1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>六年級數學教案>人教版六年級下冊數學教案

    人教版六年級下冊數學教案

    時間:2022-08-30 15:46:15 六年級數學教案 我要投稿

    人教版六年級下冊數學教案模板匯總七篇

      在教學工作者開展教學活動前,時常需要用到教案,教案有助于順利而有效地開展教學活動。那要怎么寫好教案呢?下面是小編精心整理的人教版六年級下冊數學教案7篇,僅供參考,歡迎大家閱讀。

    人教版六年級下冊數學教案模板匯總七篇

    人教版六年級下冊數學教案 篇1

      一、創設情境,提出問題

      師:同學們,你們知道一個人去找工作時,他一般最關注什么?

      生:工資。

      生:工作環境和待遇。

      師:找工作時工資的多少往往是人們最關心的,李叔叔看到一份超市招聘公告上寫著:本超市工作人員月平均工資1000元,現招收員工若干。李叔叔一看條件不錯,就應聘做了超市的一名工作人員。可第一個月他只拿到工資500元,第二個月也只有600元,問了一些同事大部分都是600元,少數超過600元。他找到了超市副經理說:你們欺騙了我,我已經問過其他工人沒有一個工人的工資超過1000元,平均工資怎么可能是每月1000元呢?超市副經理拿出了超市工作人員的工資表:

      某超市工作人員月工資如下表單位:元經理副經理員工A員工B員工C員工D員工E員工F員工G員工H員工I

      月工資30002000900800700700600600600600500

      問題1請大家仔細觀察表中的數據,討論回答下面的問題:

      (1)副經理說月平均工資1000元是否欺騙了李叔叔?

      (2)你有什么想法?

      生:剛才我算了一下,這11個數的平均數是1000,所以月平均工資1000元沒有欺騙。

      師:對,我們學過平均數的知識,平均數是1000元是沒有錯。

      那為什么李叔叔只能拿到600元。大家可以闡述一下自己的觀點。

      生:因為兩位經理的工資很高,帶動了員工的平均公資。

      師:,看來這組數據中,由于出現了兩個特別的數據,所以平均數1000不能真實反映大多數員工的工資水平,你認為應該用什么數反映這個超市的工資水平比較合理呢?請大家觀察這些數據的特點,然后說說你的想法。

      【設計意圖:本環節痛過李叔叔在找工作時遇到的實際問題,使數學貼近生活,激發學生的興趣,讓學生在幫助李叔叔的過程中感受到在這里平均數和中位數不能真實反映員工的工資水平,初步感受眾數產生的必要性。】

      學生小組討論:

      生1:我們小組討論后認為用600元是比較好的,因為這里600元的人是最多的,有4個人。

      生2:我認為700元比較合理,因為它是這組數據的中位數。

      師:大家分析的不錯,很有自己的想法。平均數會受一些特別偏大或偏小的數據的影響。那么李叔叔最有可能掙到多少錢?

      生:600元

      師:600在這里出現次數最多,它代表的是多數人的工資水平,所以600就是這組數據的`眾數。

      二、探究新知。

      板書:眾數。

      【設計意圖;本環節提出這樣的問題,主要想通過工資表中出現次數最多的600理解眾的含義,進而理解眾數的意義。】

      師:請大家試著說一說眾數的意義;然后教師小結出示概念。齊讀概念。

      師:現在,我們已經知道了三個統計量,那么,面對具體的問題,我們應該選擇哪個統計量來描述數據的集中趨勢呢、下面請看這個問題。

      五(2)班要選10名同學組隊參加集體舞比賽。下面是15名候選隊員的身高情況。(單位:米)

      1.41,1.41,1.41,1.44,1.45,1.4,1.48,1.49

      1.51,1.51,1.51,1.51,1.52,1.54,1.54

      你認為參賽隊員的身高是多少比較合適?

      學生小組合作。根據學生匯報,教師小結。從審美角度以及隊伍整齊觀點來看應以眾數1.51為標準選擇隊員身高會比較均勻。

      【設計意圖:本環節通過小組活動給學生提供參與數學活動的機會,使他們在思考,探究,討論。交流中充分發表自己的意見,在實際問題中體會三個統計量的區別和他們各自的適用限度,讓學生意識到生活中數學無處不在,感受和體會數學中美的因素】。

      三、分析數據,嘗試統計決策。

      師:同學們,全世界都關注的奧運會就要在北京召開了,我國的體育健兒正在緊張的訓練,準備迎戰奧運會。國家隊的教練想在兩名優秀的射擊運動員中選擇一名去參加比賽:(出示兩名運動員成績)

      甲:9.5109.49.59.79.59.49.39.49.3

      乙:109108.39.89.5109.88.79.9

      看到兩名運動員的成績,大家能否猜想一下,教練會選擇誰去呢?

