1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>八年級數學教案>八年級數學教案

    八年級數學教案

    時間:2022-09-03 22:30:22 八年級數學教案 我要投稿

    八年級數學教案模板錦集10篇

      在教學工作者開展教學活動前,時常需要編寫教案,教案是實施教學的主要依據,有著至關重要的作用。那么寫教案需要注意哪些問題呢?以下是小編幫大家整理的八年級數學教案10篇,希望能夠幫助到大家。

    八年級數學教案模板錦集10篇

    八年級數學教案 篇1

      一、教學目標:

      1、知識目標:能熟練掌握簡單圖形的移動規律,能按要求作出簡單平面圖形平移后的圖形,能夠探索圖形之間的平移關系;

      2、能力目標:

      ①,在實踐操作過程中,逐步探索圖形之間的平移關系;

      ②,對組合圖形要找到一個或者幾個“基本圖案”,并能通過對“基本圖案”的'平移,復制所求的圖形;

      3、情感目標:經歷對圖形進行觀察、分析、欣賞和動手操作、畫圖等過程,發展初步的審美能力,增強對圖形欣賞的意識。

      二、重點與難點:

      重點:圖形連續變化的特點;

      難點:圖形的劃分。

      三、教學方法:

      講練結合。使用多媒體課件輔助教學。

      四、教具準備:

      多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。

      五、教學設計:

      創設情景,探究新知:

      (演示課件):教材上小狗的圖案。提問:

      (1)這個圖案有什么特點?

      (2)它可以通過什么“基本圖案”,經過怎樣的平移而形成?

      (3)在平移過程中,“基本圖案”的大小、形狀、位置是否發生了變化?

      小組討論,派代表回答。(答案可以多種)

      讓學生充分討論,歸納總結,老師給予適當的指導,并對每種答案都要肯定。

      看磁性黑板,展示教材64頁圖3-9,提問:左圖是一個正六邊形,它經過怎樣的平移能得到右圖?誰到黑板做做看?

      小組討論,派代表到臺上給大家講解。

      氣氛要熱烈,充分調動學生的積極性,發掘他們的想象力。

      暢所欲言,互相補充。

      課堂小結:

      在教師的引導下學生總結本節課的主要內容,并啟發學生在我們周圍尋找平移的例子。

      課堂練習:

      小組討論。

      小組討論完成。

      例子一定要和大家接觸緊密、典型。

      答案不惟一,對于每種答案,教師都要給予充分的肯定。

      六、教學反思:

      本節的內容并不是很復雜,借助多媒體進行直觀、形象,內容貼近生活,學生興致較高,課堂氣氛活躍,參與意識較強,學生一般都能在教師的指導下掌握。教學過程中滲透數學美學思想,促進學生綜合素質的提高。

    八年級數學教案 篇2

      教學建議

      1、平行線等分線段定理

      定理:如果一組平行線在一條直線上截得的線段相等,那么在其他需直線上截得的線段也相等。

      注意事項:定理中的平行線組是指每相鄰的兩條距離都相等的特殊的平行線組;它是由三條或三條以上的平行線組成。

      定理的作用:可以用來證明同一直線上的線段相等;可以等分線段。

      2、平行線等分線段定理的推論

      推論1:經過梯形一腰的中點與底平行的直線,必平分另一腰。

      推論2:經過三角形一邊的中點與另一邊平行的直線,必平分第三邊。

      記憶方法:“中點”+“平行”得“中點”。

      推論的用途:(1)平分已知線段;(2)證明線段的.倍分。

      重難點分析

      本節的重點是平行線等分線段定理。因為它不僅是推證三角形、梯形中位線定理的基礎,而且是第五章中“平行線分線段成比例定理”的基礎。

      本節的難點也是平行線等分線段定理。由于學生初次接觸到平行線等分線段定理,在認識和理解上有一定的難度,在加上平行線等分線段定理的兩個推論以及各種變式,學生難免會有應接不暇的感覺,往往會有感覺新鮮有趣但掌握不深的情況發生,教師在教學中要加以注意。

      教法建議

      平行線等分線段定理的引入

      生活中有許多平行線等分線段定理的例子,并不陌生,平行線等分線段定理的引入可從下面幾個角度考慮:

      ①從生活實例引入,如刻度尺、作業本、柵欄、等等;

      ②可用問題式引入,開始時設計一系列與平行線等分線段定理概念相關的問題由學生進行思考、研究,然后給出平行線等分線段定理和推論。

      教學設計示例

      一、教學目標

      1、使學生掌握平行線等分線段定理及推論。

      2、能夠利用平行線等分線段定理任意等分一條已知線段,進一步培養學生的作圖能力。

      3、通過定理的變式圖形,進一步提高學生分析問題和解決問題的能力。

      4、通過本節學習,體會圖形語言和符號語言的和諧美

      二、教法設計

      學生觀察發現、討論研究,教師引導分析

      三、重點、難點

      1、教學重點:平行線等分線段定理

      2、教學難點:平行線等分線段定理

      四、課時安排

      l課時

      五、教具學具

      計算機、投影儀、膠片、常用畫圖工具

      六、師生互動活動設計

      教師復習引入,學生畫圖探索;師生共同歸納結論;教師示范作圖,學生板演練習

      七、教學步驟

      【復習提問】

      1、什么叫平行線?平行線有什么性質。

      2、什么叫平行四邊形?平行四邊形有什么性質?

