1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>

    八年級數(shù)學(xué)教案

    時間:2022-08-27 12:48:23 八年級數(shù)學(xué)教案 我要投稿

    關(guān)于八年級數(shù)學(xué)教案范文集錦八篇

      作為一無名無私奉獻的教育工作者,總歸要編寫教案,教案是實施教學(xué)的主要依據(jù),有著至關(guān)重要的作用。快來參考教案是怎么寫的吧!以下是小編為大家整理的八年級數(shù)學(xué)教案8篇,歡迎閱讀,希望大家能夠喜歡。

    關(guān)于八年級數(shù)學(xué)教案范文集錦八篇

    八年級數(shù)學(xué)教案 篇1

      一、平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。

      1.平移

      2.平移的性質(zhì):⑴經(jīng)過平移,對應(yīng)點所連的線段平行且相等;⑵對應(yīng)線段平行且相等,對應(yīng)角相等。⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。(4)平移后的圖形與原圖形全等。

      3.簡單的平移作圖

      ①確定個圖形平移后的位置的條件:

      ⑴需要原圖形的位置;⑵需要平移的方向;⑶需要平移的距離或一個對應(yīng)點的位置。

      ②作平移后的圖形的方法:

      ⑴找出關(guān)鍵點;⑵作出這些點平移后的對應(yīng)點;⑶將所作的對應(yīng)點按原來方式順次連接,所得的;

      二、旋轉(zhuǎn):在平面內(nèi),將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn),這個定點稱為旋轉(zhuǎn)中心,轉(zhuǎn)動的角稱為旋轉(zhuǎn)角。

      1.旋轉(zhuǎn)

      2.旋轉(zhuǎn)的性質(zhì)

      ⑴旋轉(zhuǎn)變化前后,對應(yīng)線段,對應(yīng)角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。

      ⑵旋轉(zhuǎn)過程中,圖形上每一個點都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同的角度。

      ⑶任意一對對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對應(yīng)點到旋轉(zhuǎn)中心的距離相等。

      ⑷旋轉(zhuǎn)前后的'兩個圖形全等。

      3.簡單的旋轉(zhuǎn)作圖

      ⑴已知原圖,旋轉(zhuǎn)中心和一對對應(yīng)點,求作旋轉(zhuǎn)后的圖形。

      ⑵已知原圖,旋轉(zhuǎn)中心和一對對應(yīng)線段,求作旋轉(zhuǎn)后的圖形。

      ⑶已知原圖,旋轉(zhuǎn)中心和旋轉(zhuǎn)角,求作旋轉(zhuǎn)后的圖形。

      三、分析組合圖案的形成

      ①確定組合圖案中的“基本圖案”

      ②發(fā)現(xiàn)該圖案各組成部分之間的內(nèi)在聯(lián)系

      ③探索該圖案的形成過程,類型有:⑴平移變換;⑵旋轉(zhuǎn)變換;⑶軸對稱變換;⑷旋轉(zhuǎn)變換與平移變換的組合;

      ⑸旋轉(zhuǎn)變換與軸對稱變換的組合;⑹軸對稱變換與平移變換的組合。

    八年級數(shù)學(xué)教案 篇2

      一、學(xué)生起點分析

      通過前一章《勾股定理》的學(xué)習(xí),學(xué)生已經(jīng)明白什么是勾股數(shù),但也發(fā)現(xiàn)并不是所有的直角三角形的邊長都是勾股數(shù),甚至有些直角三角形的邊長連有理數(shù)都不是,例如:①腰長為1的等腰直角三角形的底邊長不是有理數(shù),②兩條直角邊分別為1,2的直角三角形的斜邊長不是有理數(shù),這為引入“新數(shù)”奠定了必要性.

      二、教學(xué)任務(wù)分析

      《數(shù)不夠用了》是義務(wù)教育課程標準北師大版實驗教科書八年級(上)第二章《實數(shù)》的第一節(jié). 本節(jié)內(nèi)容安排了2個課時完成,第1課時讓學(xué)生感受無理數(shù)的存在,初步建立無理數(shù)的印象,結(jié)合勾股定理知識,會根據(jù)要求畫線段;第2課時借助計算器感受無理數(shù)是無限不循環(huán)小數(shù),會判斷一個數(shù)是無理數(shù).本課是第1課時,學(xué)生將在具體的實例中,通過操作、估算、分析等活動,感受無理數(shù)的客觀存在性和引入的必要性,并能判斷一個數(shù)是不是有理數(shù).

      本節(jié)課的教學(xué)目標是:

      ①通過拼圖活動,讓學(xué)生感受客觀世界中無理數(shù)的存在;

      ②能判斷三角形的某邊長是否為無理數(shù);

      ③學(xué)生親自動手做拼圖活動,培養(yǎng)學(xué)生的動手能力和探索精神;

      ④能正確地進行判斷某些數(shù)是否為有理數(shù),加深對有理數(shù)和無理數(shù)的理解;

      三、教學(xué)過程設(shè)計

      本節(jié)課設(shè)計了6個教學(xué)環(huán)節(jié):

      第一環(huán)節(jié):置疑;第二環(huán)節(jié):課題引入;第三環(huán)節(jié):獲取新知;第四環(huán)節(jié):應(yīng)用與鞏固;第五環(huán)節(jié):課堂小結(jié);第六環(huán)節(jié):作業(yè)布置.

