1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>八年級數學教案>八年級數學教案

    八年級數學教案

    時間:2022-09-07 09:44:07 八年級數學教案 我要投稿

    關于八年級數學教案范文錦集7篇

      在教學工作者實際的教學活動中,就難以避免地要準備教案,教案是備課向課堂教學轉化的關節點。那么應當如何寫教案呢?以下是小編為大家整理的八年級數學教案7篇,歡迎閱讀與收藏。

    關于八年級數學教案范文錦集7篇

    八年級數學教案 篇1

       一、學習目標及重、難點:

      1、了解方差的定義和計算公式。

      2、理解方差概念的產生和形成的過程。

      3、會用方差計算公式來比較兩組數據的波動大小。

      重點:方差產生的必要性和應用方差公式解決實際問題。

      難點:理解方差公式

      二、自主學習:

      (一)知識我先懂:

      方差:設有n個數據 ,各數據與它們的平均數的差的平方分別是

      我們用它們的平均數,表示這組數據的方差:即用

      來表示。

      給力小貼士:方差越小說明這組數據越 。波動性越 。

      (二)自主檢測小練習:

      1、已知一組數據為2、0、-1、3、-4,則這組數據的.方差為 。

      2、甲、乙兩組數據如下:

      甲組:10 9 11 8 12 13 10 7;

      乙組:7 8 9 10 11 12 11 12.

      分別計算出這兩組數據的極差和方差,并說明哪一組數據波動較小.

      三、新課講解:

      引例:問題: 從甲、乙兩種農作物中各抽取10株苗,分別測得它的苗高如下:(單位:cm)

      甲:9、10、 10、13、7、13、10、8、11、8;

      乙:8、13、12、11、10、12、7、7、10、10;

      問:(1)哪種農作物的苗長的比較高(我們可以計算它們的平均數: = )

      (2)哪種農作物的苗長得比較整齊?(我們可以計算它們的極差,你發現了 )

      歸納: 方差:設有n個數據 ,各數據與它們的平均數的差的平方分別是

      我們用它們的平均數,表示這組數據的方差:即用 來表示。

      (一)例題講解:

      例1、 段巍和金志強兩人參加體育項目訓練,近期的5次測試成績如下表所示,誰的成績比較穩定?為什么?、

      測試次數 第1次 第2次 第3次 第4次 第5次

      段巍 13 14 13 12 13

      金志強 10 13 16 14 12

      給力提示:先求平均數,在利用公式求解方差。

      (二)小試身手

      1、.甲、乙兩名學生在相同的條件下各射靶10次,命中的環數如下:

      甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7

      經過計算,兩人射擊環數的平均數是 ,但S = ,S = ,則S S ,所以確定

      去參加比賽。

      1、求下列數據的眾數:

      (1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2

      2、8年級一班46個同學中,13歲的有5人,14歲的有20人,15歲的15人,16歲的6人。8年級一班學生年齡的平均數,中位數,眾數分別是多少?

      四、課堂小結

      方差公式:

      給力提示:方差越小說明這組數據越 。波動性越 。

      每課一首詩:求方差,有公式;先平均,再求差;

      求平方,再平均;所得數,是方差。

      五、課堂檢測:

      1、小爽和小兵在10次百米跑步練習中成績如表所示:(單位:秒)

      小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

      小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

      如果根據這幾次成績選拔一人參加比賽,你會選誰呢?

      六、課后作業:必做題:教材141頁 練習1、2 選做題:練習冊對應部分習題

      七、學習小札記:

      寫下你的收獲,交流你的經驗,分享你的成果,你會感到無比的快樂!

    八年級數學教案 篇2

      教學目標:

      1. 掌握三角形內角和定理及其推論;

      2. 弄清三角形按角的分類, 會按角的大小對三角形進行分類;

      3.通過對三角形分類的學習,使學生了解數學分類的基本思想,并會用方程思想去解決一些圖形中求角的問題。

      4.通過三角形內角和定理的證明,提高學生的邏輯思維能力,同時培養學生嚴謹的科學態

      5. 通過對定理及推論的分析與討論,發展學生的求同和求異的思維能力,培養學生聯系與轉化的辯證思想。

      教學重點:

      三角形內角和定理及其推論。

      教學難點:

      三角形內角和定理的證明

      教學用具:

      直尺、微機

      教學方法:

      互動式,談話法

      教學過程:

      1、創設情境,自然引入

      把問題作為教學的出發點,創設問題情境,激發學生學習興趣和求知欲,為發現新知識創造一個最佳的心理和認知環境。

      問題1 三角形三條邊的關系我們已經明確了,而且利用上述關系解決了一些幾何問題,那么三角形的三個內角有何關系呢?