      【引入新課】

      由學生動手做一實驗:每個同學拿一張橫格紙,首先觀察橫線之間有什么關系?(橫線是互相平等的,并且它們之間的距離是相等的),然后在橫格紙上畫一條垂直于橫線的直線 ,看看這條直線被相鄰橫線截成的各線段有什么關系?(相等,為什么?)這時在橫格紙上再任畫一條與橫線相交的直線 ,測量它被相鄰橫線截得的線段是否也相等?

      (引導學生把做實驗的條件和得到的結論寫成一個命題,教師總結,由此得到平行線等分線段定理)

      平行線等分線段定理:如果一組平行線在一條直線上掛得的線段相等,那么在其他直線上截得的線段也相等。

      注意:定理中的“一組平行線”指的是一組具有特殊條件的平行線,即每相鄰兩條平行線間的距離都相等的特殊平行線組,這一點必須使學生明確。

      下面我們以三條平行線為例來證明這個定理(由學生口述已知,求證)。

      已知:如圖,直線 , 。

      求證: 。

      分析1:如圖把已知相等的線段平移,與要求證的兩條線段組成三角形(也可應用平行線間的平行線段相等得 ),通過全等三角形性質,即可得到要證的結論。

      (引導學生找出另一種證法)

      分析2:要證的兩條線段分別是梯形的腰,我們借助于前面常用的輔助線,把梯形轉化為平行四邊形和三角形,然后再利用這些熟悉的知識即可證得 。

      證明:過 點作 分別交 、 于點 、 ,得 和 ,如圖。

      ∴

      ∵ ,

      ∴

      又∵ , ,

      ∴

      ∴

      為使學生對定理加深理解和掌握,把知識學活,可讓學生認識幾種定理的變式圖形,如圖(用計算機動態演示)。

      引導學生觀察下圖,在梯形 中, , ,則可得到 ,由此得出推論 1。

      推論1:經過梯形一腰的中點與底平行的直線,必平分另一腰。

      再引導學生觀察下圖,在 中, , ,則可得到 ,由此得出推論2。

      推論2:經過三角形一邊的中點與另一邊平行的直線必平分第三邊。

      注意:推論1和推論2也都是很重要的定理,在今后的論證和計算中經常用到,因此,要求學生必須掌握好。

      接下來講如何利用平行線等分線段定理來任意等分一條線段。

      例 已知:如圖,線段 。

      求作:線段 的五等分點。

      作法:①作射線 。

      ②在射線 上以任意長順次截取 。

      ③連結 。

      ④過點 。 、 、 分別作 的平行線 、 、 、 ,分別交 于點 、 、 、 。

      、 、 、 就是所求的五等分點。

      (說明略,由學生口述即可)

      【總結、擴展】

      小結:

      (l)平行線等分線段定理及推論。

      (2)定理的證明只取三條平行線,是在較簡單的情況下證明的,對于多于三條的平行線的情況,也可用同樣方法證明。

      (3)定理中的“平行線組”,是指每相鄰兩條平行線間的距離都相等的特殊平行線組。

      (4)應用定理任意等分一條線段。

      八、布置作業

      教材P188中A組2、9

      九、板書設計

      十、隨堂練習

      教材P182中1、2

    八年級數學教案 篇3

      課題:三角形全等的判定(三)

      教學目標:

      1、知識目標:

      (1)掌握已知三邊畫三角形的方法;

      (2)掌握邊邊邊公理,能用邊邊邊公理證明兩個三角形全等;

      (3)會添加較明顯的輔助線.

      2、能力目標:

      (1)通過尺規作圖使學生得到技能的訓練;

      (2)通過公理的初步應用,初步培養學生的邏輯推理能力.

      3、情感目標:

      (1)在公理的形成過程中滲透:實驗、觀察、歸納;

      (2)通過變式訓練,培養學生“舉一反三”的.學習習慣.

      教學重點:SSS公理、靈活地應用學過的各種判定方法判定三角形全等。

      教學難點:如何根據題目條件和求證的結論,靈活地選擇四種判定方法中最適當的方法判定兩個三角形全等。

      教學用具:直尺,微機

      教學方法:自學輔導

      教學過程:

      1、新課引入

      投影顯示

      問題:有一塊三角形玻璃窗戶破碎了,要去配一塊新的,你最少要對窗框測量哪幾個數據?如果你手頭沒有測量角度的儀器,只有尺子,你能保證新配的玻璃恰好不大不小嗎?