      第一環(huán)節(jié):質(zhì)疑

      內(nèi)容:【想一想】

      ⑴一個整數(shù)的平方一定是整數(shù)嗎?

      ⑵一個分數(shù)的平方一定是分數(shù)嗎?

      目的:作必要的知識回顧,為第二環(huán)節(jié)埋下伏筆,便于后續(xù)問題的說理.

      效果:為后續(xù)環(huán)節(jié)的進行起了很好的鋪墊的作用

      第二環(huán)節(jié):課題引入

      內(nèi)容:1.【算一算】

      已知一個直角三角形的兩條直角邊長分別為1和2,算一算斜邊長 的平方 ,并提出問題: 是整數(shù)(或分數(shù))嗎?

      2.【剪剪拼拼】

      把邊長為1的兩個小正方形通過剪、拼,設(shè)法拼成一個大正方形,你會嗎?

      目的:選取客觀存在的“無理數(shù)“實例,讓學(xué)生深刻感受“數(shù)不夠用了”.

      效果:巧設(shè)問題背景,順利引入本節(jié)課題.

      第三環(huán)節(jié):獲取新知

      內(nèi)容:【議一議】→【釋一釋】→【憶一憶】→【找一找】

      【議一議】: 已知 ,請問:① 可能是整數(shù)嗎?② 可能是分數(shù)嗎?

      【釋一釋】:釋1.滿足 的 為什么不是整數(shù)?

      釋2.滿足 的 為什么不是分數(shù)?

      【憶一憶】:讓學(xué)生回顧“有理數(shù)”概念,既然 不是整數(shù)也不是分數(shù),那么 一定不是有理數(shù),這表明:有理數(shù)不夠用了,為“新數(shù)”(無理數(shù))的學(xué)習(xí)奠定了基礎(chǔ)

      【找一找】:在下列正方形網(wǎng)格中,先找出長度為有理數(shù)的線段,再找出長度不是有理數(shù)的線段

      目的:創(chuàng)設(shè)從感性到理性的認知過程,讓學(xué)生充分感受“新數(shù)”(無理數(shù))的存在,從而激發(fā)學(xué)習(xí)新知的興趣

      效果:學(xué)生感受到無理數(shù)產(chǎn)生的'過程,確定存在一種數(shù)與以往學(xué)過的數(shù)不同,產(chǎn)生了學(xué)習(xí)新數(shù)的必要性.

      第四環(huán)節(jié):應(yīng)用與鞏固

      內(nèi)容:【畫一畫1】→【畫一畫2】→【仿一仿】→【賽一賽】

      【畫一畫1】:在右1的正方形網(wǎng)格中,畫出兩條線段:

      1.長度是有理數(shù)的線段

      2.長度不是有理數(shù)的線段

      【畫一畫2】:在右2的正方形網(wǎng)格中畫出四個三角形 (右1)

      2.三邊長都是有理數(shù)

      2.只有兩邊長是有理數(shù)

      3.只有一邊長是有理數(shù)

      4.三邊長都不是有理數(shù)

      【仿一仿】:例:在數(shù)軸上表示滿足 的

      解: (右2)

      仿:在數(shù)軸上表示滿足 的

      【賽一賽】:右3是由五個單位正方形組成的紙片,請你把

      它剪成三塊,然后拼成一個正方形,你會嗎?試試看! (右3)

      目的:進一步感受“新數(shù)”的存在,而且能把“新數(shù)”表示在數(shù)軸上

      效果:加深了對“新知”的理解,鞏固了本課所學(xué)知識.

      第五環(huán)節(jié):課堂小結(jié)

      內(nèi)容:

      1.通過本課學(xué)習(xí),感受有理數(shù)又不夠用了, 請問你有什么收獲與體會?

      2.客觀世界中,的確存在不是有理數(shù)的數(shù),你能列舉幾個嗎?

      3.除了本課所認識的非有理數(shù)的數(shù)以外,你還能找到嗎?

      目的:引導(dǎo)學(xué)生自己小結(jié)本節(jié)課的知識要點及數(shù)學(xué)方法,使知識系統(tǒng)化.

      效果:學(xué)生總結(jié)、相互補充,學(xué)會進行概括總結(jié).

      第六環(huán)節(jié):布置作業(yè)

      習(xí)題2.1

      六、教學(xué)設(shè)計反思

      (一)生活是數(shù)學(xué)的源泉,興趣是學(xué)習(xí)的動力

      大量事實都證明一點,與生活貼得越近的東西最容易引起學(xué)習(xí)者的濃厚興趣,才能激發(fā)學(xué)習(xí)者的學(xué)習(xí)積極性,學(xué)習(xí)才可能是主動的.本節(jié)課中教師首先用拼圖游戲引發(fā)學(xué)生學(xué)習(xí)的欲望,把課程內(nèi)容通過學(xué)生的生活經(jīng)驗呈現(xiàn)出來,然后進行大膽置疑,生活中的數(shù)并不都是有理數(shù),那它們究竟是什么數(shù)呢?從而引發(fā)了學(xué)生的好奇心,為獲取新知,創(chuàng)設(shè)了積極的氛圍.在教學(xué)中,不要盲目的搶時間,讓學(xué)生能夠充分的思考與操作.