      生1:我認為會選甲,甲的成績很高。

      生2:我想會選乙,乙打中10環的多。

      生3:我想應該看看他們的平均分。

      師:大家說的很好,大膽的說出了自己的想法;讓我們用掌聲來鼓勵他們。那我們就先從平均數入手,大家動手做一做,看看他們的平均數是多少?(可以同桌合作)

      生:老師,平均數一樣,都是9.5。

      師;平均數一樣我們該怎么辦呢?

      生1:看眾數。甲的眾數是9.5。

      生2:9.4也出現三次,9.4也是眾數。那兩個都是眾數嗎?

      師:當然,眾數可以不止一個。也可以沒有,比如說我們班前五名同學的成績就沒有重復的,那自然就沒有眾數了。

      生:乙的眾數是10,所以乙獲勝的機會大一些。

      師:在平均數相同時,我們應該看眾數。

      【設計意圖:通過一組練習,使學生能靈活選擇適當的統計量表示一些數據的特點,并從數據的波動大小中,體現概率的可能性。讓學生能根據統計量進行簡單的預測或作出決策。使學生充分感受到數學與生活的聯系,并從解決問題中體會到成功的喜悅,從而更加熱愛數學。】

      四、學生暢談收獲。

      五:教師小結。

      同學們,通過本節課的學習,我們認識了眾數這一統計量,并且通過練習理解了平均數,中位數和眾數這三個統計量的聯系與區別,根據我們分析數據的不同需要,可以正確選擇合適的統計量。

      案例反思:

      1、創設問題情境,教學開始,我提出的是一個生活中的真實問題。讓學生在參與中引發他們的理性認識,通過學生的獨立思考和交流,引起了學生對月工資水平的認知沖突,發現單靠平均數來描述數據特征有時是不合適的。讓學生從具體問題中體會數學在生活中的重要性

      2、在分析討論中促進學生對概念的理解,眾數的概念,我沒有直接給出,而是通過學生觀察、分析、討論、在共享集體思維成果的基礎上逐步建構的,這樣做使學生逐步體會到這三個統計量都反映一組數據的集中趨勢,但描述的角度并不相同,三者之間既有聯系又有區別,同時也滲透出了他們的優越性與局限性。可以比較全面、正確地理解所學知識。教學中,讓學生通過思考總結,如射擊隊員的選擇,數據越多,頻率越穩定。如能經過更多數據的收集和整理,根據方差的特點由數據的穩定性及波動大小再考慮一下其他因素,可能結果會不一樣。對不完善的地方再加以補充,充分發揮學生在學習中的主體地位,同時,教師作為參與者,主動加入到學生的討論中,對學生的認識起到幫助和促進的作用。

    人教版六年級下冊數學教案 篇2

      教學內容:

      抽取游戲

      教學目標:

      1.使學生能理解抽取問題中的一些基本原理,并能解決有關簡單的問題。

      2.體會數學與日常生活的聯系,了解數學的價值,增強應用數學的意識。

      教學重點:

      抽取問題。

      教學難點:

      理解抽取問題的基本原理。

      教學過程:

      一、教學例

      盒子里有同樣大小的紅球和藍球各4個。要想摸出的球一定有2個同色的,最少要摸出幾個球?

      1.猜一猜。

      讓學生想一想,猜一猜至少要摸出幾個球。

      2.實驗活動。

      (1) 一次摸出2個球,有幾種情況?

      結果:有可能摸出2個同色的球。

      (2) 一次摸3個球,有幾種情況?

      結果:一定能摸出2個同色的球。

      3.發現規律。

      啟發:摸出球的.個數與顏色種數有什么關系?

      學生不難發現:只要摸出的球比它們的顏色種數多1,就能保證有兩個球同色。

      二、做一做

      第1題。

      (1) 獨立思考,判斷正誤。

      (2) 同學交流,說明理由。

      第2題。

      (1) 說一說至少取幾個,你怎么知道呢?

      (2) 如果取4個,能保證取到兩個顏色相同的球嗎?為什么?

      三、鞏固練習

      完成課文練習十二第1、3題。

    人教版六年級下冊數學教案 篇3

      一、學習目標

      (一)學習內容

      《義務教育教科書數學》(人教版)六年級下冊第五單元第68~69頁的例1、2。“抽屜原理”是一類較為抽象和艱澀的數學問題,對全體學生而言具有一定的挑戰性。為此,教材選擇了一些常見的、熟悉的事物作為學習內容,經歷將具體問題“數學化”的過程。