      這個問題讓學生議論后回答,他們的答案或許只是一種感覺。于是教師要引導學生,抓住問題的本質:三角形的三個元素――三條邊。

      2、公理的獲得

      問:通過上面問題的分析,滿足什么條件的兩個三角形全等?

      讓學生粗略地概括出邊邊邊的公理。然后和學生一起畫圖做實驗,根據三角形全等定義對公理進行驗證。(這里用尺規畫圖法)

      公理:有三邊對應相等的兩個三角形全等。

      應用格式: (略)

      強調說明:

      (1)、格式要求:先指出在哪兩個三角形中證全等;再按公理順序列出三個條件,并用括號把它們括在一起;寫出結論。

      (2)、在應用時,怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時圖形中隱含的(如公共邊)

      (3)、此公理與前面學過的公理區別與聯系

      (4)、三角形的穩定性:演示三角形的穩定性與四邊形的不穩定性。在演示中,其實可以去掉組成三角形的一根小木條,以顯示三角形條件不可減少,這也為下面總結“三角形全等需要有3全獨立的條件”做好了準備,進行了溝通。

      (5)說明AAA與SSA不能判定三角形全等。

      3、公理的應用

      (1) 講解例1。學生分析完成,教師注重完成后的點評。

      例1 如圖△ABC是一個鋼架,AB=ACAD是連接點A與BC中點D的支架

      求證:AD⊥BC

      分析:(設問程序)

      (1)要證AD⊥BC只要證什么?

      (2)要證∠1=

      只要證什么?(3)要證∠1=∠2只要證什么?

      (4)△ABD和△ACD全等的條件具備嗎?依據是什么?

      證明:(略)

    八年級數學教案 篇4

      一、平移:在平面內,將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。

      1.平移

      2.平移的性質:⑴經過平移,對應點所連的線段平行且相等;⑵對應線段平行且相等,對應角相等。⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。(4)平移后的圖形與原圖形全等。

      3.簡單的平移作圖

      ①確定個圖形平移后的位置的條件:

      ⑴需要原圖形的位置;⑵需要平移的方向;⑶需要平移的距離或一個對應點的位置。

      ②作平移后的圖形的方法:

      ⑴找出關鍵點;⑵作出這些點平移后的對應點;⑶將所作的對應點按原來方式順次連接,所得的;

      二、旋轉:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉,這個定點稱為旋轉中心,轉動的角稱為旋轉角。

      1.旋轉

      2.旋轉的性質

      ⑴旋轉變化前后,對應線段,對應角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。

      ⑵旋轉過程中,圖形上每一個點都繞旋轉中心沿相同方向轉動了相同的角度。

      ⑶任意一對對應點與旋轉中心的連線所成的角都是旋轉角,對應點到旋轉中心的距離相等。

      ⑷旋轉前后的'兩個圖形全等。

      3.簡單的旋轉作圖

      ⑴已知原圖,旋轉中心和一對對應點,求作旋轉后的圖形。

      ⑵已知原圖,旋轉中心和一對對應線段,求作旋轉后的圖形。

      ⑶已知原圖,旋轉中心和旋轉角,求作旋轉后的圖形。

      三、分析組合圖案的形成

      ①確定組合圖案中的“基本圖案”

      ②發現該圖案各組成部分之間的內在聯系

      ③探索該圖案的形成過程,類型有:⑴平移變換;⑵旋轉變換;⑶軸對稱變換;⑷旋轉變換與平移變換的組合;

      ⑸旋轉變換與軸對稱變換的組合;⑹軸對稱變換與平移變換的組合。

    八年級數學教案 篇5

      知識結構:

      重點與難點分析:

      本節內容的重點是等腰三角形的判定定理.本定理是證明兩條線段相等的重要定理,它是把三角形中角的相等關系轉化為邊的相等關系的重要依據,此定理為證明線段相等提供了又一種方法,這是本節的重點.推論1、2提供證明等邊三角形的方法,推論3是直角三角形的一條重要性質,在直角三角形中找邊和角的等量關系經常用到此推論.

      本節內容的難點是性質與判定的區別。等腰三角形的性質定理和判定定理是互逆定理,題設與結論正好相反.學生在應用它們的時候,經常混淆,幫助學生認識判定與性質的區別,這是本節的難點.另外本節的文字敘述題也是難點之一,和上節結合讓學生逐步掌握解題的思路方法.由于知識點的增加,題目的復雜程度也提高,一定要學生真正理解定理和推論,才能在解題時從條件得到用哪個定理及如何用.