      問題2 你能用幾何推理來論證得到的關系嗎?

      對于問題1絕大多數學生都能回答出來(小學學過的),問題2學生會感到困難,因為這個證明需添加輔助線,這是同學們第一次接觸的新知識―――“輔助線 ”。教師可以趁機告訴學生這節課將要學習的一個重要內容(板書課題)

      新課引入的好壞在某種程度上關系到課堂教學的成敗,本節課從舊知識切入,特別是從知識體系考慮引入,“學習了三角形邊的關系,自然想到三角形角的關系怎樣呢?”使學生感覺本節課學習的內容自然合理。

      2、設問質疑,探究嘗試

      (1)求證:三角形三個內角的和等于

      讓學生剪一個三角形,并把它的三個內角分別剪下來,再拼成一個平面圖形。這里教師設計了電腦動畫顯示具體情景。然后,圍繞問題設計以下幾個問題讓學生思考,教師進行學法指導。

      問題1 觀察:三個內角拼成了一個

      什么角?問題2 此實驗給我們一個什么啟示?

      (把三角形的三個內角之和轉化為一個平角)

      問題3 由圖中AB與CD的關系,啟發我們畫一條什么樣的線,作為解決問題的橋梁?

      其中問題2是解決本題的關鍵,教師可引導學生分析。對于問題3學生經過思考會畫出此線的。這里教師要重點講解“輔助線”的有關知識。比如:為什么要畫這條線?畫這條線有什么作用?要讓學生知道“輔助線”是以后解決幾何問題有力的工具。它的作用在于充分利用條件;恰當轉化條件;恰當轉化結論;充分提示題目中各元素間的一些不明顯的關系,達到化難為易解決問題的目的。

      (2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?

      學生回答后,電腦顯示圖表。

      (3)三角形中三個內角之和為定值

      ,那么對三角形的'其它角還有哪些特殊的關系呢?問題1 直角三角形中,直角與其它兩個銳角有何關系?

      問題2 三角形一個外角與它不相鄰的兩個內角有何關系?

      問題3 三角形一個外角與其中的一個不相鄰內角有何關系?

      其中問題1學生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學生經過分析討論,得出結論并書寫證明過程。

      這樣安排的目的有三點:第一,理解定理之后的延伸――推論,培養學生良好的學習習慣。第二,模仿定理的證明書寫格式,加強學生書寫能力。第三,提高學生靈活運用所學知識的能力。

      3、三角形三個內角關系的定理及推論

      引導學生分析并嚴格書寫解題過程

    八年級數學教案 篇3

      總課時:7課時 使用人:

      備課時間:第八周 上課時間:第十周

      第4課時:5、2平面直角坐標系(2)

      教學目標

      知識與技能

      1.在給定的直角坐標系下,會根據坐標描出點的位置;

      2.通過找點、連線、觀察,確定圖形的大致形狀的問題,能進一步掌握平面直角坐標系的基本內容。

      過程與方法

      1.經歷畫坐標 系、描點、連線、看圖以及由點找坐標等過程,發展學生的數形結合思想,培養學生的合作 交流能力;

      2.通過由點確定坐標到根據坐標描點的轉化過程,進一步培養學生的轉化意識。

      情感態度與價值觀

      通過生動有趣的教學活動,發展學生的合情推理能力和豐富的情感、態度,提高學生學習數學的興趣。

      教學重點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。

      教學難點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。

      教學過程

      第一環節 感 受生活中的情境,導入新課(10分鐘,學生自己繪圖找點)