      (二)化抽象為具體

      常言道:“數(shù)學(xué)是鍛煉思維的體操”,數(shù)學(xué)教師應(yīng)通過一系列數(shù)學(xué)活動開啟學(xué)生的思維,因此對新數(shù)的學(xué)習(xí)不能僅僅停留于感性認識,還應(yīng)要求學(xué)生充分理解,并能用恰當(dāng)數(shù)學(xué)語言進行解釋.正是基于這個原因,在教學(xué)過程中,刻意安排了一些環(huán)節(jié),加深對新數(shù)的理解,充分感受新數(shù)的客觀存在,讓學(xué)生覺得新數(shù)并不抽象.

      (三)強化知識間聯(lián)系,注意糾錯

      既然稱之為“新數(shù)”,那它當(dāng)然不是有理數(shù),亦即不是整數(shù),也不是分數(shù),所以“新數(shù)”不可以用分數(shù)來表示,這為進一步學(xué)習(xí)“新數(shù)”,即第二課時教學(xué)埋下了伏筆,在教學(xué)中,要著重強調(diào)這一點:“新數(shù)”不能表示成分數(shù),為無理數(shù)的教學(xué)奠好基.

    八年級數(shù)學(xué)教案 篇3

      知識目標:理解函數(shù)的概念,能準確識別出函數(shù)關(guān)系中的自變量和函數(shù)

      能力目標:會用變化的量描述事物

      情感目標:回用運動的觀點觀察事物,分析事物

      重點:函數(shù)的概念

      難點:函數(shù)的概念

      教學(xué)媒體:多媒體電腦,計算器

      教學(xué)說明:注意區(qū)分函數(shù)與非函數(shù)的關(guān)系,學(xué)會確定自變量的取值范圍

      教學(xué)設(shè)計:

      引入:

      信息1:小明在14歲生日時,看到他爸爸為他記錄的以前各年周歲時體重數(shù)值表,你能看出小明各周歲時體重是如何變化的嗎?

      新課:

      問題:(1)如圖是某日的氣溫變化圖。

      ① 這張圖告訴我們哪些信息?

      ② 這張圖是怎樣來展示這天各時刻的溫度和刻畫這鐵的氣溫變化規(guī)律的?

      (2)收音機上的'刻度盤的波長和頻率分別是用米(m)和赫茲(KHz)為單位標刻的,下表中是一些對應(yīng)的數(shù):

      ① 這表告訴我們哪些信息?

      ② 這張表是怎樣刻畫波長和頻率之間的變化規(guī)律的,你能用一個表達式表示出來嗎?

      一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有惟一確定的值與其對應(yīng),那么我們就說x是自變量,y是x的函數(shù)。如果當(dāng)x=a時,y=b,那么b叫做當(dāng)自變量的值為a時的函數(shù)值。

      范例:例1 判斷下列變量之間是不是函數(shù)關(guān)系:

      (5) 長方形的寬一定時,其長與面積;

      (6) 等腰三角形的底邊長與面積;

      (7) 某人的年齡與身高;

      活動1:閱讀教材7頁觀察1. 后完成教材8頁探究,利用計算器發(fā)現(xiàn)變量和函數(shù)的關(guān)系

      思考:自變量是否可以任意取值

      例2 一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為0.1L/km。

      (1) 寫出表示y與x的函數(shù)關(guān)系式.

      (2) 指出自變量x的取值范圍.

      (3) 汽車行駛200km時,油箱中還有多少汽油?

      解:(1)y=50-0.1x

      (2)0500

      (3)x=200,y=30

      活動2:練習(xí)教材9頁練習(xí)

      小結(jié):(1)函數(shù)概念

      (2)自變量,函數(shù)值

      (3)自變量的取值范圍確定

      作業(yè):18頁:2,3,4題

    八年級數(shù)學(xué)教案 篇4

      單元(章)主題第三章 直棱柱任課教師與班級

      本課(節(jié))課題3.1 認識直棱柱第 1 課時 / 共 課時

      教學(xué)目標(含重點、難點)及

      設(shè)置依據(jù)教學(xué)目標

      1、了解多面體、直棱柱的有關(guān)概念.

      2、會認直棱柱的側(cè)棱、側(cè)面、底面.

      3、了解直棱柱的側(cè)棱互相平行且相等,側(cè)面是長方形(含正方形)等特征.

      教學(xué)重點與難點

      教學(xué)重點:直棱柱的有關(guān)概念.

      教學(xué)難點:本節(jié)的例題描述一個物體的形狀,把它看成怎樣的兩個幾何體的組合,都需要一定的空間想象能力和表達能力.

      教學(xué)準備每個學(xué)生準備一個幾何體,(分好學(xué)習(xí)小組)教師準備各種直棱柱和長方體、立方體模型

      教 學(xué) 過 程

      內(nèi)容與環(huán)節(jié)預(yù)設(shè)、簡明設(shè)計意圖二度備課(即時反思與糾正)

      一、創(chuàng)設(shè)情景,引入新課

      師:在現(xiàn)實生活中,像筆筒、西瓜、草莓、禮品盒等都呈現(xiàn)出了立體圖形的形狀,在你身邊,還有沒有這樣類似的立體圖形呢?