      教法建議:

      本節課教學方法主要是“以學生為主體的討論探索法”。在數學教學中要避免過多告訴學生現成結論。提倡教師鼓勵學生討論解決問題的方法,引導他們探索數學的內在規律。具體說明如下:

      (1)參與探索發現,領略知識形成過程

      學生學習過互逆命題和互逆定理的概念,首先提出問題:等腰三角形性質定理的逆命題的什么?找一名學生口述完了,接下來問:此命題是否為真命?等同學們證明完了,找一名學生代表發言.最后找一名學生用文字口述定理的內容。這樣很自然就得到了等腰三角形的判定定理.這樣讓學生親自動手實踐,積極參與發現,滿打滿算了學生的認識沖突,使學生克服思維和探求的惰性,獲得鍛煉機會,對定理的產生過程,真正做到心領神會。

      (2)采用“類比”的.學習方法,獲取知識。

      由性質定理的學習,我們得到了幾個推論,自然想到:根據等腰三角形的判定定理,我們能得到哪些特殊的結論或者說哪些推論呢?這里先讓學生發表意見,然后大家共同分析討論,把一些有價值的、甚至就是教材中的推論板書出來。如果學生提到的不完整,教師可以做適當的點撥引導。

      (3)總結,形成知識結構

      為了使學生對本節課有一個完整的認識,便于今后的應用,教師提出如下問題,讓學生思考回答:(1)怎樣判定一個三角形是等腰三角形?有哪些定理依據?(2)怎樣判定一個三角形是等邊三角形?

      一.教學目標:

      1.使學生掌握等腰三角形的判定定理及其推論;

      2.掌握等腰三角形判定定理的運用;

      3.通過例題的學習,提高學生的邏輯思維能力及分析問題解決問題的能力;

      4.通過自主學習的發展體驗獲取數學知識的感受;

      5.通過知識的縱橫遷移感受數學的辯證特征.

      二.教學重點:等腰三角形的判定定理

      三.教學難點:性質與判定的區別

      四.教學用具:直尺,微機

      五.教學方法:以學生為主體的討論探索法

      六.教學過程:

      1、新課背景知識復習

      (1)請同學們說出互逆命題和互逆定理的概念

      估計學生能用自己的語言說出,這里重點復習怎樣分清題設和結論。

      (2)等腰三角形的性質定理的內容是什么?并檢驗它的逆命題是否為真命題?

      啟發學生用自己的語言敘述上述結論,教師稍加整理后給出規范敘述:

      1.等腰三角形的判定定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等.

      (簡稱“等角對等邊”).

      由學生說出已知、求證,使學生進一步熟悉文字轉化為數學語言的方法.

      已知:如圖,△ABC中,∠B=∠C.

      求證:AB=AC.

      教師可引導學生分析:

      聯想證有關線段相等的知識知道,先需構成以AB、AC為對應邊的全等三角形.因為已知∠B=∠C,沒有對應相等邊,所以需添輔助線為兩個三角形的公共邊,因此輔助線應從A點引起.再讓學生回想等腰三角形中常添的輔助線,學生可找出作∠BAC的平分線AD或作BC邊上的高AD等證三角形全等的不同方法,從而推出AB=AC.

      注意:(1)要弄清判定定理的條件和結論,不要與性質定理混淆.

      (2)不能說“一個三角形兩底角相等,那么兩腰邊相等”,因為還未判定它是一個等腰三角形.

      (3)判定定理得到的結論是三角形是等腰三角形,性質定理是已知三角形是等腰三角形,得到邊邊和角角關系.

      2.推論1:三個角都相等的三角形是等邊三角形.

      推論2:有一個角等于60°的等腰三角形是等邊三角形.

      要讓學生自己推證這兩條推論.

      小結:證明三角形是等腰三角形的方法:①等腰三角形定義;②等腰三角形判定定理.

      證明三角形是等邊三角形的方法:①等邊三角形定義;②推論1;③推論2.

      3.應用舉例

      例1.求證:如果三角形一個外角的平分線平行于三角形的一邊,那么這個三角形是等腰三角形.

      分析:讓學生畫圖,寫出已知求證,啟發學生遇到已知中有外角時,常常考慮應用外角的兩個特性①它與相鄰的內角互補;②它等于與它不相鄰的兩個內角的和.要證AB=AC,可先證明∠B=∠C,因為已知∠1=∠2,所以可以設法找出∠B、∠C與∠1、∠2的關系.

      已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.

      求證:AB=AC.

      證明:(略)由學生板演即可.

      補充例題:(投影展示)

      1.已知:如圖,AB=AD,∠B=∠D.

      求證:CB=CD.

      分析:解具體問題時要突出邊角轉換環節,要證CB=CD,需構造一個以 CB、CD為腰的等腰三角形,連結BD,需證∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可證∠ABD=∠ADB,從而證得∠CDB=∠CBD,推出CB=CD.

      證明:連結BD,在 中, (已知)

      (等邊對等角)

      (已知)

      即

      (等教對等邊)

      小結:求線段相等一般在三角形中求解,添加適當的輔助線構造三角形,找出邊角關系.