      在上節課中我們學習了平面直角坐標系的定義,以及橫軸、縱軸、點 的坐標的定義,練習了在平面直角坐標系中由點找坐標,還探討了橫坐標或縱坐標相同的點的連線與坐標軸的關系,坐標軸上點的坐標有什么特點。

      練習:指出下列 各點以及所在象限或坐標軸:

      A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(0, ), G(0,0) (抽取學生作答)

      由點找坐標是已知點在直角坐標 系中的位置,根據這點在方格紙上對應的x軸、y軸上的數字寫出它的坐標,反過來,已知坐標,讓 你在直角坐標系中找點,你能找到嗎?這就是本節課的內容。

      第二環節 分類討論,探索新知.(15分鐘,小組討論,全班交流)

      1.請同學們拿出準備好的方格紙,自己建立平面直角坐標系,然后按照我給出的坐標,在直角坐標系中描點,并依次用線段連接起來。

      (-9,3),(-9,0),(-3,0),( -3,3)

      ( 學生操作完畢后)

      2.(出示投影)還是在這個平面直角坐標系中,描出下列各組內的點用線段依次連接起來。

      (1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);

      (2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);

      (3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);

      (4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。

      觀察所得的圖形,你覺得它像什么?

      分成4人小組,大家合作在剛才建立的平面直角坐標系中(選出小組中最好的)添畫。各人分工,每人畫一小題。看哪個小組做得最快?

      (出示學生的作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺得它像什么?

      這個圖形像一棟房子旁邊還有一棵大樹。

      3.做一做

      (出示投影)

      在書上已建立的`直角坐標系畫,要求每位同學獨立完成。

      (學生描點、畫圖)

      (拿出一位做對的學生的作品投影)

      你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?

      (像貓臉)

      第三環節 學有所用.(10分鐘,先獨立完成,后小組討論)

      (補充)1.在直角坐標系中描出下列各點,并將各組內的點用線段順次連接起來。

      (1)(0,3),(-4,0),(0,-3),(4,0),(0,3);

      (2)(0,0),(4,-3),(8,0),(4,3),(0,0);

      (3)(2,0)

      觀察所得的圖形,你覺得它像什么?(像移動的菱形)

      2.在直角坐標系中,設法找到若干個點使得連接各點所得的封閉圖形是如下圖所示的十字。

      先獨立完成,然后小組討論是否正確。

      第四環節 感悟與收獲(5分鐘,學生總結,全班交流)

      本節課在復習上節課的基礎上,通過找點、連 線、觀察,確定圖形的大致形狀,進一步掌握平面直角坐標系的基本內容。

      在例題和練習中,我們畫出了不少美麗的圖形,自己設計一些圖形,并把圖形放在直角坐標系下,寫出點的坐標。

      第五環節 布置作業

      習題5、4

      A組(優等生)1、2、3

      B組(中等生)1、2

      C組(后三分之一生)1、2

    八年級數學教案 篇4

      教學目標

      一、教學知識點:

      1.旋轉的定義.2.旋轉的基本性質.

      二、能力訓練要求:

      1.通過具體實例認識旋轉,理解旋轉的基本涵義.

      2.探索旋轉的基本性質,理解旋轉前后兩個圖形對應點到旋轉中心的距離相等,對應點與旋轉中心的連線所成的角彼此相等的性質.

      三、情感與價值觀要求

      1.經歷對生活中與旋轉現象有關的圖形進行觀察、分析、欣賞以及動手操作、畫圖等過程,掌握有關畫圖的操作技能,發展初步的審美能力,增強對圖形欣賞的意識.

      2.通過學習使學生能用數學的眼光看待生活中的有關問題,進一步發展學生的數學觀.

      教學重點:旋轉的基本性質.

      教學難點:探索旋轉的基本性質.

      教學方法:

      1、遵循學生是學習的主人的原則,在為學生創造大量實例的基礎上,引導學生自主思考、交流、討論、歸納、學習。

      2、采用多媒體課件輔助教學。

      教學過程:

      一.巧設情景問題,引入課題

      日常生活中,我們經常見到以下情景(出示圖示:鐘表、汽車方向盤、轆轤或電腦演示:鐘表指針的轉動、汽車方向盤的轉動、轆轤打水的情景). (1)上面情景中的轉動現象,有什么共同特征?(2)鐘表的指針、鐘擺在轉動過程中,其形狀、大小、位置是否發生改變?汽車方向盤的'轉動呢?

