1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>八年級數學教案>八年級數學教案

    八年級數學教案

    時間:2022-08-26 00:11:32 八年級數學教案 我要投稿

    有關八年級數學教案模板匯編10篇

      作為一位優(yōu)秀的人民教師,常常需要準備教案,教案是教學活動的總的組織綱領和行動方案。怎樣寫教案才更能起到其作用呢?下面是小編為大家收集的八年級數學教案10篇,希望對大家有所幫助。

    有關八年級數學教案模板匯編10篇

    八年級數學教案 篇1

      菱形

      學習目標(學習重點):

      1.經歷探索菱形的識別方法的過程,在活動中培養(yǎng)探究意識與合作交流的習慣;

      2.運用菱形的識別方法進行有關推理.

      補充例題:

      例1. 如圖,在△ABC中,AD是△ABC的角平分線。DE∥AC交AB于E,DF∥AB交AC于F.四邊形AEDF是菱形嗎?說明你的理由.

      例2.如圖,平行四邊形ABCD的對 角線AC的'垂直平分線與邊AD、BC分別交于E、F.

      四邊形AFCE是菱形嗎?說明理由.

      例3.如圖 , ABCD是矩形紙片,翻折B、D,使BC、AD恰好落在AC上,設F、H分別是B、D落在AC上的兩點,E、G分別是折痕CE、AG與AB、CD的交點

      (1)試說明四邊形AECG是平行四邊形;

      (2)若AB=4cm,BC=3cm,求線段EF的長;

      (3)當矩形兩邊AB、BC具備怎樣的關系時,四邊形AECG是菱形.

      課后續(xù)助:

      一、填空題

      1.如果四邊形ABCD是平行四邊形,加上條件___________________,就可以是矩形;加上條件_______________________,就可以是菱形

      2.如圖,D、E、F分別是△ABC的邊BC、CA、AB上的點,

      且DE∥BA,DF∥ CA

      (1)要使四邊形AFDE是菱形,則要增加條件______________________

      (2)要使四邊形AFDE是矩形,則要增加條件______________________

      二、解答題

      1.如圖,在□ABCD中 ,若2,判斷□ABCD是矩形還是菱形?并說明理由。

      2.如圖 ,平行四邊形A BCD的兩條對角線AC,BD相交于點O,OA=4,OB=3,AB=5.

      (1) AC,BD互相垂直嗎?為什么?

      (2) 四邊形ABCD是菱形 嗎?

      3.如圖,在□ABCD中,已知ADAB,ABC的平分線交AD于E,EF∥AB交BC于F,試問: 四 邊形ABFE是菱形嗎?請說明理由。

      4.如圖,把一張矩形的紙ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F.

      ⑴求證:ABF≌

      ⑵若將折疊的圖形恢復原狀,點F與BC邊上的點M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由.

    八年級數學教案 篇2

      一、課堂引入

      1.什么叫做平行四邊形?什么叫做矩形?

      2.矩形有哪些性質?

      3.矩形與平行四邊形有什么共同之處?有什么不同之處?

      4.事例引入:小華想要做一個矩形像框送給媽媽做生日禮物,于是找來兩根長度相等的短木條和兩根長度相等的長木條制作,你有什么辦法可以檢測他做的是矩形像框嗎?看看誰的方法可行?

      通過討論得到矩形的判定方法.

      矩形判定方法1:對角錢相等的平行四邊形是矩形.

      矩形判定方法2:有三個角是直角的四邊形是矩形.

      (指出:判定一個四邊形是矩形,知道三個角是直角,條件就夠了.因為由四邊形內角和可知,這時第四個角一定是直角.)

      二、例習題分析

      例1(補充)下列各句判定矩形的說法是否正確?為什么?

      (1)有一個角是直角的四邊形是矩形;(×)

      (2)有四個角是直角的四邊形是矩形;(√)

      (3)四個角都相等的四邊形是矩形;(√)

      (4)對角線相等的'四邊形是矩形;(×)

      (5)對角線相等且互相垂直的四邊形是矩形;(×)

      (6)對角線互相平分且相等的四邊形是矩形;(√)

      (7)對角線相等,且有一個角是直角的四邊形是矩形;(×)

      (8)一組鄰邊垂直,一組對邊平行且相等的四邊形是矩形;(√)

      (9)兩組對邊分別平行,且對角線相等的四邊形是矩形.(√)

      指出:

      (l)所給四邊形添加的條件不滿足三個的肯定不是矩形;

      (2)所給四邊形添加的條件是三個獨立條件,但若與判定方法不同,則需要利用定義和判定方法證明或舉反例,才能下結論.