      2.已知,在 中, 的平分線與 的外角平分線交于D,過D作DE//BC交AC與F,交AB于E,求證:EF=BE-CF.

      分析:對于三個線段間關系,盡量轉化為等量關系,由于本題有兩個角平分線和平行線,可以通過角找邊的關系,BE=DE,DF=CF即可證明結論.

      證明: DE//BC(已知)

      ,

      BE=DE,同理DF=CF.

      EF=DE-DF

      EF=BE-CF

      小結:

      (1)等腰三角形判定定理及推論.

      (2)等腰三角形和等邊三角形的證法.

      七.練習

      教材 P.75中1、2、3.

      八.作業

      教材 P.83 中 1.1)、2)、3);2、3、4、5.

      九.板書設計

    八年級數學教案 篇6

      一、學生起點分析

      通過前一章《勾股定理》的學習,學生已經明白什么是勾股數,但也發現并不是所有的直角三角形的邊長都是勾股數,甚至有些直角三角形的邊長連有理數都不是,例如:①腰長為1的等腰直角三角形的底邊長不是有理數,②兩條直角邊分別為1,2的直角三角形的斜邊長不是有理數,這為引入“新數”奠定了必要性.

      二、教學任務分析

      《數不夠用了》是義務教育課程標準北師大版實驗教科書八年級(上)第二章《實數》的第一節. 本節內容安排了2個課時完成,第1課時讓學生感受無理數的存在,初步建立無理數的印象,結合勾股定理知識,會根據要求畫線段;第2課時借助計算器感受無理數是無限不循環小數,會判斷一個數是無理數.本課是第1課時,學生將在具體的實例中,通過操作、估算、分析等活動,感受無理數的客觀存在性和引入的必要性,并能判斷一個數是不是有理數.

      本節課的教學目標是:

      ①通過拼圖活動,讓學生感受客觀世界中無理數的存在;

      ②能判斷三角形的某邊長是否為無理數;

      ③學生親自動手做拼圖活動,培養學生的動手能力和探索精神;

      ④能正確地進行判斷某些數是否為有理數,加深對有理數和無理數的理解;

      三、教學過程設計

      本節課設計了6個教學環節:

      第一環節:置疑;第二環節:課題引入;第三環節:獲取新知;第四環節:應用與鞏固;第五環節:課堂小結;第六環節:作業布置.

      第一環節:質疑

      內容:【想一想】

      ⑴一個整數的平方一定是整數嗎?

      ⑵一個分數的平方一定是分數嗎?

      目的:作必要的知識回顧,為第二環節埋下伏筆,便于后續問題的說理.

      效果:為后續環節的進行起了很好的鋪墊的作用

      第二環節:課題引入

      內容:1.【算一算】

      已知一個直角三角形的兩條直角邊長分別為1和2,算一算斜邊長 的平方 ,并提出問題: 是整數(或分數)嗎?

      2.【剪剪拼拼】

      把邊長為1的兩個小正方形通過剪、拼,設法拼成一個大正方形,你會嗎?

      目的:選取客觀存在的“無理數“實例,讓學生深刻感受“數不夠用了”.

      效果:巧設問題背景,順利引入本節課題.

      第三環節:獲取新知

      內容:【議一議】→【釋一釋】→【憶一憶】→【找一找】

      【議一議】: 已知 ,請問:① 可能是整數嗎?② 可能是分數嗎?

      【釋一釋】:釋1.滿足 的 為什么不是整數?

      釋2.滿足 的 為什么不是分數?

      【憶一憶】:讓學生回顧“有理數”概念,既然 不是整數也不是分數,那么 一定不是有理數,這表明:有理數不夠用了,為“新數”(無理數)的學習奠定了基礎

      【找一找】:在下列正方形網格中,先找出長度為有理數的線段,再找出長度不是有理數的線段

      目的:創設從感性到理性的認知過程,讓學生充分感受“新數”(無理數)的存在,從而激發學習新知的興趣

      效果:學生感受到無理數產生的過程,確定存在一種數與以往學過的數不同,產生了學習新數的必要性.

      第四環節:應用與鞏固

      內容:【畫一畫1】→【畫一畫2】→【仿一仿】→【賽一賽】

      【畫一畫1】:在右1的正方形網格中,畫出兩條線段:

      1.長度是有理數的線段

      2.長度不是有理數的線段

      【畫一畫2】:在右2的正方形網格中畫出四個三角形 (右1)

      2.三邊長都是有理數

      2.只有兩邊長是有理數

      3.只有一邊長是有理數

      4.三邊長都不是有理數

      【仿一仿】:例:在數軸上表示滿足 的

      解: (右2)

      仿:在數軸上表示滿足 的'

      【賽一賽】:右3是由五個單位正方形組成的紙片,請你把

      它剪成三塊,然后拼成一個正方形,你會嗎?試試看! (右3)

      目的:進一步感受“新數”的存在,而且能把“新數”表示在數軸上

      效果:加深了對“新知”的理解,鞏固了本課所學知識.