      1.在這些轉動的現象中,它們都是繞著一個點轉動的.

      2.每個物體的轉動都是向同一個方向轉動.

      3.鐘表的指針、鐘擺在轉動過程中,它的形狀、大小沒有變化,只是它的位置有所改變.

      4.汽車的方向盤在轉動過程中,同樣它的形狀、大小沒有改變,方向盤上的每點的位置所變化.同學們觀察得很仔細,我們把這樣的轉動叫旋轉(circumrotate),這節課我們就來探討生活中的旋轉.

      二.講授新課

      在數學中,如何定義旋轉呢?在平面內,將一個圖形繞著一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉(circumrotate).這個定點稱為旋轉中心,轉動的角稱為旋轉角.注意:“將一個圖形繞一個定點沿某個方向轉動一個角度”意味著圖形上的每個點同時都按相同的方式轉動相同的角度.在物體繞著一個定點轉動時,它的形狀和大小不變.因此,旋轉具有不改變圖形的大小和形狀的特征.

      議一議:(課本67頁)答:(1)旋轉中心是O點,旋轉角是∠AOD.旋轉角還可以是∠BOE.

      (2)四邊形AOBC繞O點旋轉到四邊形DOEF的位置.這時點A旋轉到點D的位置,點B旋轉到點E的位置.

      (3)可以把OA看作鐘表的指針,它OA的位置旋轉到OD的位置,指針的長短、形狀沒有變化,所以OA與OD是相等的.同樣,線段OB與OE是相等的.

      (4)因為四邊形AOBC繞O點旋轉到四邊形DOEF的位置,在旋轉的過程中,圖形上的每個點同時都按相同的方向旋轉相同的角度,所以∠AOD與∠BOE是相等的.

      (4)也可以這樣理解:因為四邊形AOBC繞O點旋轉到四邊形DOEF的位置,所以∠AOB與∠DOE是相等的,又因為∠BOD是公共角,所以,∠AOD與∠BOE是相等的.

      看上圖,四邊形DOEF是由四邊形AOBC繞O點旋轉得到的,經過旋轉,點A移動到點D的位置,點B移動到點E的位置,點C移動到點F的位置,則點A與點D、點B與點E、點C與點F就是對應點.從剛才大家得出的結論中,能否總結出旋轉的性質呢?

      答:因為O是旋轉中心,點A與點D是對應點,點B與點E是對應點,且OA=OD,OB=OE,所以可以知道:對應點與旋轉中心所連的線段的長度是相等的.

      因為點A與點D、點B與點E是對應點,且∠AOD=∠BOE,所以由此可以知道:對應點與旋轉中心的連線所成的角是互相相等的.

      由此我們得到了旋轉的基本性質:經過旋轉,圖形上的每一點都繞旋轉中心沿相同方向轉動了相同的角度.任意一對對應點與旋轉中心的連線所成的角都是旋轉角,旋轉角彼此相等.對應點到旋轉中心的距離相等.

      [例1](課本68頁例1)

      [師生共析]經演示(鐘表實物或教具)可以知道,分針是繞著表面盤的中心位置,即鐘表的軸心旋轉的,它旋轉一周時的度數是360°,一周需要60分,因此每分鐘分針所轉過的度數是6°,這樣20分時,分針逆轉的角度即可求出.

      解:(見課本68頁)

      書上68頁做一做

      三.課堂練習

      課本P69隨堂練習.

      1.解:旋轉5次得到,旋轉的角度分別等于60°、120°、180°、240°、300°.

      四.課時小結

      五.課后作業:課本P69習題3.4 1、2、3.

      六.活動與探究

      1.分析圖中的旋轉現象.過程:讓學生畫圖、找規律,也可讓他們通過剪切,找到旋轉規律.

      結果:旋轉現象為:

      整個圖形可以看做是圖形的八分之一(一組大小不等的三個“角”)繞中心位置,按照同一方向連續旋轉45°、90°、135°、180°、225°、270°、315°前后的圖形共同組成的.