      析:學(xué)生很容易回答出更多的答案。

      師:(繼續(xù)補充)有許多著名的建筑,像古埃及的金字塔、巴黎的`艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風(fēng)光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應(yīng)用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。

      二、合作交流,探求新知

      1.多面體、棱、頂點概念:

      師:(出示長方體,立方體模型)這是我們熟悉的立體圖形,它們是有幾個平面圍成的?都有什么相同特點?

      析:一個同學(xué)回答,然后小結(jié)概念:由若干個平面圍成的幾何體,叫做多面體。多面體上相鄰兩個面之間的交線叫做多面體的棱,幾個面的公共頂點叫做多面體的頂點

      2.合作交流

      師:以學(xué)習(xí)小組為單位,拿出事先準備好的幾何體。

      學(xué)生活動:(讓學(xué)生從中閉眼摸出某些幾何體,邊摸邊用語言描

      述其特征。)

      師:同學(xué)們再討論一下,能否把自己的語言轉(zhuǎn)化為數(shù)學(xué)語言。

      學(xué)生活動:分小組討論。

      說明:真正體現(xiàn)了“以生為本”。讓學(xué)生在主動探究中發(fā)現(xiàn)知識,充分發(fā)揮了學(xué)生的主體作用和教師的主導(dǎo)作用,課堂氣氛活躍,教師教的輕松,學(xué)生學(xué)的愉快。

      師:請大家找出與長方體,立方體類似的物體或模型。

      析:舉出實例。(找出區(qū)別)

      師:(總結(jié))棱柱分為之直棱柱和斜棱柱。(根據(jù)其側(cè)棱與底面是否垂直)根據(jù)底面多邊形的邊數(shù)而分為直三棱柱、直四棱柱……直棱柱有以下特征:

      有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;

      側(cè)面都是長方形含正方形。

      長方體和正方體都是直四棱柱。

      3.反饋鞏固

      完成“做一做”

      析:由第(3)小題可以得到:

      直棱柱的相鄰兩條側(cè)棱互相平行且相等。

      4.學(xué)以至用

      出示例題。(先請學(xué)生單獨考慮,再作講解)

      析:引導(dǎo)學(xué)生著重觀察首飾盒的側(cè)面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學(xué)生養(yǎng)成發(fā)現(xiàn)問題,解決問題的創(chuàng)造性思維習(xí)慣)

      最后完成例題中的“想一想”

      5.鞏固練習(xí)(學(xué)生練習(xí))

      完成“課內(nèi)練習(xí)”

      三、小結(jié)回顧,反思提高

      師:我們這節(jié)課的重點是什么?哪些地方比較難學(xué)呢?

      合作交流后得到:重點直棱柱的有關(guān)概念。

      直棱柱有以下特征:

      有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;

      側(cè)面都是長方形含正方形。

      例題中的把首飾盒看成是由兩個直三棱柱、直四棱柱的組合,或著是兩個直四棱柱的組合需要一定的空間想象能力和表達能力。這一點比較難。

      板書設(shè)計

      作業(yè)布置或設(shè)計作業(yè)本及課時特訓(xùn)

    八年級數(shù)學(xué)教案 篇5

      教學(xué)目標:

      1.了解算術(shù)平方根的概念,會用根號表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負性。

      2.了解開方與乘方互為逆運算,會用平方運算求某些非負數(shù)的算術(shù)平方根。

      教學(xué)重點:

      算術(shù)平方根的概念。

      教學(xué)難點:

      根據(jù)算術(shù)平方根的概念正確求出非負數(shù)的算術(shù)平方根。

      教學(xué)過程

      一、情境導(dǎo)入

      請同學(xué)們欣賞本節(jié)導(dǎo)圖,并回答問題,學(xué)校要舉行金秋美術(shù)作品比賽,小歐很高興,他想裁出一塊面積為25 的正方形畫布,畫上自己的得意之作參加比賽,這塊正方形畫布的邊長應(yīng)取多少 ?如果這塊畫布的面積是 ?這個問題實際上是已知一個正數(shù)的平方,求這個正數(shù)的問題?

      這就要用到平方根的概念,也就是本章的主要學(xué)習(xí)內(nèi)容.這節(jié)課我們先學(xué)習(xí)有關(guān)算術(shù)平方根的概念.

      二、導(dǎo)入新課:

      1、提出問題:(書P68頁的問題)

      你是怎樣算出畫框的邊長等于5dm的呢?(學(xué)生思考并交流解法)

      這個問題相當(dāng)于在等式擴=25中求出正數(shù)x的值.

      一般地,如果一個正數(shù)x的平方等于a,即 =a,那么這個正數(shù)x叫做a的算術(shù)平方根.a的算術(shù)平方根記為 ,讀作根號a,a叫做被開方數(shù).規(guī)定:0的算術(shù)平方根是0.

      也就是,在等式 =a (x0)中,規(guī)定x = .

      2、 試一試:你能根據(jù)等式: =144說出144的算術(shù)平方根是多少嗎?并用等式表示出來.

