已知對稱軸L和一個點,要畫出點A關(guān)于L的軸對稱點的畫法,在此基礎(chǔ)上掌握有關(guān)軸對稱圖形畫圖的操作技能,并能利用圖形之間的軸對稱關(guān)系來設(shè)計軸對稱圖形,掌握有關(guān)畫圖的技能及設(shè)計軸對稱圖形是本節(jié)課的難點。

      教學(xué)方法:動手實踐、討論。

      教學(xué)工具:課件

      教學(xué)過程:

      一、 先復(fù)習(xí)軸對稱圖形的定義,以及軸對稱的相關(guān)的性質(zhì):

      1.如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相________,那么這個圖形叫做________________,這條直線叫做_____________

      2.軸對稱的三個重要性質(zhì)______________________________________________

      _____________________________________________________________________

      二、提出問題:

      二、探索練習(xí):

      1. 提出問題:

      如圖:給出了一個圖案的一半,其中的虛線是這個圖案的對稱軸。

      你能畫出這個圖案的另一半嗎?

      吸引學(xué)生讓學(xué)生有一種解決難點的想法。

      2.分析問題:

      分析圖案:這個圖案是由重要六個點構(gòu)成的.,要將這個圖案的另一半畫出來,根據(jù)軸對稱的性質(zhì)只要畫出這個圖案中六個點的對應(yīng)點即可

      問題轉(zhuǎn)化成:已知對稱軸和一個點A,要畫出點A關(guān)于L的對應(yīng)點 ,可采用如下方法:`

      在學(xué)生掌握已知一個點畫對應(yīng)點的基礎(chǔ)上,解決上述給出的問題,使學(xué)生有一條較明確的思路。

      三、對所學(xué)內(nèi)容進行鞏固練習(xí):

      1. 如圖,直線L是一個軸對稱圖形的對稱軸,畫出這個軸對稱圖形的另一半。

      2. 試畫出與線段AB關(guān)于直線L的線段

      3.如圖,已知 直線MN,畫出以MN為對稱軸 的軸對稱圖形

      小 結(jié): 本節(jié)課學(xué)習(xí)了已知對稱軸L和一個點如何畫出它的對應(yīng)點,以及如何補全圖形,并利用軸對稱的性質(zhì)知道如何設(shè)計軸對稱圖形。

      教學(xué)后記:學(xué)生對這節(jié)課的內(nèi)容掌握比較好,但對于利用軸對稱的性質(zhì)來設(shè)計圖形覺得難度比較大。因本節(jié)課內(nèi)容較有趣,許多學(xué)生上課積極性較高

    八年級數(shù)學(xué)教案 篇8

      一、教學(xué)目標(biāo)

      (一)、知識與技能:

      (1)使學(xué)生了解因式分解的意義,理解因式分解的概念。

      (2)認(rèn)識因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運用這種關(guān)系尋求因式分解的方法。

      (二)、過程與方法:

      (1)由學(xué)生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進一步發(fā)展學(xué)生的類比思想。

      (2)由整式乘法的逆運算過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。

      (3)通過對分解因式與整式的乘法的觀察與比較,培養(yǎng)學(xué)生的分析問題能力與綜合應(yīng)用能力。

      (三)、情感態(tài)度與價值觀:讓學(xué)生初步感受對立統(tǒng)一的辨證觀點以及實事求是的科學(xué)態(tài)度。

      二、教學(xué)重點和難點

      重點:因式分解的'概念及提公因式法。

      難點:正確找出多項式各項的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。

      三、教學(xué)過程

      教學(xué)環(huán)節(jié):

      活動1:復(fù)習(xí)引入

      看誰算得快:用簡便方法計算:

      (1)7/9 ×13-7/9 ×6+7/9 ×2= ;

      (2)-2.67×132+25×2.67+7×2.67= ;

      (3)992–1= 。

      設(shè)計意圖:

      如果說學(xué)生對因式分解還相當(dāng)陌生的話,相信學(xué)生對用簡便方法進行計算應(yīng)該相當(dāng)熟悉.引入這一步的目的旨在讓學(xué)生通過回顧用簡便方法計算——因數(shù)分解這一特殊算法,使學(xué)生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環(huán)節(jié)設(shè)計的計算992–1的值是為了降低下一環(huán)節(jié)的難度,為下一環(huán)節(jié)的理解搭一個臺階.

      注意事項:學(xué)生對于(1)(2)兩小題逆向利用乘法的分配律進行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級所學(xué)過的整式的乘法運算中的平方差公式,幫助他們順利地逆向運用平方差公式。

      活動2:導(dǎo)入課題

      P165的探究(略);

      2. 看誰想得快:993–99能被哪些數(shù)整除?你是怎么得出來的?

      設(shè)計意圖:

      引導(dǎo)學(xué)生把這個式子分解成幾個數(shù)的積的形式,繼續(xù)強化學(xué)生對因數(shù)分解的理解,為學(xué)生類比因式分解提供必要的精神準(zhǔn)備。

      活動3:探究新知

      看誰算得準(zhǔn):

      計算下列式子:

      (1)3x(x-1)= ;

      (2)(a+b+c)= ;

      (3)(+4)(-4)= ;

      (4)(-3)2= ;

      (5)a(a+1)(a-1)= ;

      根據(jù)上面的算式填空:

      (1)a+b+c= ;

      (2)3x2-3x= ;

      (3)2-16= ;

      (4)a3-a= ;

      (5)2-6+9= 。

      在第一組的整式乘法的計算上,學(xué)生通過對第一組式子的觀察得出第二組式子的結(jié)果,然后通過對這兩組式子的結(jié)果的比較,使學(xué)生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。

      活動4:歸納、得出新知

      比較以下兩種運算的聯(lián)系與區(qū)別:

      a(a+1)(a-1)= a3-a

      a3-a= a(a+1)(a-1)

      在第三環(huán)節(jié)的運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?

    【八年級數(shù)學(xué)教案】相關(guān)文章:

    八年級的數(shù)學(xué)教案12-14

    八年級數(shù)學(xué)教案06-18

    八年級上冊人教版數(shù)學(xué)教案02-27

    八年級數(shù)學(xué)教案【熱門】12-03

    【精】八年級數(shù)學(xué)教案12-04

    八年級數(shù)學(xué)教案【精】12-04

    【薦】八年級數(shù)學(xué)教案12-03

    八年級上冊數(shù)學(xué)教案11-09

    初中八年級數(shù)學(xué)教案11-03

    八年級數(shù)學(xué)教案【熱】11-29

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      一级成年人电影在线观看 | 天天躁夜夜躁狠狠中文 | 日本中文字幕一区在线 | 亚洲国产中文精品高清在线 | 在线免费午夜国产网站 | 亚洲综合一区自偷自拍 |