      (二)核心能力

      經歷將具體問題“數學化”的過程,初步形成模型思想,發展抽象能力、推理能力和應用能力。

      (三)學習目標

      1.理解“鴿巢原理”的基本形式,并能初步運用“鴿巢原理”解決相關的實際問題或解釋相關的現象。

      2.通過操作、觀察、比較、說理等數學活動,經歷鴿巢原理的形成活動,初步形成模型思想,發展抽象能力、推理能力和應用能力。

      (四)學習重點

      了解簡單的鴿巢問題,理解“總有”和“至少”的含義。

      (五)學習難點

      運用“鴿巢原理”解決相關的實際問題或解釋相關的現象。

      (六)配套資源

      實施資源:《鴿巢原理》名師教學課件

      二、學習設計

      (一)課堂設計

      1.談話導入

      師:我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請一位同學任意抽5張,不要讓我看到你抽的是什么牌。但是老師卻知道,其中至少有兩張牌是同種花色的,再找一個學生再次證明。

      師:看來我兩次都猜對了。謝謝你們。老師為什么能料事如神呢?到底有什么秘訣呢?學習完這節課以后大家就知道了。

      2.問題探究

      (1)呈現問題,引出探究

      出示例1:小明說“把4支鉛筆放進3個筆筒里。不管怎么放,總有一個筆筒里至少放進2支鉛筆”,他說得對嗎?請說明理由。

      師:“總有”是什么意思?“至少”有2支是什么意思?

      學生自由發言。

      預設:一定有

      不少于兩只,可能是2支,也可能是多于2支。

      就是不能少于2支。

      (2)體驗探究,建立模型

      師:好的,看來大家已經理解題目的意思了。那么把4支鉛筆放進3個筆筒里,可以怎樣放?有幾種不同的擺法?(我們用小棒和紙杯分別表示鉛筆和筆筒)請大家擺擺看,看有什么發現?

      小組活動:學生思考,擺放。

      ①枚舉法

      師:大部分同學都擺完了,誰能說說你們是怎么擺的。能不能邊擺邊給大家說。

      預設1:可以在第一個筆筒里放4支鉛筆,其它兩個空著。

      師:這種放法可以記作:(4,0,0),這4支鉛筆一定要放在第一個筆筒里嗎?

      (不一定,也可能放在其它筆筒里。)

      師:對,也可以記作(0,4,0)或者(0,0,4),但是,不管放在哪個筆筒里,總有一個筆筒里放進4支鉛筆。還可以怎么放?

      預設2:第一個筆筒里放3支鉛筆,第二個筆筒里放1支,第三個筆筒空著。

      師:這種放法可以記作(3,1,0)

      師:這3支鉛筆一定要放在第一個筆筒里嗎?

      (不一定)

      師:但是不管怎么放——總有一個筆筒里放進3支鉛筆。

      預設3:還可以在第一個筆筒里放2支,第二個筆筒里也放2支,第三個筆筒空著,記作(2,2,0)。

      師:這2支鉛筆一定要放在第一個和第二個筆筒里嗎?還可以怎么記?

      預設:也可能放在第三個筆筒里,可以記作(2,0,2)、(0,2,2)。

      預設4:還可以(2,1,1)

      或者(1,1,2)、(1,2,1)

      師:還有其它的放法嗎?

      (沒有了)

      師:在這幾種不同的放法中,裝得最多的那個筆筒里要么裝有4支鉛筆,要么裝有3支,要么裝有2支,還有裝得更少的情況嗎?(沒有)

      師:這幾種放法如果用一句話概括可以怎樣說?

      (裝得最多的筆筒里至少裝2支。)

      師:裝得最多的那個筆筒一定是第一個筆筒嗎?

      (不一定,哪個筆筒都有可能。)

      【設計意圖:在理解題目要求的基礎上,通過操作活動,用畫圖和數的分解來表示上述問題的結果,更直觀。再通過對“總有”“至少”的意思的單獨說明,讓學生更深入地理解“不管怎么放,總有一個鉛筆盒里至少有2支鉛筆”這句話。】

      ②假設法

      師:剛才我們研究了在所有放法中放得最多的筆筒里至少放進了幾支鉛筆。怎樣能使這個放得最多的筆筒里盡可能的少放?

      預設:先把鉛筆平均放,然后剩下的再放進其中一個筆筒里。

      師:“平均放”是什么意思?

      預設:先在每個筆筒里放一支鉛筆,還剩一支鉛筆,再隨便放進一個筆筒里。

      師:為什么要先平均分?

      學生自由發言。

      引導小結:因為這樣分,只分一次就能確定總有一個筆筒至少有幾支筆了。

      師:好!先平均分,每個筆筒中放1支,余下1支,不管放在哪個筆筒里,一定會出現總有一個筆筒里至少有2支鉛筆。

      師:這種思考方法其實是從最不利的情況來考慮,先平均分,每個筆筒里都放一支,就可以使放得較多的這個筆筒里的鉛筆盡可能的少。這樣,就能很快得出不管怎么放,總有一個筆筒里至少放進2支鉛筆。我們可以用算式把這種想法表示出來。

      【設計意圖:讓學生自己通過觀察比較得出“平均分”的方法,將解題經驗上升為理論水平,進一步強化方法、理清思路。】

      (3)提升思維,建立模型

      ①加深感悟

      師:如果把5支筆放進4個筆筒里呢?大家討論討論。

      預設:5支鉛筆放在4個筆筒里,先平均分,不管怎么放,總有一個筆筒里至少有2支鉛筆。

      師:把7支筆放進6個筆筒里呢?還用擺嗎?