      3、 想一想:下列式子表示什么意思?你能求出它們的值嗎?

      建議:求值時,要按照算術(shù)平方根的意義,寫出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對應(yīng)的值.例如 表示25的算術(shù)平方根。

      4、例1 求下列各數(shù)的算術(shù)平方根:

      (1)100;(2)1;(3) ;(4)0.0001

      三、練習(xí)

      P69練習(xí) 1、2

      四、探究:(課本第69頁)

      怎樣用兩個面積為1的小正方形拼成一個面積為2的.大正方形?

      方法1:課本中的方法,略;

      方法2:

      可還有其他方法,鼓勵學(xué)生探究。

      問題:這個大正方形的邊長應(yīng)該是多少呢?

      大正方形的邊長是 ,表示2的算術(shù)平方根,它到底是個多大的數(shù)?你能求出它的值嗎?

      建議學(xué)生觀察圖形感受 的大小.小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節(jié)課探究.

      五、小結(jié):

      1、這節(jié)課學(xué)習(xí)了什么呢?

      2、算術(shù)平方根的具體意義是怎么樣的?

      3、怎樣求一個正數(shù)的算術(shù)平方根

      六、課外作業(yè):

      P75習(xí)題13.1活動第1、2、3題

    八年級數(shù)學(xué)教案 篇6

      教學(xué)目標:

      1、掌握一次函數(shù)解析式的特點及意義

      2、知道一次函數(shù)與正比例函數(shù)的關(guān)系

      3、理解一次函數(shù)圖象特點與解析式的聯(lián)系規(guī)律

      教學(xué)重點:

      1、 一次函數(shù)解析式特點

      2、 一次函數(shù)圖象特征與解析式的聯(lián)系規(guī)律

      教學(xué)難點:

      1、一次函數(shù)與正比例函數(shù)關(guān)系

      2、根據(jù)已知信息寫出一次函數(shù)的表達式。

      教學(xué)過程:

      Ⅰ.提出問題,創(chuàng)設(shè)情境

      問題1 小明暑假第一次去北京.汽車駛上A地的高速公路后,小明觀察里程碑,發(fā)現(xiàn)汽車的平均車速是95千米/小時.已知A地直達北京的高速公路全程為570千米,小明想知道汽車從A地駛出后,距北京的路程和汽車在高速公路上行駛的時間有什么關(guān)系,以便根據(jù)時間估計自己和北京的距離.

      分析 我們知道汽車距北京的路程隨著行車時間而變化,要想找出這兩個變化著的量的關(guān)系,并據(jù)此得出相應(yīng)的值,顯然,應(yīng)該探求這兩個變量的變化規(guī)律.為此,我們設(shè)汽車在高速公路上行駛時間為t小時,汽車距北京的路程為s千米,根據(jù)題意,s和t的函數(shù)關(guān)系式是

      s=570-95t.

      說明 找出問題中的變量并用字母表示是探求函數(shù)關(guān)系的第一步,這里的s、t是兩個變量,s是t的函數(shù),t是自變量,s是因變量.

      問題2 小張準備將平時的零用錢節(jié)約一些儲存起來.他已存有50元,從現(xiàn)在起每個月節(jié)存12元.試寫出小張的存款與從現(xiàn)在開始的月份之間的函數(shù)關(guān)系式.

      分析 我們設(shè)從現(xiàn)在開始的月份數(shù)為x,小張的存款數(shù)為y元,得到所求的函數(shù)關(guān)系式為:y=50+12x.

      問題3 以上問題1和問題2表示的這兩個函數(shù)有什么共同點?

      Ⅱ.導(dǎo)入新課

      上面的兩個函數(shù)關(guān)系式都是左邊是因變量y,右邊是含自變量x的代數(shù)式。并且自變量和因變量的指數(shù)都是一次。若兩個變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時,稱

      y是x的正比例函數(shù)。

      例1:下列函數(shù)中,y是x的一次函數(shù)的是( )

      ①y=x-6;②y=2x;③y=;④y=7-x x8

      A、①②③B、①③④ C、①②③④ D、②③④

      例2 下列函數(shù)關(guān)系中,哪些屬于一次函數(shù),其中哪些又屬于正比例函數(shù)?

      (1)面積為10cm2的三角形的底a(cm)與這邊上的高h(cm);

      (2)長為8(cm)的平行四邊形的周長L(cm)與寬b(cm);

      (3)食堂原有煤120噸,每天要用去5噸,x天后還剩下煤y噸;

      (4)汽車每小時行40千米,行駛的路程s(千米)和時間t(小時).

      (5)汽車以60千米/時的速度勻速行駛,行駛路程中y(千米)與行駛時間x(時)之間的關(guān)系式;

      (6)圓的面積y(厘米2)與它的半徑x(厘米)之間的關(guān)系;

      (7)一棵樹現(xiàn)在高50厘米,每個月長高2厘米,x月后這棵樹的高度為y(厘米) 分析 確定函數(shù)是否為一次函數(shù)或正比例函數(shù),就是看它們的解析式經(jīng)過整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此題必須先寫出函數(shù)解析式后解答. 解 (1)a?20,不是一次函數(shù). h

      (2)L=2b+16,L是b的一次函數(shù).

