1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>八年級數學教案>八年級數學教案

    八年級數學教案

    時間:2022-09-02 14:25:28 八年級數學教案 我要投稿

    八年級數學教案范文集合六篇

      作為一名無私奉獻的老師,常常要根據教學需要編寫教案,借助教案可以讓教學工作更科學化。那要怎么寫好教案呢?下面是小編整理的八年級數學教案6篇,僅供參考,希望能夠幫助到大家。

    八年級數學教案范文集合六篇

    八年級數學教案 篇1

      知識目標:理解函數的概念,能準確識別出函數關系中的自變量和函數

      能力目標:會用變化的量描述事物

      情感目標:回用運動的觀點觀察事物,分析事物

      重點:函數的概念

      難點:函數的概念

      教學媒體:多媒體電腦,計算器

      教學說明:注意區分函數與非函數的關系,學會確定自變量的取值范圍

      教學設計:

      引入:

      信息1:小明在14歲生日時,看到他爸爸為他記錄的以前各年周歲時體重數值表,你能看出小明各周歲時體重是如何變化的嗎?

      新課:

      問題:(1)如圖是某日的氣溫變化圖。

      ① 這張圖告訴我們哪些信息?

      ② 這張圖是怎樣來展示這天各時刻的溫度和刻畫這鐵的.氣溫變化規律的?

      (2)收音機上的刻度盤的波長和頻率分別是用米(m)和赫茲(KHz)為單位標刻的,下表中是一些對應的數:

      ① 這表告訴我們哪些信息?

      ② 這張表是怎樣刻畫波長和頻率之間的變化規律的,你能用一個表達式表示出來嗎?

      一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有惟一確定的值與其對應,那么我們就說x是自變量,y是x的函數。如果當x=a時,y=b,那么b叫做當自變量的值為a時的函數值。

      范例:例1 判斷下列變量之間是不是函數關系:

      (5) 長方形的寬一定時,其長與面積;

      (6) 等腰三角形的底邊長與面積;

      (7) 某人的年齡與身高;

      活動1:閱讀教材7頁觀察1. 后完成教材8頁探究,利用計算器發現變量和函數的關系

      思考:自變量是否可以任意取值

      例2 一輛汽車的油箱中現有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為0.1L/km。

      (1) 寫出表示y與x的函數關系式.

      (2) 指出自變量x的取值范圍.

      (3) 汽車行駛200km時,油箱中還有多少汽油?

      解:(1)y=50-0.1x

      (2)0500

      (3)x=200,y=30

      活動2:練習教材9頁練習

      小結:(1)函數概念

      (2)自變量,函數值

      (3)自變量的取值范圍確定

      作業:18頁:2,3,4題

    八年級數學教案 篇2

      一、課堂引入

      1.什么叫做平行四邊形?什么叫做矩形?

      2.矩形有哪些性質?

      3.矩形與平行四邊形有什么共同之處?有什么不同之處?

      4.事例引入:小華想要做一個矩形像框送給媽媽做生日禮物,于是找來兩根長度相等的短木條和兩根長度相等的長木條制作,你有什么辦法可以檢測他做的是矩形像框嗎?看看誰的方法可行?

      通過討論得到矩形的判定方法.

      矩形判定方法1:對角錢相等的平行四邊形是矩形.

      矩形判定方法2:有三個角是直角的四邊形是矩形.

      (指出:判定一個四邊形是矩形,知道三個角是直角,條件就夠了.因為由四邊形內角和可知,這時第四個角一定是直角.)

      二、例習題分析

      例1(補充)下列各句判定矩形的說法是否正確?為什么?

      (1)有一個角是直角的四邊形是矩形;(×)

      (2)有四個角是直角的四邊形是矩形;(√)

      (3)四個角都相等的四邊形是矩形;(√)

      (4)對角線相等的四邊形是矩形;(×)

      (5)對角線相等且互相垂直的四邊形是矩形;(×)

      (6)對角線互相平分且相等的四邊形是矩形;(√)

      (7)對角線相等,且有一個角是直角的四邊形是矩形;(×)

      (8)一組鄰邊垂直,一組對邊平行且相等的四邊形是矩形;(√)

      (9)兩組對邊分別平行,且對角線相等的四邊形是矩形.(√)

      指出:

      (l)所給四邊形添加的條件不滿足三個的肯定不是矩形;

      (2)所給四邊形添加的條件是三個獨立條件,但若與判定方法不同,則需要利用定義和判定方法證明或舉反例,才能下結論.