      例2(補充)已知ABCD的對角線AC、BD相交于點O,△AOB是等邊三角形,AB=4cm,求這個平行四邊形的面積.

      分析:首先根據△AOB是等邊三角形及平行四邊形對角線互相平分的性質判定出ABCD是矩形,再利用勾股定理計算邊長,從而得到面積值.

      解:∵ 四邊形ABCD是平行四邊形,

      ∴AO=AC,BO=BD.

      ∵ AO=BO,

      ∴ AC=BD.

      ∴ ABCD是矩形(對角線相等的平行四邊形是矩形).

      在Rt△ABC中,

      ∵ AB=4cm,AC=2AO=8cm,

      ∴BC=(cm).

      例3(補充)已知:如圖(1),ABCD的四個內角的平分線分別相交于點E,F,G,H.求證:四邊形EFGH是矩形.

      分析:要證四邊形EFGH是矩形,由于此題目可分解出基本圖形,如圖(2),因此,可選用“三個角是直角的四邊形是矩形”來證明

    八年級數學教案 篇3

      總課時:7課時 使用人:

      備課時間:第八周 上課時間:第十周

      第4課時:5、2平面直角坐標系(2)

      教學目標

      知識與技能

      1.在給定的直角坐標系下,會根據坐標描出點的位置;

      2.通過找點、連線、觀察,確定圖形的大致形狀的問題,能進一步掌握平面直角坐標系的基本內容。

      過程與方法

      1.經歷畫坐標 系、描點、連線、看圖以及由點找坐標等過程,發(fā)展學生的數形結合思想,培養(yǎng)學生的合作 交流能力;

      2.通過由點確定坐標到根據坐標描點的轉化過程,進一步培養(yǎng)學生的轉化意識。

      情感態(tài)度與價值觀

      通過生動有趣的教學活動,發(fā)展學生的合情推理能力和豐富的情感、態(tài)度,提高學生學習數學的興趣。

      教學重點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。

      教學難點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。

      教學過程

      第一環(huán)節(jié) 感 受生活中的情境,導入新課(10分鐘,學生自己繪圖找點)

      在上節(jié)課中我們學習了平面直角坐標系的定義,以及橫軸、縱軸、點 的坐標的定義,練習了在平面直角坐標系中由點找坐標,還探討了橫坐標或縱坐標相同的點的連線與坐標軸的關系,坐標軸上點的坐標有什么特點。

      練習:指出下列 各點以及所在象限或坐標軸:

      A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(0, ), G(0,0) (抽取學生作答)

      由點找坐標是已知點在直角坐標 系中的位置,根據這點在方格紙上對應的x軸、y軸上的數字寫出它的坐標,反過來,已知坐標,讓 你在直角坐標系中找點,你能找到嗎?這就是本節(jié)課的內容。

      第二環(huán)節(jié) 分類討論,探索新知.(15分鐘,小組討論,全班交流)

      1.請同學們拿出準備好的方格紙,自己建立平面直角坐標系,然后按照我給出的坐標,在直角坐標系中描點,并依次用線段連接起來。

      (-9,3),(-9,0),(-3,0),( -3,3)

      ( 學生操作完畢后)

      2.(出示投影)還是在這個平面直角坐標系中,描出下列各組內的點用線段依次連接起來。

      (1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);

      (2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);

      (3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);

      (4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。

      觀察所得的圖形,你覺得它像什么?

      分成4人小組,大家合作在剛才建立的平面直角坐標系中(選出小組中最好的)添畫。各人分工,每人畫一小題。看哪個小組做得最快?

      (出示學生的`作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺得它像什么?

      這個圖形像一棟房子旁邊還有一棵大樹。

      3.做一做

      (出示投影)

      在書上已建立的直角坐標系畫,要求每位同學獨立完成。

      (學生描點、畫圖)

      (拿出一位做對的學生的作品投影)

      你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?