      學生自由發言。

      師:把10支筆放進9個筆筒里呢?把100支筆放進99個筆筒里呢?

      師:你發現了什么?

      預設:我發現鉛筆的支數比筆筒數多1,不管怎么放,總有一個筆筒里至少有2支鉛筆。

      師:你的發現和他一樣嗎?

      學生自由發言。

      師:你們太了不起了!

      師:難道這個規律只有在鉛筆的支數比筆筒數多1的情況下才成立嗎?你認為還有什么情況?

      練一練:

      師:我們來看這道題“5只鴿子飛進了3個鴿籠,總有一個鴿籠至少飛進了2只鴿子,為什么?”

      師:說說你的想法。

      師:由此看來,只要分的物體比抽屜的數量多,就總有一個抽屜里至少放進2個物體。這就是最簡單的鴿巢原理。【板書課題】

      介紹狄利克雷:

      師:鴿巢原理最先是由19世紀的德國數學家狄利克雷提出來應用于解決問題的,后來人們為了紀念他從這么平凡的事情中發現的規律,就把這個規律用他的名字命名,叫狄利克雷原理,也叫抽屜原理。

      ②建立模型

      出示例2:一位同學學完了“鴿巢原理”后說:把7本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有3本書。他說得對嗎?

      學生獨立思考、討論后匯報:

      師:怎樣用算式表示我們的想法呢?生答,板書如下。

      7÷3=2本……1本(2+1=3)

      師:如果有10本書會怎么樣能?會用算式表示嗎?寫下來。

      出示:

      把10本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?

      10÷3=3本……1本(3+1=4)

      師:觀察板書你有什么發現?

      預設:我發現“總有一個抽屜里至少有2本”,只要用“商+1”就可以得到。

      師:那如果把8本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?請大家算一算。

      學生討論,匯報:

      8÷3=2……22+1=3

      8÷3=2……22+2=4

      師:到底是“商+1”還是“商+余數”呢?誰的結論對呢?在小組里進行研究、討論。

      師:認真觀察,你認為“抽屜里至少有幾本書”或“鴿籠里至少有幾只鴿子”可能與什么有關?

      預設:我認為根“商”有關,只要用“商+1”就可以得到。

      師:我們一起來看看是不是這樣(引導學生再觀察幾個算式)啊!果然是只要用“商+1”就可以了。

      引導總結:我們把要分的物體數量看做a,抽屜的個數看做n,如果滿足【a÷n=b……c(c≠0)】,那么不管怎樣放,總有一個抽屜里至少放(b+1)本書。這就是抽屜原理的一般形式。

      鴿巢原理可以廣泛地運用于生活中,來解決一些簡單的實際問題。解決這類問題時要注意把誰看做“抽屜”。

      【設計意圖:借助直觀操作和假設法,將問題轉化為“有余數的除法”的形式。可以使學生更好地理解“抽屜原理”的一般思路,經歷將具體問題“數學化”的過程,初步形成模型思想,發展抽象能力、推理能力和應用能力。考查目標1、2】

      3.鞏固練習

      (1)學習了“鴿巢原理”,我們再回到課前的“撲克牌”游戲,你現在能解釋一下嗎?(出示課件)學生思考,討論。

      (2)第69頁的做一做第1、2題。

      4.全課總結

      師:通過這節的學習,你有什么收獲?

      小結:今天這節課我們一起研究了鴿巢原理,也叫抽屜原理,解決抽屜原理問題關鍵就是找準物體和抽屜,在一些復雜的題中,還需要我們去制造抽屜。

      (三)課時作業

      1.一個小組共有13名同學,其中至少有幾名同學同一個月出生?

      答案:2名。

      解析:把1—12月看作是12個抽屜,13÷12=1…11+1=2【考查目標1、2】

      2.希望小學籃球興趣小組的同學中,最大的12歲,最小的6歲,最少從中挑選幾名學生,就一定能找到兩個學生年齡相同。

      答案:8名。

      解析:從6歲到12歲一共有7個年齡段,即6歲、7歲、8歲、9歲、10歲、11歲、12歲。用7+1=8(名)【考查目標1、2】

      第二課時鴿巢原理

      中原區汝河新區小學師芳

      一、學習目標

      (一)學習內容

      《義務教育教科書數學》(人教版)六年級下冊教材第70頁例3。本例是“鴿巢原理”的具體應用,也是運用“鴿巢原理”進行逆向思維的一個典型例子。要解決這個問題,可以把兩種“顏色”看成兩個“抽屜”,“同色”就意味著“同一個抽屜”,這樣就把“摸球問題”轉化為“抽屜問題”。