      例2(補充)已知ABCD的對角線AC、BD相交于點O,△AOB是等邊三角形,AB=4cm,求這個平行四邊形的`面積.

      分析:首先根據△AOB是等邊三角形及平行四邊形對角線互相平分的性質判定出ABCD是矩形,再利用勾股定理計算邊長,從而得到面積值.

      解:∵ 四邊形ABCD是平行四邊形,

      ∴AO=AC,BO=BD.

      ∵ AO=BO,

      ∴ AC=BD.

      ∴ ABCD是矩形(對角線相等的平行四邊形是矩形).

      在Rt△ABC中,

      ∵ AB=4cm,AC=2AO=8cm,

      ∴BC=(cm).

      例3(補充)已知:如圖(1),ABCD的四個內角的平分線分別相交于點E,F,G,H.求證:四邊形EFGH是矩形.

      分析:要證四邊形EFGH是矩形,由于此題目可分解出基本圖形,如圖(2),因此,可選用“三個角是直角的四邊形是矩形”來證明

    八年級數學教案 篇3

      教學目標:

      1.了解算術平方根的概念,會用根號表示正數的算術平方根,并了解算術平方根的非負性。

      2.了解開方與乘方互為逆運算,會用平方運算求某些非負數的算術平方根。

      教學重點:

      算術平方根的概念。

      教學難點:

      根據算術平方根的概念正確求出非負數的算術平方根。

      教學過程

      一、情境導入

      請同學們欣賞本節導圖,并回答問題,學校要舉行金秋美術作品比賽,小歐很高興,他想裁出一塊面積為25 的正方形畫布,畫上自己的得意之作參加比賽,這塊正方形畫布的邊長應取多少 ?如果這塊畫布的面積是 ?這個問題實際上是已知一個正數的平方,求這個正數的問題?

      這就要用到平方根的概念,也就是本章的主要學習內容.這節課我們先學習有關算術平方根的概念.

      二、導入新課:

      1、提出問題:(書P68頁的問題)

      你是怎樣算出畫框的邊長等于5dm的呢?(學生思考并交流解法)

      這個問題相當于在等式擴=25中求出正數x的值.

      一般地,如果一個正數x的`平方等于a,即 =a,那么這個正數x叫做a的算術平方根.a的算術平方根記為 ,讀作根號a,a叫做被開方數.規定:0的算術平方根是0.

      也就是,在等式 =a (x0)中,規定x = .

      2、 試一試:你能根據等式: =144說出144的算術平方根是多少嗎?并用等式表示出來.

      3、 想一想:下列式子表示什么意思?你能求出它們的值嗎?

      建議:求值時,要按照算術平方根的意義,寫出應該滿足的關系式,然后按照算術平方根的記法寫出對應的值.例如 表示25的算術平方根。

      4、例1 求下列各數的算術平方根:

      (1)100;(2)1;(3) ;(4)0.0001

      三、練習

      P69練習 1、2

      四、探究:(課本第69頁)

      怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?

      方法1:課本中的方法,略;

      方法2:

      可還有其他方法,鼓勵學生探究。

      問題:這個大正方形的邊長應該是多少呢?

      大正方形的邊長是 ,表示2的算術平方根,它到底是個多大的數?你能求出它的值嗎?

      建議學生觀察圖形感受 的大小.小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節課探究.

      五、小結:

      1、這節課學習了什么呢?

      2、算術平方根的具體意義是怎么樣的?