      第五環節:課堂小結

      內容:

      1.通過本課學習,感受有理數又不夠用了, 請問你有什么收獲與體會?

      2.客觀世界中,的確存在不是有理數的數,你能列舉幾個嗎?

      3.除了本課所認識的非有理數的數以外,你還能找到嗎?

      目的:引導學生自己小結本節課的知識要點及數學方法,使知識系統化.

      效果:學生總結、相互補充,學會進行概括總結.

      第六環節:布置作業

      習題2.1

      六、教學設計反思

      (一)生活是數學的源泉,興趣是學習的動力

      大量事實都證明一點,與生活貼得越近的東西最容易引起學習者的濃厚興趣,才能激發學習者的學習積極性,學習才可能是主動的.本節課中教師首先用拼圖游戲引發學生學習的欲望,把課程內容通過學生的生活經驗呈現出來,然后進行大膽置疑,生活中的數并不都是有理數,那它們究竟是什么數呢?從而引發了學生的好奇心,為獲取新知,創設了積極的氛圍.在教學中,不要盲目的搶時間,讓學生能夠充分的思考與操作.

      (二)化抽象為具體

      常言道:“數學是鍛煉思維的體操”,數學教師應通過一系列數學活動開啟學生的思維,因此對新數的學習不能僅僅停留于感性認識,還應要求學生充分理解,并能用恰當數學語言進行解釋.正是基于這個原因,在教學過程中,刻意安排了一些環節,加深對新數的理解,充分感受新數的客觀存在,讓學生覺得新數并不抽象.

      (三)強化知識間聯系,注意糾錯

      既然稱之為“新數”,那它當然不是有理數,亦即不是整數,也不是分數,所以“新數”不可以用分數來表示,這為進一步學習“新數”,即第二課時教學埋下了伏筆,在教學中,要著重強調這一點:“新數”不能表示成分數,為無理數的教學奠好基.

    八年級數學教案 篇7

      一、回顧交流,合作學習

      【活動方略】

      活動設計:教師先將學生分成四人小組,交流各自的小結,并結合課本P87的小結進行反思,教師巡視,并且不斷引導學生進入復習軌道.然后進行小組匯報,匯報時可借助投影儀,要求學生上臺匯報,最后教師歸納.

      【問題探究1】(投影顯示)

      飛機在空中水平飛行,某一時刻剛好飛到小明頭頂正上方4000米處,過了20秒,飛機距離小明頭頂5000米,問:飛機飛行了多少千米?

      思路點撥:根據題意,可以先畫出符合題意的圖形,如右圖,圖中△ABC中的∠C=90°,AC=4000米,AB=5000米,要求出飛機這時飛行多少千米,就要知道飛機在20秒時間里飛行的路程,也就是圖中的BC長,在這個問題中,斜邊和一直角邊是已知的,這樣,我們可以根據勾股定理來計算出BC的長.(3000千米)

      【活動方略】

      教師活動:操作投影儀,引導學生解決問題,請兩位學生上臺演示,然后講評.

      學生活動:獨立完成“問題探究1”,然后踴躍舉手,上臺演示或與同伴交流.

      【問題探究2】(投影顯示)

      一個零件的形狀如右圖,按規定這個零件中∠A與∠BDC都應為直角,工人師傅量得零件各邊尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,請你判斷這個零件符合要求嗎?為什么?

      思路點撥:要檢驗這個零件是否符合要求,只要判斷△ADB和△DBA是否為直角三角形,這樣可以通過勾股定理的逆定理予以解決:

      AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,這個零件符合要求.

      【活動方略】

      教師活動:操作投影儀,關注學生的'思維,請兩位學生上講臺演示之后再評講.

      學生活動:思考后,完成“問題探究2”,小結方法.

      解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,

      ∴△ABD為直角三角形,∠A=90°.

      在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.

      ∴△BDC是直角三角形,∠CDB=90°

      因此這個零件符合要求.

      【問題探究3】

      甲、乙兩位探險者在沙漠進行探險,某日早晨8:00甲先出發,他以6千米/時的速度向東行走,1小時后乙出發,他以5千米/時的速度向北行進,上午10:00,甲、乙兩人相距多遠?

      思路點撥:要求甲、乙兩人的距離,就要確定甲、乙兩人在平面的位置關系,由于甲往東、乙往北,所以甲所走的路線與乙所走的路線互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙兩人的距離.(13千米)

      【活動方略】

      教師活動:操作投影儀,巡視、關注學生訓練,并請兩位學生上講臺“板演”.