      (二)核心能力

      在理解鴿巢原理的基礎上,利用轉化的思想,把新知轉化為鴿巢問題,提高分析和推理的能力。

      (三)學習目標

      1.進一步理解“抽屜原理”,運用“抽屜原理”進行逆向思維,解決實際問題,體會轉化思想。

      2.經歷運用“抽屜原理”解決問題的過程,體驗觀察猜想,實踐操作的學習方法,提高分析和推理的能力。

      (四)學習重點

      引導學生把具體問題轉化為“抽屜原理”。

      (五)學習難點

      找出“抽屜”有幾個,再應用“抽屜原理”進行反向推理。

      (六)配套資源

      實施資源:《鴿巢原理》名師教學課件

      二、學習設計

      (一)課堂設計

      1.情境導入

      師:同學們,你們喜歡魔術嗎?今天老師給你們表演一個怎么樣?看,這是一副撲克牌,去掉兩張王牌,還剩下52張,請同學們任意挑出5張。(讓5名學生抽牌)好,見證奇跡的時刻到了!你們手里的牌至少有2張是同花色的。

      師:神奇吧!你們想不想表演一個呢?

      師:現在老師這里還是剛才這副牌,請你抽牌,至少抽多少張牌才能保證至少有2張牌的點數相同呢?

      在學生抽的基礎上揭示課題。教師:這節課我們學習利用“鴿巢原理”解決生活中的實際問題。(板書課題:鴿巢原理)

      2.探究新知

      (1)學習例3

      ①猜想

      出示例3:盒子里有同樣大小的'紅球和藍球各4個,要想摸出的球一定有2個同色的,至少要摸出幾個球?

      預設:2個、3個、5個…

      ②驗證

      師:我們的猜想是不是正確呢?我們可以用畫一畫、寫一寫的方法來說明理由,并把驗證的過程進行整理。

      可以用表格進行整理,課件出示空白表格:

      學生獨立思考填表,小組交流。

      全班匯報。

      匯報時,指名按猜測的不同情況逐一驗證,說明理由,看看解決這個問題是否有規律可循。

      課件匯總,思考:從這里你能發現什么?

      教師:通過驗證,說說你們得出什么結論。

      小結:盒子里有同樣大小的紅球和藍球各4個。想要摸出的球一定有2個同色的,最少要摸3個球。

      ③小結

      師:為什么球的個數一定要比抽屜數多?而且是多1呢?

      預設:球有兩種顏色,就是兩個抽屜,從最不利的情況考慮摸2個球都不同色,就必須多摸一個,所以球一定要比抽屜數多1。其實摸4個球、5個球或者更多球,都能保證一定有2個球同色,但問題中要求摸的球數必須“至少”,所以摸3個球就夠了。

      師:說得好!運用學過的知識、逆推的方法說明了“只要摸出的球比球的顏色種數至少多1,就能保證有2個球同色”。這一結論是正確的。

      板書:只要摸出的球比球的顏色種數至少多1,就能保證有2個球同色。或者說只要物體數比抽屜數至少多1,就能保證有一個抽屜至少放2個物體。

      (2)引導學生把具體問題轉化成“抽屜原理”。

      師:生活中像這樣的例子很多,我們不能總是猜測或動手試驗,能不能把這道題與前面講的“抽屜原理”聯系起來思考呢?

      思考:①摸球問題與“抽屜原理”有怎樣的聯系?

      ②應該把什么看成“抽屜”?有幾個“抽屜”?要分別放的東西是什么?

      學生討論,匯報結果,教師講評:因為有紅、藍兩種顏色的球,可以把兩種“顏色”看成兩個“抽屜”,“同色”就意味著“同一個抽屜”。這樣把“摸球問題”轉化成“抽屜問題”,即“只要分的物體比抽屜多1,就能保證有一個抽屜至少有2個同色球”。

      從最特殊的情況想起,假設兩種顏色的球各拿了1個,也就是在兩個抽屜里各拿了1個球,不管從哪個抽屜里再拿1個球,都有2個球是同色的。假設至少摸a個球,即a÷2=1……b,當b=1時,a就最小。所以一次至少應拿出1×2+1=3個球,就能保證有2個球同色。

      結論:要保證摸出的球有兩個同色,摸出的球數至少要比抽屜數多1。

      3.鞏固練習

      (1)完成教材第70頁“做一做”第1題。

      (2)完成教材第70頁“做一做”第2題。

      4.課堂總結

      師:這節課你學到了什么知識?談談你的收獲和體驗。

      (三)課時作業

      1.有黑色、白色、藍色、紅色手套各10只(不分左、右手),至少要拿出多少只(拿的時候不看顏色),才能在拿出的手套中,一定有兩只不同顏色的手套?

      答案:5只。

      解析:4個顏色相當于4個抽屜,保證一定有兩只不同的顏色,相當于分的物體個數比抽屜多1。【考查目標1、2】

      2.一個魚缸里有很多條魚,共有5個品種。至少撈出多少條魚,才能保證有4條魚的品種相同?