      3、怎樣求一個正數的算術平方根

      六、課外作業:

      P75習題13.1活動第1、2、3題

    八年級數學教案 篇4

      一、平移:在平面內,將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。

      1.平移

      2.平移的性質:⑴經過平移,對應點所連的線段平行且相等;⑵對應線段平行且相等,對應角相等。⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。(4)平移后的圖形與原圖形全等。

      3.簡單的平移作圖

      ①確定個圖形平移后的位置的條件:

      ⑴需要原圖形的位置;⑵需要平移的方向;⑶需要平移的距離或一個對應點的位置。

      ②作平移后的圖形的方法:

      ⑴找出關鍵點;⑵作出這些點平移后的對應點;⑶將所作的對應點按原來方式順次連接,所得的;

      二、旋轉:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉,這個定點稱為旋轉中心,轉動的角稱為旋轉角。

      1.旋轉

      2.旋轉的性質

      ⑴旋轉變化前后,對應線段,對應角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。

      ⑵旋轉過程中,圖形上每一個點都繞旋轉中心沿相同方向轉動了相同的角度。

      ⑶任意一對對應點與旋轉中心的連線所成的角都是旋轉角,對應點到旋轉中心的.距離相等。

      ⑷旋轉前后的兩個圖形全等。

      3.簡單的旋轉作圖

      ⑴已知原圖,旋轉中心和一對對應點,求作旋轉后的圖形。

      ⑵已知原圖,旋轉中心和一對對應線段,求作旋轉后的圖形。

      ⑶已知原圖,旋轉中心和旋轉角,求作旋轉后的圖形。

      三、分析組合圖案的形成

      ①確定組合圖案中的“基本圖案”

      ②發現該圖案各組成部分之間的內在聯系

      ③探索該圖案的形成過程,類型有:⑴平移變換;⑵旋轉變換;⑶軸對稱變換;⑷旋轉變換與平移變換的組合;

      ⑸旋轉變換與軸對稱變換的組合;⑹軸對稱變換與平移變換的組合。

    八年級數學教案 篇5

      教學目標:

      1、經歷對圖形進行觀察、分析、欣賞和動手操作、畫圖過程,掌握有關畫圖的操作技能,發展初步審美能力,增強對圖形欣賞的意識。

      2、能按要求把所給出的圖形補成以某直線為軸的軸對稱圖形,能依據圖形的軸對稱關系設計軸對稱圖形。

      教學重點:本節課重點是掌握已知對稱軸L和一個點,要畫出點A關于L的軸對稱點的畫法,在此基礎上掌握有關軸對稱圖形畫圖的操作技能,并能利用圖形之間的軸對稱關系來設計軸對稱圖形,掌握有關畫圖的技能及設計軸對稱圖形是本節課的難點。

      教學方法:動手實踐、討論。

      教學工具:課件

      教學過程:

      一、 先復習軸對稱圖形的定義,以及軸對稱的相關的性質:

      1.如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相________,那么這個圖形叫做________________,這條直線叫做_____________

      2.軸對稱的三個重要性質______________________________________________

      _____________________________________________________________________

      二、提出問題:

      二、探索練習:

      1. 提出問題:

      如圖:給出了一個圖案的一半,其中的虛線是這個圖案的對稱軸。

      你能畫出這個圖案的另一半嗎?

      吸引學生讓學生有一種解決難點的想法。

      2.分析問題:

      分析圖案:這個圖案是由重要六個點構成的,要將這個圖案的另一半畫出來,根據軸對稱的性質只要畫出這個圖案中六個點的對應點即可

      問題轉化成:已知對稱軸和一個點A,要畫出點A關于L的對應點 ,可采用如下方法:`

      在學生掌握已知一個點畫對應點的基礎上,解決上述給出的'問題,使學生有一條較明確的思路。

      三、對所學內容進行鞏固練習:

      1. 如圖,直線L是一個軸對稱圖形的對稱軸,畫出這個軸對稱圖形的另一半。

      2. 試畫出與線段AB關于直線L的線段

      3.如圖,已知 直線MN,畫出以MN為對稱軸 的軸對稱圖形

      小 結: 本節課學習了已知對稱軸L和一個點如何畫出它的對應點,以及如何補全圖形,并利用軸對稱的性質知道如何設計軸對稱圖形。

      教學后記:學生對這節課的內容掌握比較好,但對于利用軸對稱的性質來設計圖形覺得難度比較大。因本節課內容較有趣,許多學生上課積極性較高

    八年級數學教案 篇6

      復習第一步::

      勾股定理的有關計算

      例1:(20xx年甘肅省定西市中考題)下圖陰影部分是一個正方形,則此正方形的面積為.