      學生活動:課堂練習,與同伴交流或舉手爭取上臺演示

    八年級數學教案 篇8

      一、學習目標:

      1、會推導兩數差的平方公式,會用式子表示及用文字語言敘述;

      2、會運用兩數差的平方公式進行計算。

      二、學習過程:

      請同學們快速閱讀課本第27—28頁的內容,并完成下面的練習題:

      (一)探索

      1、計算: (a - b) =

      方法一: 方法二:

      方法三:

      2、兩數差的平方用式子表示為_________________________;

      用文字語言敘述為___________________________ 。

      3、兩數差的.平方公式結構特征是什么?

      (二)現學現用

      利用兩數差的平方公式計算:

      1、(3 - a) 2、 (2a -1) 3、(3y-x)

      4、(2x – 4y) 5、( 3a - )

      (三)合作攻關

      靈活運用兩數差的平方公式計算:

      1、(999) 2、( a – b – c )

      3、(a + 1) -(a-1)

      (四)達標訓練

      1、、選擇:下列各式中,與(a - 2b) 一定相等的是( )

      A、a -2ab + 4b B、a -4b

      C、a +4b D、 a - 4ab +4b

      2、填空:

      (1)9x + + 16y = (4y - 3x )

      (2) ( ) = m - 8m + 16

      2、計算:

      ( a - b) ( x -2y )

      3、有一邊長為a米的正方形空地,現準備將這塊空地四周均留出b米寬修筑圍壩,中間修建噴泉水池,你能計算出噴泉水池的面積嗎?

      (四)提升

      1、本節課你學到了什么?

      2、已知a – b = 1,a + b = 25,求ab 的值

    八年級數學教案 篇9

      一、教學目標:

      1、會根據頻數分布表求加權平均數,從而解決一些實際問題

      2、會用計算器求加權平均數的值

      3、會運用樣本估計總體的方法來獲得對總體的認識

      二、重點、難點:

      1、重點:根據頻數分布表求加權平均數

      2、難點:根據頻數分布表求加權平均數

      三、教學過程:

      1、復習

      組中值的定義:上限與下限之間的中點數值稱為組中值,它是各組上下限數值的簡單平均,即組中值=(上限+上限)/2.

      因為在根據頻數分布表求加權平均數近似值過程中要用到組中值去代替一組數據中的每個數據的值,所以有必要在這里復習組中值定義.

      應給學生介紹為什么可以利用組中值代替一組數據中的每個數據的值,以及這樣代替的好處、不妨舉一個例子,在一組中如果數據分布較為均勻時,比如教材P140探究問題的表格中的第三組數據,它的范圍是41≤X≤61,共有20個數據,若分布較為平均,41、42、43、44…60個出現1次,那么這組數據的和為41+42+…+60=1010.而用組中值51去乘以頻數20恰好為1020≈1010,即當數據分布較為平均時組中值恰好近似等于它的平均數.所以利用組中值X頻數去代替這組數據的和還是比較合理的,而且這樣做的最大好處是簡化了計算量.

      為了更好的理解這種近似計算的方法和合理性,可以讓學生去讀統計表,體會表格的實際意義.

      2、教材P140探究欄目的意圖

      ①、主要是想引出根據頻數分布表求加權平均數近似值的計算方法.

      ②、加深了對“權”意義的.理解:當利用組中值近似取代替一組數據中的平均值時,頻數恰好反映這組數據的輕重程度,即權.

      這個探究欄目也可以幫助學生去回憶、復習七年級下的關于頻數分布表的一些內容,比如組、組中值及頻數在表中的具體意義.

      3、教材P140的思考的意圖.

      ①、使學生通過思考這兩個問題過程中體會利用統計知識可以解決生活中的許多實際問題.

      ②、幫助學生理解表中所表達出來的信息,培養學生分析數據的能力.

      4、利用計算器計算平均值

      這部分篇幅較小,與傳統教材那種詳細介紹計算器使用方法產生明顯對比.一則由于學校中學生使用計算器不同,其操作過程有差別亦不同,再者,各種計算器的使用說明書都有詳盡介紹,同時也說明在今后中考趨勢仍是不允許使用計算器.所以本節課的重點內容不是利用計算器求加權平均數,但是掌握其使用方法確實可以運算變得簡單.統計中一些數據較大、較多的計算也變得容易些了.

      5、運用樣本估計總體

      要使學生掌握在哪些情況下需要通過用樣本估計總體的方法來獲得對總體的認識;一是所要考察的對象很多,二是考察本身帶有破壞性;教材P142例3,這個例子就屬于考察本身帶有破壞性的情況.

    八年級數學教案 篇10

      教學目標:

      1、 理解運用平方差公式分解因式的方法。

      2、 掌握提公因式法和平方差公式分解因式的綜合運用。

      3、 進一步培養學生綜合、分析數學問題的能力。

      教學重點:

      運用平方差公式分解因式。

      教學難點:

      高次指數的轉化,提公因式法,平方差公式的靈活運用。

      教學案例:

      我們數學組的觀課議課主題:

      1、關注學生的合作交流

      2、如何使學困生能積極參與課堂交流。

      在精心備課過程中,我設計了這樣的自學提示:

      1、整式乘法中的平方差公式是___,如何用語言描述?把上述公式反過來就得到_____,如何用語言描述?