      整個圖形也可以看做是圖形的四分之一(兩組相鄰的“角”)繞中心位置連續旋轉90°、180°、270°前后的圖形共同組成的.

      整個圖形還可以看做是圖形的二分之一(四組相鄰的“角”)繞中心位置旋轉180°前后的圖形共同組成的.

      2.圖中是否存在這樣的兩個三角形,其中一個是另一個通過旋轉得到的?

      過程:同樣讓學生在畫圖過程中體會圖形中每個三角形之間的關系;或讓學生仔細觀察圖形,分析圖形,找出關系.

      結果:圖中存在這樣的三角形,其中一個是另一個通過旋轉得到的.

      整個圖形可以看做圖形的四分之一(一組“樓梯”)繞中心連續旋轉90°、180°、 270°.前后的圖形共同組成的.

      整個圖形也可以看做圖形的二分之一(兩組“樓梯”)繞中心位置旋轉180°前后的圖形共同組成的.

      板書設計:

      教學反思:本節課仍然是圖形的基本變換。借助多媒體教學直觀生動形象。學生一般都能在教師的指導下掌握。也在培養學生的空間想象能力。

    八年級數學教案 篇5

      教學目標

      1、知識與技能目標

      學會觀察圖形,勇于探索圖形間的關系,培養學生的空間觀念.

      2、過程與方法

      (1)經歷一般規律的探索過程,發展學生的抽象思維能力.

      (2)在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數學建模的思想.

      3、情感態度與價值觀

      (1)通過有趣的問題提高學習數學的興趣.

      (2)在解決實際問題的過程中,體驗數學學習的實用性.

      教學重點:

    探索、發現事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題.

      教學難點:

    利用數學中的建模思想構造直角三角形,利用勾股定理及逆定理,解決實際問題.

      教學準備:

    多媒體

      教學過程:

      第一環節:創設情境,引入新課(3分鐘,學生觀察、猜想)

      情景:

      如圖:在一個圓柱石凳上,若小明在吃東西時留下了一點食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?

      第二環節:合作探究(15分鐘,學生分組合作探究)

      學生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內討論每種方案的路線計算方法,通過具體計算,總結出最短路線。讓學生發現:沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導學生體會利用數學解決實際問題的方法:建立數學模型,構圖,計算.

      學生匯總了四種方案:

      (1) (2) (3)(4)

      學生很容易算出:情形(1)中A→B的路線長為:AA’+d,情形(2)中A→B的`路線長為:AA’+πd/2所以情形(1)的路線比情形(2)要短.

      學生在情形(3)和(4)的比較中出現困難,但還是有學生提出用剪刀沿母線AA’剪開圓柱得到矩形,前三種情形A→B是折線,而情形(4)是線段,故根據兩點之間線段最短可判斷(4)最短.

      如圖:

      (1)中A→B的路線長為:AA’+d;

      (2)中A→B的路線長為:AA’+A’B>AB;

      (3)中A→B的路線長為:AO+OB>AB;

      (4)中A→B的路線長為:AB.

      得出結論:利用展開圖中兩點之間,線段最短解決問題.在這個環節中,可讓學生沿母線剪開圓柱體,具體觀察.接下來后提問:怎樣計算AB?

      在Rt△AA′B中,利用勾股定理可得,若已知圓柱體高為12c,底面半徑為3c,π取3,則.

      第三環節:做一做(7分鐘,學生合作探究)

      教材23頁

      李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直于底邊AB,但他隨身只帶了卷尺,

      (1)你能替他想辦法完成任務嗎?

      (2)李叔叔量得AD長是30厘米,AB長是40厘米,BD長是50厘米,AD邊垂直于AB邊嗎?為什么?

      (3)小明隨身只有一個長度為20厘米的刻度尺,他能有辦法檢驗AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?

      第四環節:鞏固練習(10分鐘,學生獨立完成)

      1.甲、乙兩位探險者到沙漠進行探險,某日早晨8:00甲先出發,他以6/h的速度向正東行走,1小時后乙出發,他以5/h的速度向正北行走.上午10:00, 甲、乙兩人相距多遠?