      (3)y=150-5x,y是x的一次函數(shù).

      (4)s=40t,s既是t的一次函數(shù)又是正比例函數(shù).

      (5)y=60x,y是x的一次函數(shù),也是x的正比例函數(shù);

      (6)y=πx2,y不是x的正比例函數(shù),也不是x的一次函數(shù);

      (7)y=50+2x,y是x的一次函數(shù),但不是x的正比例函數(shù)

      例3 已知函數(shù)y=(k-2)x+2k+1,若它是正比例函數(shù),求k的值.若它是一次函數(shù),求k的值.

      分析 根據(jù)一次函數(shù)和正比例函數(shù)的定義,易求得k的值.

      解 若y=(k-2)x+2k+1是正比例函數(shù),則2k+1=0,即k=?

      若y=(k-2)x+2k+1是一次函數(shù),則k-2≠0,即k≠2.

      例4 已知y與x-3成正比例,當(dāng)x=4時,y=3.

      (1)寫出y與x之間的函數(shù)關(guān)系式;

      (2)y與x之間是什么函數(shù)關(guān)系;

      (3)求x=2.5時,y的值.

      解 (1)因為 y與x-3成正比例,所以y=k(x-3).

      又因為x=4時,y=3,所以3= k(4-3),解得k=3,

      所以y=3(x-3)=3x-9.

      (2) y是x的一次函數(shù).

      (3)當(dāng)x=2.5時,y=3×2.5=7.5.

      1. 2

      例5 已知A、B兩地相距30千米,B、C兩地相距48千米.某人騎自行車以每小時12千米的速度從A地出發(fā),經(jīng)過B地到達C地.設(shè)此人騎行時間為x(時),離B地距離為y(千米).

      (1)當(dāng)此人在A、B兩地之間時,求y與x的函數(shù)關(guān)系及自變量x取值范圍.

      (2)當(dāng)此人在B、C兩地之間時,求y與x的函數(shù)關(guān)系及自變量x的取值范圍.

      分析 (1)當(dāng)此人在A、B兩地之間時,離B地距離y為A、B兩地的距離與某人所走的路程的差.

      (2)當(dāng)此人在B、C兩地之間時,離B地距離y為某人所走的路程與A、B兩地的距離的差.

      解 (1) y=30-12x.(0≤x≤2.5)

      (2) y=12x-30.(2.5≤x≤6.5)

      例6 某油庫有一沒儲油的儲油罐,在開始的.8分鐘時間內(nèi),只開進油管,不開出油管,油罐的進油至24噸后,將進油管和出油管同時打開16分鐘,油罐中的油從24噸增至40噸.隨后又關(guān)閉進油管,只開出油管,直至將油罐內(nèi)的油放完.假設(shè)在單位時間內(nèi)進油管與出油管的流量分別保持不變.寫出這段時間內(nèi)油罐的儲油量y(噸)與進出油時間x(分)的函數(shù)式及相應(yīng)的x取值范圍.

      分析 因為在只打開進油管的8分鐘內(nèi)、后又打開進油管和出油管的16分鐘和最后的只開出油管的三個階級中,儲油罐的儲油量與進出油時間的函數(shù)關(guān)系式是不同的,所以此題因分三個時間段來考慮.但在這三個階段中,兩變量之間均為一次函數(shù)關(guān)系.

      解 在第一階段:y=3x(0≤x≤8);

      在第二階段:y=16+x(8≤x≤16);

      在第三階段:y=-2x+88(24≤x≤44).

      Ⅲ.隨堂練習(xí)

      根據(jù)上表寫出y與x之間的關(guān)系式是:________________,y是否為x一的次函數(shù)?y是否為x有正比例函數(shù)?

      2、為了加強公民的節(jié)水意識,合理利用水資源,某城市規(guī)定用水收費標準如下:每戶每月用水量不超過6米3時,水費按0.6元/米3收費;每戶每月用水量超過6米3時,超過部分按1元/米3收費。設(shè)每戶每月用水量為x米3,應(yīng)繳水費y元。(1)寫出每月用水量不

      超過6米3和超過6米3時,y與x之間的函數(shù)關(guān)系式,并判斷它們是否為一次函數(shù)。(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費。[①y=0.6x,y=x-2.4,y是x的一次函數(shù)。②y=8-2.4=5.6(元)]

      Ⅳ.課時小結(jié)

      1、一次函數(shù)、正比例函數(shù)的概念及關(guān)系。

      2、能根據(jù)已知簡單信息,寫出一次函數(shù)的表達式。

      Ⅴ.課后作業(yè)

      1、已知y-3與x成正比例,且x=2時,y=7

      (1)寫出y與x之間的函數(shù)關(guān)系.

      (2)y與x之間是什么函數(shù)關(guān)系.

      (3)計算y=-4時x的值.

      2.甲市到乙市的包裹郵資為每千克0.9元,每件另加手續(xù)費0.2元,求總郵資y(元)與包裹重量x(千克)之間的函數(shù)解析式,并計算5千克重的包裹的郵資.

      3.倉庫內(nèi)原有粉筆400盒.如果每個星期領(lǐng)出36盒,求倉庫內(nèi)余下的粉筆盒數(shù)Q與星期數(shù)t之間的函數(shù)關(guān)系.