      2、下列多項式能用平方差公式分解因式嗎?若能,請寫出分解過程,若不能,說出為什么?

      ①-x2+y2 ②-x2-y2 ③4-9x2

      ④ (x+y)2-(x-y)2 ⑤ a4-b4

      3、試總結運用平方差公式因式分解的條件是什么?

      4、仿照例4的分析及旁白你能把x3y-xy因式分解嗎?

      5、試總結因式分解的步驟是什么?

      師巡回指導,生自主探究后交流合作。

      生交流熱情很高,但把全部問題分析完已用了30分鐘。

      生展示自學成果。

      生1: -x2+y2能用平方差公式分解,可分解為(y+x)(y-x)

      生2: -x2+y2=-(x2-y2)=-(x+y)(x-y)

      師:這兩種方法都可以,但第二種方法提出負號后,一定要注意括號里的各項要變號。

      生3:4-9x2 也能用平方差公式分解,可分解為(2+9x)(2-9x)

      生4:不對,應分解為(2+3x)(2-3x),要運用平方差公式必須化為兩個數或整式的平方差的形式。

      生5: a4-b4可分解為(a2+b2)(a2-b2)

      生6:不對,a2-b2 還能繼續分解為a+b)(a-b)

      師:大家爭論的很好,運用平方差公式分解因式,必須化為兩個數或兩個整式的平方的差的形式,另因式分解必須分解到不能再分解為止。……

      反思:這節課我備課比較認真,自學提示的設計也動了一番腦筋,為讓學生順利得出運用平方差公式因式分解的條件,我設計了問題2,為讓學生能更容易總結因式分解的步驟,我又設計了問題4,自認為,本節課一定會上的非常成功,學生的交流、合作,自學展示一定會很精彩,結果卻出乎我的'意料,本節課沒有按計劃完成教學任務,學生練習很少,作業有很大一部分同學不能獨立完成,反思這節課主要有以下幾個問題:

      (1) 我在備課時,過高估計了學生的能力,問題2中的③、④、⑤ 多數學生剛預習后不能熟練解答,導致在小組交流時,多數學生都在交流這幾題該怎樣分解,耽誤了寶貴的時間,也分散了學生的注意力,導致難點、重點不突出,若能把問題2改為:

      下列多項式能用平方差公式因式分解嗎?為什么?可能效果會更好。

      (2) 教師備課時,要考慮學生的知識層次,能力水平,真正把學生放在第一位,要考慮學生的接受能力,安排習題要循序漸進,切莫過于心急,過分追求課堂容量、習題類型全等等,例如在問題2的設計時可寫一些簡單的,像④、⑤ 可到練習時再出現,發現問題后再強調、歸納,效果也可能會更好。

      我及時調整了自學提示的內容,在另一個班也上了這節課。果然,學生的討論有了重點,很快(大約10分鐘)便合作得出了結論,課堂氣氛非常活躍,練習量大,準確率高,但隨之我又發現我在處理課后練習時有點不能應對自如。例如:師:下面我們把課后練習做一下,話音剛落,大家紛紛拿著本到我面前批改。師:都完了?生:全完了。我很興奮。來:“我們再做幾題試試。”生又開始緊張地練習……下課后,無意間發現竟還有好幾個同學課后題沒做。原因是預習時不會,上課又沒時間,還有幾位同學練習題竟然有誤,也沒改正,原因是上課慌著展示自己,沒顧上改……。看來,以后上課不能單聽學生的齊答,要發揮組長的職責,注重過關落實。給學生一點機動時間,讓學習有困難的學生有機會釋疑,練習不在于多,要注意融會貫通,會舉一反三。

      確實,“學海無涯,教海無邊”。我們備課再認真,預設再周全,面對不同的學生,不同的學情,仍然會產生新的問題,“沒有最好,只有更好!”我會一直探索、努力,不斷完善教學設計,更新教育觀念,直到永遠……

    【八年級數學教案】相關文章:

    八年級的數學教案12-14

    八年級數學教案06-18

    八年級數學教案【薦】12-06

    【薦】八年級數學教案12-03

    八年級數學教案【推薦】12-04

    【推薦】八年級數學教案12-05

    八年級數學教案【熱門】12-03

    八年級的數學教案15篇12-14

    【熱】八年級數學教案12-07

    人教版八年級數學教案11-04

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      亚洲国产AⅤ精品一区二区久久 | 中文字幕精品日韩综合 | 亚洲日韩精品一区 | 亚洲国产一级在线观看在 | 色综合天天综合网中文 | 亚洲欧美日韩在线综合专区 |