      2.如圖,臺階A處的螞蟻要爬到B處搬運食物,它怎么走最近?并求出最近距離.

      3.有一個高為1.5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分為0.5米,問這根鐵棒有多長?

      第五環節 課堂小結(3分鐘,師生問答)

      內容:

      1、如何利用勾股定理及逆定理解決最短路程問題?

      第六 環節:布置作業(2分鐘,學生分別記錄)

      內容:

      作業:1.課本習題1.5第1,2,3題.

      要求:A組(學優生):1、2、3

      B組(中等生):1、2

      C組(后三分之一生):1

      板書設計:

      教學反思:

    八年級數學教案 篇6

      教學目標:

      1、掌握一次函數解析式的特點及意義

      2、知道一次函數與正比例函數的關系

      3、理解一次函數圖象特點與解析式的聯系規律

      教學重點:

      1、 一次函數解析式特點

      2、 一次函數圖象特征與解析式的聯系規律

      教學難點:

      1、一次函數與正比例函數關系

      2、根據已知信息寫出一次函數的表達式。

      教學過程:

      Ⅰ.提出問題,創設情境

      問題1 小明暑假第一次去北京.汽車駛上A地的高速公路后,小明觀察里程碑,發現汽車的平均車速是95千米/小時.已知A地直達北京的高速公路全程為570千米,小明想知道汽車從A地駛出后,距北京的路程和汽車在高速公路上行駛的時間有什么關系,以便根據時間估計自己和北京的距離.

      分析 我們知道汽車距北京的路程隨著行車時間而變化,要想找出這兩個變化著的量的關系,并據此得出相應的值,顯然,應該探求這兩個變量的變化規律.為此,我們設汽車在高速公路上行駛時間為t小時,汽車距北京的路程為s千米,根據題意,s和t的函數關系式是

      s=570-95t.

      說明 找出問題中的變量并用字母表示是探求函數關系的第一步,這里的s、t是兩個變量,s是t的函數,t是自變量,s是因變量.

      問題2 小張準備將平時的零用錢節約一些儲存起來.他已存有50元,從現在起每個月節存12元.試寫出小張的存款與從現在開始的月份之間的函數關系式.

      分析 我們設從現在開始的月份數為x,小張的存款數為y元,得到所求的函數關系式為:y=50+12x.

      問題3 以上問題1和問題2表示的這兩個函數有什么共同點?

      Ⅱ.導入新課

      上面的兩個函數關系式都是左邊是因變量y,右邊是含自變量x的代數式。并且自變量和因變量的指數都是一次。若兩個變量x,y間的關系式可以表示成y=kx+b(k,b為常數k≠0)的形式,則稱y是x的一次函數(x為自變量,y為因變量)。特別地,當b=0時,稱

      y是x的正比例函數。

      例1:下列函數中,y是x的一次函數的是( )

      ①y=x-6;②y=2x;③y=;④y=7-x x8

      A、①②③B、①③④ C、①②③④ D、②③④

      例2 下列函數關系中,哪些屬于一次函數,其中哪些又屬于正比例函數?

      (1)面積為10cm2的三角形的底a(cm)與這邊上的高h(cm);

      (2)長為8(cm)的平行四邊形的周長L(cm)與寬b(cm);

      (3)食堂原有煤120噸,每天要用去5噸,x天后還剩下煤y噸;

      (4)汽車每小時行40千米,行駛的路程s(千米)和時間t(小時).

      (5)汽車以60千米/時的速度勻速行駛,行駛路程中y(千米)與行駛時間x(時)之間的關系式;

      (6)圓的面積y(厘米2)與它的半徑x(厘米)之間的關系;

      (7)一棵樹現在高50厘米,每個月長高2厘米,x月后這棵樹的高度為y(厘米) 分析 確定函數是否為一次函數或正比例函數,就是看它們的解析式經過整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此題必須先寫出函數解析式后解答. 解 (1)a?20,不是一次函數. h

      (2)L=2b+16,L是b的一次函數.

      (3)y=150-5x,y是x的一次函數.

      (4)s=40t,s既是t的一次函數又是正比例函數.