      4.今年植樹節(jié),同學(xué)們種的樹苗高約1.80米.據(jù)介紹,這種樹苗在10年內(nèi)平均每年長高0.35米.求樹高與年數(shù)之間的函數(shù)關(guān)系式.并算一算4年后同學(xué)們中學(xué)畢業(yè)時這些樹約有多高.

      5.按照我國稅法規(guī)定:個人月收入不超過800元,免交個人所得稅.超過800元不超過1300元部分需繳納5%的個人所得稅.試寫出月收入在800元到1300元之間的人應(yīng)繳納的稅金y(元)和月收入x(元)之間的函數(shù)關(guān)系式.

    八年級數(shù)學(xué)教案 篇7

      教材分析

      1本節(jié)課的主題:通過一系列的探究活動,引導(dǎo)學(xué)生從計算結(jié)果中總結(jié)出完全平方公式的兩種形式

      1、以教材作為出發(fā)點,依據(jù)《數(shù)學(xué)課程標準》,引導(dǎo)學(xué)生體會、參與科學(xué)探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關(guān)系。通過學(xué)生自主、獨立的發(fā)現(xiàn)問題,對可能的答案做出假設(shè)與猜想,并通過多次的檢驗,得出正確的結(jié)論。學(xué)生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。

      2、用標準的數(shù)學(xué)語言得出結(jié)論,使學(xué)生感受科學(xué)的嚴謹,啟迪學(xué)習(xí)態(tài)度和方法。

      學(xué)情分析

      1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識和技能:

      ①同類項的定義。

      ②合并同類項法則

      ③多項式乘以多項式法則。

      2、學(xué)習(xí)者對即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:

      在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的`右邊形式。這節(jié)課的目的就是讓學(xué)生從等號的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。

      教學(xué)目標

      (一)教學(xué)目標:

      1、經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推力能力。

      2、會推導(dǎo)完全平方公式,并能運用公式進行簡單的計算。

      (二)知識與技能:經(jīng)歷從具體情境中抽象出符號的過程,認識有理

      數(shù)、實數(shù)、代數(shù)式、、;掌握必要的運算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并能運用代數(shù)式、、不等式、函數(shù)等進行描述。

      (四)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經(jīng)驗。

      (五)情感與態(tài)度:敢于面對數(shù)學(xué)活動中的困難,并有獨立克服困難和運用知識解決問題的成功體驗,有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見解;能從交流中獲益。

      教學(xué)重點和難點

      重點:能運用完全平方公式進行簡單的計算。

      難點:會推導(dǎo)完全平方公式

      教學(xué)過程

      教學(xué)過程設(shè)計如下:

      〈一〉、提出問題

      [引入]同學(xué)們,前面我們學(xué)習(xí)了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結(jié)出結(jié)果與多項式中兩個單項式的關(guān)系嗎?

      (2m+3n)2=_______________,(-2m-3n)2=______________,

      (2m-3n)2=_______________,(-2m+3n)2=_______________。

      〈二〉、分析問題

      1、[學(xué)生回答]分組交流、討論

      (2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,

      (2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。

      (1)原式的特點。

      (2)結(jié)果的項數(shù)特點。

      (3)三項系數(shù)的特點(特別是符號的特點)。

      (4)三項與原多項式中兩個單項式的關(guān)系。

      2、[學(xué)生回答]總結(jié)完全平方公式的語言描述:

      兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;

      兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。

      3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達式:

      (a+b)2=a2+2ab+b2;

      (a-b)2=a2-2ab+b2.

      〈三〉、運用公式,解決問題

      1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)

      (m+n)2=____________, (m-n)2=_______________,

      (-m+n)2=____________, (-m-n)2=______________,

      (a+3)2=______________, (-c+5)2=______________,

      (-7-a)2=______________, (0.5-a)2=______________.

      2、判斷:

      ( )① (a-2b)2= a2-2ab+b2

      ( )② (2m+n)2= 2m2+4mn+n2

      ( )③ (-n-3m)2= n2-6mn+9m2

      ( )④ (5a+0.2b)2= 25a2+5ab+0.4b2

      ( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2

      ( )⑥ (-a-2b)2=(a+2b)2

      ( )⑦ (2a-4b)2=(4a-2b)2

      ( )⑧ (-5m+n)2=(-n+5m)2

      3、一現(xiàn)身手

      ① (x+y)2 =______________;② (-y-x)2 =_______________;

      ③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;

      ⑤ (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;

      ⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.

      〈四〉、[學(xué)生小結(jié)]

      你認為完全平方公式在應(yīng)用過程中,需要注意那些問題?