      答案:16條。

      解析:5個品種相當于5個抽屜,保證有4條魚品種相同,所放物品的個數是:5×3+1=16。【考查目標1、2】

    人教版六年級下冊數學教案 篇4

      教學內容:

      人教版小學數學教材六年級下冊第107~108頁例2及相關練習。

      教學目標:

      1.在學習過程中引導學生探索研究數與形之間的聯系,尋找規律,發現規律,學會利用圖形來解決一些有關數的問題。

      2.讓學生經歷猜想與驗證的過程,體會和掌握數形結合、歸納推理、極限等基本數學思想。

      重點難點:

      探索數與形之間的聯系,尋找規律,并利用圖形來解決有關數的問題。

      教學準備:

      教學課件。

      教學過程:

      一、直接導入,揭示課題

      同學們,上節課我們探究了圖形中隱藏的數的'規律,今天我們繼續研究有關數與圖形之間的聯系。(板書課題:數與形)

      【設計意圖】直奔主題,簡潔明了,有利于學生清楚本節課學習的內容和方向。

      二、探索發現,學習新知

      (一)教師與學生比賽算題

      1.教師:你知道等于多少嗎?(學生:)

      教師:那等于多少呢?(學生計算需要時間)教師緊接著說:我已經算好了,是,不信你算算。

      2.只要按照這個分子是1,分母依次擴大2倍的規律寫下去,不管有多少個分數相加,我都能立馬算出結果。有的同學不相信是嗎?咱們試試就知道。為了方便,我請我們班計算最快的同學跟我一起算,看看結果是否相同。誰來出題?

      在學生出題后,老師都能立刻算出結果,并且是正確的,學生感到很驚奇。

      3.知道我為什么算得那么快嗎?因為我有一件神秘的法寶,你們也想知道嗎?

      【設計意圖】一方面,教師通過與學生比賽計算速度,且每次老師勝利,使學生產生好奇心,再通過教師幽默的語言,吸引學生的注意力,激發學生的學習興趣和求知欲。另一方面,為接下來學習例題做好鋪墊。

      (二)借助正方形探究計算方法

      1.這件法寶就是(師邊說邊課件出示一個正方形),讓我們來把它變一變,聰明的同學們一定能看明白是怎么回事了。

      2.進行演示講解。

      (1)演示:用一個正方形表示1,先取它的一半就是正方形的(涂紅),再剩下部分的一半就是正方形的(涂黃)。

    人教版六年級下冊數學教案 篇5

      教學內容:

      成數(課本第9頁例2)

      教學目標:

      1、結合具體事物,經歷認識成數,解答有關成數的實際問題的過程。。

      2、對成數問題有好奇心,獲得運用已有知識解決問題的成功體驗。

      教學重點:

      理解成數的意義。

      教學難點:

      解決解答有關成數的`實際問題。

      教學過程:

      一、復習

      1、填空

      ①四折是十分之( ),改寫成百分數是( )。

      ②六折是十分之( ),改寫成百分數是( )。

      ③七五折是十分之( ),改寫成百分數是( )。

      2、商店里花了56元錢買了一條牛仔褲,因為那兒的牛仔褲正在打七折銷售,這條牛仔褲原價多少元?

      二、創設情境,導入新課

      同學們有聽農民們說:今年我家的稻谷比去年增產二成,我家的桂皮曬干后只有五成等嗎?他們說的是什么意思呢?原來商業上與百分數有關的術語是折扣,而農業上與百分數有關的術語就是成數。滲透環保教育

      三、探究體驗

      (一)成數表示一個數是另一個數的十分之幾,通稱幾成。例如一成就是十分之一,改寫成百分數就是10%。

      1、讓學生嘗試把二成及三成五改寫成百分數。

      2、讓學生說說除了農業上使用成數,還有哪些行業是使用了成數的知識。

      3、練習:將下列成數改寫成百分數。

      二成=( )%; 四成五=( )%; 七成二=( )%。

      (二)教學例2

      1、出示例題,某工廠去年用電350萬千瓦時,今年比去年節電二成五,今年用電多少萬千瓦時?

      2、讓學生讀題,分析題意,今年比去年節電二成五怎么理解?是以哪個量為單位1?

      3、學生嘗試獨立分析問題,解決問題,教師巡堂了解情況,指導個別學習有困難的學生。

      4、理解節電二成五就是比去年節省了百分之二十五的意思。從而根據求一個數的百分之幾是多少的解法列出算式和解答。

      350(1-25%)=262.5(萬千瓦時)

      或者引導學生列出

      350-35025%=262.5(萬千瓦時)

      四、鞏固練習

      1、三成=( )%; 五成六=( )%; 八成三=( )%;

      2、第9頁做一做

      3、解決問題

      (1)某鄉去年的水稻產量是1500噸,今年因為受到天氣災害的影響水稻產量只有去年的八成五,今年的水稻產量是多少噸?