      (5)y=60x,y是x的一次函數,也是x的正比例函數;

      (6)y=πx2,y不是x的正比例函數,也不是x的一次函數;

      (7)y=50+2x,y是x的一次函數,但不是x的正比例函數

      例3 已知函數y=(k-2)x+2k+1,若它是正比例函數,求k的值.若它是一次函數,求k的.值.

      分析 根據一次函數和正比例函數的定義,易求得k的值.

      解 若y=(k-2)x+2k+1是正比例函數,則2k+1=0,即k=?

      若y=(k-2)x+2k+1是一次函數,則k-2≠0,即k≠2.

      例4 已知y與x-3成正比例,當x=4時,y=3.

      (1)寫出y與x之間的函數關系式;

      (2)y與x之間是什么函數關系;

      (3)求x=2.5時,y的值.

      解 (1)因為 y與x-3成正比例,所以y=k(x-3).

      又因為x=4時,y=3,所以3= k(4-3),解得k=3,

      所以y=3(x-3)=3x-9.

      (2) y是x的一次函數.

      (3)當x=2.5時,y=3×2.5=7.5.

      1. 2

      例5 已知A、B兩地相距30千米,B、C兩地相距48千米.某人騎自行車以每小時12千米的速度從A地出發,經過B地到達C地.設此人騎行時間為x(時),離B地距離為y(千米).

      (1)當此人在A、B兩地之間時,求y與x的函數關系及自變量x取值范圍.

      (2)當此人在B、C兩地之間時,求y與x的函數關系及自變量x的取值范圍.

      分析 (1)當此人在A、B兩地之間時,離B地距離y為A、B兩地的距離與某人所走的路程的差.

      (2)當此人在B、C兩地之間時,離B地距離y為某人所走的路程與A、B兩地的距離的差.

      解 (1) y=30-12x.(0≤x≤2.5)

      (2) y=12x-30.(2.5≤x≤6.5)

      例6 某油庫有一沒儲油的儲油罐,在開始的8分鐘時間內,只開進油管,不開出油管,油罐的進油至24噸后,將進油管和出油管同時打開16分鐘,油罐中的油從24噸增至40噸.隨后又關閉進油管,只開出油管,直至將油罐內的油放完.假設在單位時間內進油管與出油管的流量分別保持不變.寫出這段時間內油罐的儲油量y(噸)與進出油時間x(分)的函數式及相應的x取值范圍.

      分析 因為在只打開進油管的8分鐘內、后又打開進油管和出油管的16分鐘和最后的只開出油管的三個階級中,儲油罐的儲油量與進出油時間的函數關系式是不同的,所以此題因分三個時間段來考慮.但在這三個階段中,兩變量之間均為一次函數關系.

      解 在第一階段:y=3x(0≤x≤8);

      在第二階段:y=16+x(8≤x≤16);

      在第三階段:y=-2x+88(24≤x≤44).

      Ⅲ.隨堂練習

      根據上表寫出y與x之間的關系式是:________________,y是否為x一的次函數?y是否為x有正比例函數?

      2、為了加強公民的節水意識,合理利用水資源,某城市規定用水收費標準如下:每戶每月用水量不超過6米3時,水費按0.6元/米3收費;每戶每月用水量超過6米3時,超過部分按1元/米3收費。設每戶每月用水量為x米3,應繳水費y元。(1)寫出每月用水量不

      超過6米3和超過6米3時,y與x之間的函數關系式,并判斷它們是否為一次函數。(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費。[①y=0.6x,y=x-2.4,y是x的一次函數。②y=8-2.4=5.6(元)]

      Ⅳ.課時小結

      1、一次函數、正比例函數的概念及關系。

      2、能根據已知簡單信息,寫出一次函數的表達式。

      Ⅴ.課后作業

      1、已知y-3與x成正比例,且x=2時,y=7

      (1)寫出y與x之間的函數關系.

      (2)y與x之間是什么函數關系.

      (3)計算y=-4時x的值.

      2.甲市到乙市的包裹郵資為每千克0.9元,每件另加手續費0.2元,求總郵資y(元)與包裹重量x(千克)之間的函數解析式,并計算5千克重的包裹的郵資.