      (像貓臉)

      第三環(huán)節(jié) 學有所用.(10分鐘,先獨立完成,后小組討論)

      (補充)1.在直角坐標系中描出下列各點,并將各組內的點用線段順次連接起來。

      (1)(0,3),(-4,0),(0,-3),(4,0),(0,3);

      (2)(0,0),(4,-3),(8,0),(4,3),(0,0);

      (3)(2,0)

      觀察所得的圖形,你覺得它像什么?(像移動的菱形)

      2.在直角坐標系中,設法找到若干個點使得連接各點所得的封閉圖形是如下圖所示的十字。

      先獨立完成,然后小組討論是否正確。

      第四環(huán)節(jié) 感悟與收獲(5分鐘,學生總結,全班交流)

      本節(jié)課在復習上節(jié)課的基礎上,通過找點、連 線、觀察,確定圖形的大致形狀,進一步掌握平面直角坐標系的基本內容。

      在例題和練習中,我們畫出了不少美麗的圖形,自己設計一些圖形,并把圖形放在直角坐標系下,寫出點的坐標。

      第五環(huán)節(jié) 布置作業(yè)

      習題5、4

      A組(優(yōu)等生)1、2、3

      B組(中等生)1、2

      C組(后三分之一生)1、2

    八年級數學教案 篇4

      教學任務分析

      教學目標

      知識技能

      探索并掌握梯形的有關概念和基本性質,探索、了解并掌握等腰梯形的性質.

      數學思考

      能夠運用梯形的有關概念和性質進行有關問題的論證和計算,進一步培養(yǎng)學生的分析問題能力和計算能力.

      解決問題

      通過添加輔助線,把梯形的問題轉化成平行四邊形或三角形問題,使學生體會圖形變換的方法和轉化的思想.

      情感態(tài)度

      在應用等腰梯形的性質的過程養(yǎng)成獨立思考的習慣, 在數學學習活動中獲得成功的體驗.

      重點

      等腰梯形的性質及其應用.

      難點

      解決梯形問題的基本方法(將梯形轉化為平行四邊形和三角形及正確運用輔助線),及梯形有關知識的應用.

      教學流程安排

      活動流程圖

      活動的內容和目的

      活動1想一想

      活動2說一說

      活動3畫一畫

      活動4做—做

      活動5練一練

      活動6理一理

      觀察梯形圖片,引入本節(jié)課的學習內容.

      了解梯形定義、各部分名稱及分類.

      通過畫圖活動,初步發(fā)現梯形與三角形的轉化關系.

      探究得到等腰梯形的性質.

      通過解決具體問題,尋找解決梯形問題的方法.

      通過整理回顧,鞏固知識、提高能力、滲透思想.

      教學過程設計

      問題與情景

      師生行為

      設計意圖

      [活動1]

      觀察下圖中,有你熟悉的圖形嗎?它們有什么共同的特點?

      演示圖片,學生欣賞.

      結合圖片,教師引導學生注意這些圖片的共同特征:一組對邊平行而另一組對邊不平行.

      由現實中實際問題入手,設置問題情境,引出本課主題.通過學生觀察圖片和歸納圖形的特點,培養(yǎng)學生的觀察、概括能力.

      [活動2]

      梯形定義 一組對邊平行而另一組對邊不平行的四邊形叫做梯形.

      學生根據梯形概念畫出圖形,教師可以進一步引導學生類比梯形與平行四邊形的區(qū)別和聯系.

      通過類比,培養(yǎng)學生歸納、總結的能力.

      問題與情景

      師生行為

      設計意圖

      一些基本概念

      (1)(如圖):底、腰、高.

      (2)等腰梯形:兩腰相等的梯形叫做等腰梯形.

      (3)直角梯形:有一個角是直角的梯形叫做直角梯形.

      學生在小學已經對梯形有一定的感性認識,因此教師讓學生自己介紹(1)中的基本概念,在聆聽學生發(fā)言后, 教師可以強調:①梯形與四邊形的關系;

      ②上、下底的概念是由底的長短來定義的,而并不是指位置來說的.

      熟悉圖形,明確概念,為探究圖形性質做準備.