      (2)鼎湖山20xx年累計旅游人次是18萬人次,20xx年累計旅游人次比20xx年增加一成五,20xx年累計旅游人次是多少?(出外玩要做好垃圾分類)

      (3)我校20xx年的在校生人數有820人,比20xx年在校生人數減少了二成,我校20xx年的在校生人數是多少?

      (4)某鞋廠20xx年的年產量為30萬雙,20xx年年產量比20xx年增加了一成六,20xx年年產量又比20xx年增加一成,這個鞋廠20xx年的年產量是多少萬雙?

      五、課堂總結

      這節課你收獲了什么?

    人教版六年級下冊數學教案 篇6

      教學內容:

      九年義務教育六年制第十二冊第36~37頁例4、例5及做一做,練習八的第1、2題。

      教學目標:

      1、理解圓柱體體積公式的推導過程,并會正確地計算出圓柱的體積。

      2、培養學生的遷移能力、邏輯思維能力,并進一步發展空間觀念。

      3、引導學生探索和解決問題,體驗轉化及極限的思想方法。

      教學重點:圓柱體體積的計算.

      教學難點:理解圓柱體體積公式的推導過程.

      教具:多媒體課件、圓柱形容器、水、橡皮泥。

      教學過程:

      一、激凝導入

      師: 大家都知道,水是生命之源!我們要養成節約用水的好習慣。可前兩天,老師家的水龍頭出了問題,你們看,一刻鐘就滴了這么多水。(出示裝有水的圓柱容器。)

      (1)啟發思考:容器里面的水形成了什么形狀?(圓柱)你能知道這些水的體積嗎?你能想什么辦法知道它的體積?

      (2)生回答。

      2、出示橡皮泥捏成的圓柱體。

      那你有辦法求出這個圓柱體橡皮泥的體積嗎?

      生(熱情的):老師將它捏成長方體或正方體就可以了!

      3、創設問題情境。

      師小結:這么說同學們都有辦法將一些圓柱形的物體轉化為長方形或正方體來求它們的體積,大家真了不起!那如果我們要求某些建筑如(出示課件:人民大會堂東門前的門柱和壓路機大前輪)雄偉的人民大會堂東門前的一個圓柱形門柱的體積,或者求壓路機圓柱形大前輪的體積,還能用剛才同學們想出來的辦法嗎?(不能)

      那怎么辦?

      學生試說出自己的辦法。

      師:看起來前面這些方法雖然可行,但有一定的局限性,我們必須找到一個解決任意圓柱體積的方法才行,是不是?今天,就讓我們來共同研究解決任意圓柱體積的方法。(板書課題:圓柱的.體積)

      二、經歷體驗、探究新知

      1、推導圓柱的體積公式。

      師:你們打算怎么去研究圓柱的體積?

      小組同學討論研究的方法。

      2、學生動手操作感知

      (1)學生以小組為單位操作體驗。(操作學具,進行拼組)。

      (2)學生小組匯報交流:

      近似長方體的體積等于圓柱的體積;近似長方體的底面積等于圓柱的底面積;近似長方體的高就是圓柱的高。根據長方體的體積等于底面積乘高,得出圓柱體的體積也等于底面積乘高。。。。。。

      (3)想像:如果把圓柱像這樣等分成32份、64、128份后再拼起來,會怎么樣?有怎樣的變化趨勢?分成無數份呢?(平均分的份數越多,拼起來的近似長方體的長越近似于直線,這樣整個圖形越近似于長方體。如果照這樣分成無限多份,拼出的圖形就是長方體)

      3、教師課件演示圓柱轉化成長方體的過程。

      4、師生共同推導出圓柱的體積公式:

      長方體的體積=底面積高

      圓柱的體積=底圓柱面積高

      V = Sh

      5、鞏固公式

      ①V、S、h各表示什么?

      ②知道哪些條件就可以求圓柱的體積?

      а、知道底面積和高可以直接用公式計算圓柱的體積;

      b、知道底面半徑和高,可以先計算出底面積,再計算體積;

      c、知道底面直徑和高,要先算出半徑,再算出底面積,最后才能計算出圓柱的體積。

      學生回答后師板書。

      6、教學例4、例5。

      課件分別出示例4、例5,讓學生找出題中的條件和問題,然后獨立完成,集體訂正。

      三、實踐練習

      1、出示課件:人民大會堂東門前的門柱和壓路機大前輪的有關數據求出它的體積。

      2、拓展延伸:同學們到工廠參加社會實踐。工人師傅拿出一塊長、寬、高分別是6厘米、5厘米、4厘米的長方體,問:同學們,現在我們要把這塊木料加工成一個體積最大的圓柱體,你們想一想,圓柱的底面直徑和高應是多少?小林想了想說:我知道了。

      同學們,你們知道小林是怎樣想的嗎?