      (1)公式右邊共有3項。

      (2)兩個平方項符號永遠為正。

      (3)中間項的符號由等號左邊的兩項符號是否相同決定。

      (4)中間項是等號左邊兩項乘積的2倍。

      〈五〉、探險之旅

      (1)(-3a+2b)2=________________________________

      (2)(-7-2m) 2 =__________________________________

      (3)(-0.5m+2n) 2=_______________________________

      (4)(3/5a-1/2b) 2=________________________________

      (5)(mn+3) 2=__________________________________

      (6)(a2b-0.2) 2=_________________________________

      (7)(2xy2-3x2y) 2=_______________________________

      (8)(2n3-3m3) 2=________________________________

      板書設(shè)計

      完全平方公式

      兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;(a+b)2=a2+2ab+b2;

      兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。(a-b)2=a2-2ab+b2

    八年級數(shù)學(xué)教案 篇8

      教學(xué)目標

      ①經(jīng)歷探索整式除法運算法則的過程,會進行簡單的整式除法運算(只要求單項式除以單項式,并且結(jié)果都是整式),培養(yǎng)學(xué)生獨立思考、集體協(xié)作的能力。

      ②理解整式除法的算理,發(fā)展有條理的思考及表達能力。

      教學(xué)重點與難點

      重點:整式除法的運算法則及其運用。

      難點:整式除法的運算法則的推導(dǎo)和理解,尤其是單項式除以單項式的運算法則。

      教學(xué)準備

      卡片及多媒體課件。

      教學(xué)設(shè)計

      情境引入

      教科書第161頁問題:木星的質(zhì)量約為1。90×1024噸,地球的質(zhì)量約為5。98×1021噸,你知道木星的質(zhì)量約為地球質(zhì)量的'多少倍嗎?

      重點研究算式(1。90×1024)÷(5。98×1021)怎樣進行計算,目的是給出下面兩個單項式相除的模型。

      注:教科書從實際問題引入單項式的除法運算,學(xué)生在探索這個問題的過程中,將自然地體會到學(xué)習(xí)單項式的除法運算的必要性,了解數(shù)學(xué)與現(xiàn)實世界的聯(lián)系,同時再次經(jīng)歷感受較大數(shù)據(jù)的過程。

      探究新知

      (1)計算(1。90×1024)÷(5。98×1021),說說你計算的根據(jù)是什么?

      (2)你能利用(1)中的方法計算下列各式嗎?

      8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。

      (3)你能根據(jù)(2)說說單項式除以單項式的運算法則嗎?

      注:教師可以鼓勵學(xué)生自己發(fā)現(xiàn)系數(shù)、同底數(shù)冪的底數(shù)和指數(shù)發(fā)生的變化,并運用自己的語言進行描述。

      單項式的除法法則的推導(dǎo),應(yīng)按從具體到一般的步驟進行。探究活動的安排,是使學(xué)生通過對具體的特例的計算,歸納出單項式的除法運算性質(zhì),并能運用乘除互逆的關(guān)系加以說明,也可類比分數(shù)的約分進行。在這些活動過程中,學(xué)生的化歸、符號演算等代數(shù)推理能力和有條理的表達能力得到進一步發(fā)展。重視算理算法的滲透是新課標所強調(diào)的。

      歸納法則

      單項式相除,把系數(shù)與同底數(shù)冪分別相除作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式。

      注:通過總結(jié)法則,培養(yǎng)學(xué)生的概括能力,養(yǎng)成用數(shù)學(xué)語言表達自己想法的數(shù)學(xué)學(xué)習(xí)習(xí)慣。

      應(yīng)用新知

      例2計算:

      (1)28x4y2÷7x3y;

      (2)—5a5b3c÷15a4b。

      首先指明28x4y2與7x3y分別是被除式與除式,在這兒省去了括號。對本例可以采用學(xué)生口述,教師板書的形式完成。口述和板書都應(yīng)注意展示法則的應(yīng)用,計算過程要詳盡,使學(xué)生盡快熟悉法則。

      注:單項式除以單項式,既要對系數(shù)進行運算,又要對相同字母進行指數(shù)運算,同時對只在一個單項式里含有的冪要加以注意,這些對剛剛接觸整式除法的學(xué)生來講,難免會出現(xiàn)照看不全的情況,所以更應(yīng)督促學(xué)生細心解答問題。

      鞏固新知教科書第162頁練習(xí)1及練習(xí)2。

      學(xué)生自己嘗試完成計算題,同桌交流。

      注:在獨立解題和同伴的相互交流過程中讓學(xué)生自己去體會法則、掌握法則,印象更為深刻,也有助于培養(yǎng)學(xué)生良好的思維習(xí)慣和主動參與學(xué)習(xí)的習(xí)慣。

      作業(yè)

      1。必做題:教科書第164頁習(xí)題15。3第1題;第2題。

      2。選做題:教科書第164頁習(xí)題15。3第8題

    【八年級數(shù)學(xué)教案】相關(guān)文章:

    八年級的數(shù)學(xué)教案12-14

    八年級數(shù)學(xué)教案06-18

    八年級的數(shù)學(xué)教案15篇12-14

    【薦】八年級數(shù)學(xué)教案12-03

    【熱】八年級數(shù)學(xué)教案12-07

    八年級上冊人教版數(shù)學(xué)教案02-27

    人教版八年級數(shù)學(xué)教案11-04

    初中八年級數(shù)學(xué)教案11-03

    八年級上冊數(shù)學(xué)教案11-09

    八年級數(shù)學(xué)教案【薦】12-06

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      午夜福利理论片中文字幕 | 色婷婷在线播放看片 | 亚洲欧美国产国产一区二区 | 亚洲国产日韩在线人高清 | 中文字幕乱码亚洲∧ⅴ日本 | 久久高清亚洲免费 |