      析解:圖中陰影是一個正方形,面積正好是直角三角形一條直角邊的平方,因此由勾股定理得正方形邊長平方為:172-152=64,故正方形面積為6

      勾股定理解實際問題

      例2.(20xx年吉林省中考試題)圖①是一面矩形彩旗完全展平時的尺寸圖(單位:cm).其中矩形ABCD是由雙層白布縫制的穿旗桿用的旗褲,陰影部分DCEF為矩形綢緞旗面,將穿好彩旗的旗桿垂直插在操場上,旗桿旗頂到地面的高度為220cm.在無風的天氣里,彩旗自然下垂,如圖②.求彩旗下垂時最低處離地面的最小高度h.

      析解:彩旗自然下垂的長度就是矩形DCEF

      的對角線DE的長度,連接DE,在Rt△DEF中,根據勾股定理,

      得DE=h=220-150=70(cm)

      所以彩旗下垂時的最低處離地面的最小高度h為70cm

      與展開圖有關的計算

      例3、(20xx年青島市中考試題)如圖,在棱長為1的正方體ABCD—A’B’C’D’的表面上,求從頂點A到頂點C’的'最短距離.

      析解:正方體是由平面圖形折疊而成,反之,一個正方體也可以把它展開成平面圖形,如圖是正方體展開成平面圖形的一部分,在矩形ACC’A’中,線段AC’是點A到點C’的最短距離.而在正方體中,線段AC’變成了折線,但長度沒有改變,所以頂點A到頂點C’的最短距離就是在圖2中線段AC’的長度.

      在矩形ACC’A’中,因為AC=2,CC’=1

      所以由勾股定理得AC’=.

      ∴從頂點A到頂點C’的最短距離為

      復習第二步:

      1.易錯點:本節同學們的易錯點是:在用勾股定理求第三邊時,分不清直角三角形的斜邊和直角邊;另外不論是否是直角三角形就用勾股定理;為了避免這些錯誤的出現,在解題中,同學們一定要找準直角邊和斜邊,同時要弄清楚解題中的三角形是否為直角三角形.

      例4:在Rt△ABC中,a,b,c分別是三條邊,∠B=90°,已知a=6,b=10,求邊長c.

      錯解:因為a=6,b=10,根據勾股定理得c=剖析:上面解法,由于審題不仔細,忽視了∠B=90°,這一條件而導致沒有分清直角三角形的斜邊和直角邊,錯把c當成了斜邊.

      正解:因為a=6,b=10,根據勾股定理得,c=溫馨提示:運用勾股定理時,一定分清斜邊和直角邊,不能機械套用c2=a2+b2

      例5:已知一個Rt△ABC的兩邊長分別為3和4,則第三邊長的平方是

      錯解:因為Rt△ABC的兩邊長分別為3和4,根據勾股定理得:第三邊長的平方是32+42=25

      剖析:此題并沒有告訴我們已知的邊長4一定是直角邊,而4有可能是斜邊,因此要分類討論.

      正解:當4為直角邊時,根據勾股定理第三邊長的平方是25;當4為斜邊時,第三邊長的平方為:42-32=7,因此第三邊長的平方為:25或7.

      溫馨提示:在用勾股定理時,當斜邊沒有確定時,應進行分類討論.

      例6:已知a,b,c為⊿ABC三邊,a=6,b=8,bc,且c為整數,則c=.

      錯解:由勾股定理得c=剖析:此題并沒有告訴你⊿ABC為直角三角形

    【八年級數學教案】相關文章:

    八年級的數學教案12-14

    八年級數學教案06-18

    八年級下冊數學教案01-01

    八年級數學教案人教版01-03

    八年級數學教案【薦】12-06

    【精】八年級數學教案12-04

    八年級數學教案【精】12-04

    【熱門】八年級數學教案11-29

    八年級數學教案【熱】11-29

    人教版八年級數學教案11-04

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      中文字幕韩日精品 | 久久人人精品视频97 | 亚洲欧美日韩另类 | 最新国产亚洲精品免费va在线 | 亚洲中文AⅤ在线视频 | 日本欧美国产中文字幕 |