      四、課堂總結;

      通過本節課的學習,你有什么收獲?

    人教版六年級下冊數學教案 篇7

      設計說明

      “反比例”是在學生學習了“比和比例”和“正比例”的基礎上進行教學的。本著“學生是學習的主體”的理念,在本節課的教學中,最大限度地為學生提供了自主探究的機會。

      1.借助定義、實例,滲透函數思想。

      教學伊始,借助正比例的意義和生活實例,使學生進一步體會函數思想,充分理解成正比例關系的兩種量的比值不變的特點,為學生探究成反比例關系的兩種量之間的關系以及理解反比例的意義和特點奠定良好的基礎。

      2.借助具體情境,在觀察、討論中發現規律。

      教學中,通過具體情境,引導學生在觀察、討論中發現“把相同體積的水倒入底面積不同的杯子中,水面的高度不同”及“杯子的`底面積×水的高度=水的體積”這一規律,使學生通過自己的努力,歸納、概括出反比例的意義及特點。

      3.借助已有的學習經驗總結反比例關系式。

      因為正、反比例體現的都是兩種相關聯的量之間的關系,且正比例關系表達式學生已經掌握,所以在總結反比例關系表達式時,教師要引導學生根據已有的經驗自己總結出反比例關系表達式,體驗成功的喜悅。

      課前準備

      教師準備 PPT課件

      學生準備 玻璃杯 直尺 水 實驗記錄單

      教學過程

      ⊙復習引入

      1.復習。

      課件出示:一個圓柱形水箱,底面積是0.78平方米,高是1.2米,這個水箱能裝水多少立方米?

      (1)引導學生獨立解決問題。

      (2)提問:你是根據什么公式進行計算的?

      預設

      生:圓柱的體積=底面積×高。

      (3)師追問:圓柱的體積、底面積和高之間還有怎樣的數量關系呢?在什么情況下其中的兩種量成正比例關系?

      預設

      生1:底面積=圓柱的體積÷高,高=圓柱的體積÷底面積。

      生2:如果底面積一定,圓柱的體積與高就成正比例;如果高一定,圓柱的體積與底面積就成正比例。

      2.引入課題。

      如果圓柱的體積一定,那么底面積與高又成怎樣的關系呢?這就是本節課我們要學習的內容。(板書課題:反比例)

      設計意圖:通過復習有關圓柱的體積問題以及列舉圓柱的體積、底面積和高之間的關系,在培養學生思維完整性的同時,為新知的學習作鋪墊。

      ⊙探究新知

      1.在具體情境中初步感知成反比例關系的量。

      (1)課件出示教材47頁例2,引導學生結合問題進行觀察。

      師:觀察情境圖,理解圖意后,觀察下表,先一行一行地觀察,再一列一列地觀察,并思考下面的問題。

      杯子的底面積與水的高度的變化情況如下表。

    杯子的底面積/cm2


    10


    15


    20


    30


    60



    水的高度/cm


    30


    20


    15


    10


    5



      ①表中有哪兩種量?

      ②水的高度是怎樣隨著杯子底面積的大小變化而變化的?

      ③相對應的杯子的底面積與水的高度的乘積分別是多少?

      (2)學生思考后在小組內交流。

      (3)全班交流。

      預設

      生1:有杯子的底面積和水的高度這兩種量。

      生2:杯子的底面積增大,水的高度降低;杯子的底面積減小,水的高度升高。

      生3:相對應的杯子的底面積與水的高度的乘積都是300,是一定的,也就是杯子的底面積×水的高度=水的體積(一定)。

      (4)明確什么是成反比例的量。

      因為水的體積一定,所以水的高度隨著杯子的底面積的變化而變化。杯子的底面積增大,水的高度反而降低;杯子的底面積減小,水的高度反而升高。但是無論怎樣變化,杯子的底面積和水的高度的乘積總是一定的,所以我們就把杯子的底面積和水的高度這兩種量叫做成反比例的量,它們的關系叫做反比例關系。

    【人教版六年級下冊數學教案】相關文章:

    人教版六年級下冊數學教案06-17

    人教版六年級下冊數學教案03-14

    人教版六年級下冊數學教案06-30

    人教版六年級下冊數學教案(通用)08-26

    人教版六年級下冊數學教案(精選10篇)06-07

    人教版六年級下冊數學教案(精選9篇)03-01

    人教版六年級下冊數學教案8篇01-13

    人教版六年級下冊數學教案(8篇)01-13

    人教版六年級下冊數學教案 6篇05-14

    人教版六年級下冊數學教案7篇11-19

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      中国Av网站在线播放 | 亚洲男人综合久久综合天堂 | 日韩、欧美、中文三级 | 日本搔妇在线视频 | 日本乱理伦片在线观看胸大 | 亚洲一区二区三区在线看 |