      3.倉庫內原有粉筆400盒.如果每個星期領出36盒,求倉庫內余下的粉筆盒數Q與星期數t之間的函數關系.

      4.今年植樹節,同學們種的樹苗高約1.80米.據介紹,這種樹苗在10年內平均每年長高0.35米.求樹高與年數之間的函數關系式.并算一算4年后同學們中學畢業時這些樹約有多高.

      5.按照我國稅法規定:個人月收入不超過800元,免交個人所得稅.超過800元不超過1300元部分需繳納5%的個人所得稅.試寫出月收入在800元到1300元之間的人應繳納的稅金y(元)和月收入x(元)之間的函數關系式.

    八年級數學教案 篇7

      課題:三角形全等的判定(三)

      教學目標:

      1、知識目標:

      (1)掌握已知三邊畫三角形的方法;

      (2)掌握邊邊邊公理,能用邊邊邊公理證明兩個三角形全等;

      (3)會添加較明顯的輔助線.

      2、能力目標:

      (1)通過尺規作圖使學生得到技能的訓練;

      (2)通過公理的初步應用,初步培養學生的邏輯推理能力.

      3、情感目標:

      (1)在公理的形成過程中滲透:實驗、觀察、歸納;

      (2)通過變式訓練,培養學生“舉一反三”的學習習慣.

      教學重點:SSS公理、靈活地應用學過的各種判定方法判定三角形全等。

      教學難點:如何根據題目條件和求證的結論,靈活地選擇四種判定方法中最適當的方法判定兩個三角形全等。

      教學用具:直尺,微機

      教學方法:自學輔導

      教學過程:

      1、新課引入

      投影顯示

      問題:有一塊三角形玻璃窗戶破碎了,要去配一塊新的',你最少要對窗框測量哪幾個數據?如果你手頭沒有測量角度的儀器,只有尺子,你能保證新配的玻璃恰好不大不小嗎?

      這個問題讓學生議論后回答,他們的答案或許只是一種感覺。于是教師要引導學生,抓住問題的本質:三角形的三個元素――三條邊。

      2、公理的獲得

      問:通過上面問題的分析,滿足什么條件的兩個三角形全等?

      讓學生粗略地概括出邊邊邊的公理。然后和學生一起畫圖做實驗,根據三角形全等定義對公理進行驗證。(這里用尺規畫圖法)

      公理:有三邊對應相等的兩個三角形全等。

      應用格式: (略)

      強調說明:

      (1)、格式要求:先指出在哪兩個三角形中證全等;再按公理順序列出三個條件,并用括號把它們括在一起;寫出結論。

      (2)、在應用時,怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時圖形中隱含的(如公共邊)

      (3)、此公理與前面學過的公理區別與聯系

      (4)、三角形的穩定性:演示三角形的穩定性與四邊形的不穩定性。在演示中,其實可以去掉組成三角形的一根小木條,以顯示三角形條件不可減少,這也為下面總結“三角形全等需要有3全獨立的條件”做好了準備,進行了溝通。

      (5)說明AAA與SSA不能判定三角形全等。

      3、公理的應用

      (1) 講解例1。學生分析完成,教師注重完成后的點評。

      例1 如圖△ABC是一個鋼架,AB=ACAD是連接點A與BC中點D的支架

      求證:AD⊥BC

      分析:(設問程序)

      (1)要證AD⊥BC只要證什么?

      (2)要證∠1=

      只要證什么?(3)要證∠1=∠2只要證什么?

      (4)△ABD和△ACD全等的條件具備嗎?依據是什么?

      證明:(略)

    【八年級數學教案】相關文章:

    八年級的數學教案12-14

    八年級數學教案06-18

    八年級的數學教案15篇12-14

    【熱】八年級數學教案12-07

    初中八年級數學教案11-03

    【薦】八年級數學教案12-03

    【精】八年級數學教案12-04

    八年級數學教案【精】12-04

    八年級數學教案【熱門】12-03

    八年級數學教案【薦】12-06

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      夂久精品国产久精国产 | 亚洲国产精品嫩草影院 | 日本人真婬视频一区二区三区 | 亚洲综合色自拍一区 | 亚洲色婷婷5月 | 久久99久久99久久综合 |