      [活動3]

      畫一畫

      在下列所給圖中的每個三角形中畫一條線段,

      (1)怎樣畫才能得到一個梯形?

      (2)在哪些三角形中,能夠得到一個等腰梯形?

      在學生獨立探究的基礎上,學生分組交流.

      教師參與小組活動,指導、傾聽學生交流.針對不同認識水平的學生,引導其正確作圖.

      本次活動教師應重點關注:

      (1)學生在活動過程中能否發(fā)現梯形與三角形之間的聯系,他們之間的轉化方法.

      (2)學生能否將等腰三角形轉化為等腰梯形.

      (3)學生能否主動參與探究活動,在討論中發(fā)表自己的見解,傾聽他人的意見,對不同的觀點進行質疑,從中獲益.

      等腰梯形的性質與等腰三角形相仿,因此在活動3中設計了第(2)題,在推導等腰梯形性質或需要添加輔助線時,可以借助等腰三角形來研究.尤其是根據等腰三角形是軸對稱圖形,可得到等腰梯形是軸對稱圖形這條性質,為活動4種開展探究奠定了基礎.

      問題與情景

      師生行為

      設計意圖

      [活動4]

      做—做

      探索等腰梯形的性質(引入用軸對稱解決問題的思想).

      在一張方格紙上作一個等腰梯形,連接兩條對角線.

      (1)這個圖形是軸對稱圖形嗎?對稱軸在哪里?你能發(fā)現哪些相等的線段和相等的角?學生畫圖并通過觀察猜想;

      (2)這個等腰梯形的兩條對角線的長度有什么關系?

      學生按照實驗步驟,獨立完成畫圖過程,觀察圖形,思考教師提出的問題,猜想、驗證、歸納結論.

      針對不同認識水平的學生,教師指導學生活動.

      師生共同歸納:

      ①等腰梯形是軸對稱圖形,上下底的中點連線是對稱軸.

      ②等腰梯形兩腰相等.

      ③等腰梯形同一底上的兩個角相等.

      ④等腰梯形的'兩條對角線相等.

      教學中要注意引導學生證明等腰梯形的性質,尤其在證明“等腰梯形同一底上的兩個角相等”這條性質時,“平移腰”和“作高”這兩種常見的輔助線,在教學中頭一次出現,可以借此機會,給學生介紹這兩種輔助線的添加方法.

      [活動5]

      練—練

      例1 (教材P118的例1)略.

      例2 如圖,梯形ABCD中,AD∥BC,

      ∠B=70°,∠C=40°,AD=6cm,BC=15cm.

      求CD的長.

      師生共同分析,尋找解決問題的方法和策略.

      例1是等腰梯形性質的直接運用,請學生分析、解答,教師聆聽,同時注意指導學生,在證明△EAD是等腰三角形時,要用到梯形的定義“上下底互相平行(AD∥BC)”這一點.

      分析:設法把已知中所給的條件都移到一個三角形中,便可以解決問題.

      其方法是:平移一腰,過點A作AE∥DC交BC于E,因此四邊形AECD是平行四邊形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.

      解:(略)

      通過題目的練習與講解應讓學生知道:解決梯形問題的基本思想和方法就是通過添加適當的輔助線,把梯形問題轉化為已經熟悉的平行四邊形和三角形問題來解決.在教學時應讓學生注意它們的作用,掌握這些輔助線的使用對于學好梯形內容很有幫助.

      問題與情景

      師生行為

      設計意圖

      例3已知:如圖,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,

      BE⊥AC于E.

      求證:BE=CD.

      分析:要證BE=CD,需添加適當的輔助線,構造全等三角形,其方法是:平移一腰,過點D作DF∥AB交BC于F,因此四邊形ABFD是平行四邊形,則DF=AB,由已知可導出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.

      證明(略)

      例2與例3這里給出的輔助線均是“平移一腰”,老師們在教學或練習中可以根據學生的實際情況,再引導、補充其他輔助線的添加方法,讓學生多了解、多見識.

      [活動6]

      1.小結

      2.布置作業(yè)

      (1)已知等腰梯形的銳角等于60°它的兩底分別為15cm和49cm,求它的腰長和面積.

      (2)已知:如圖,

      梯形ABCD中,CD//AB,,.

      求證:AD=AB—DC.

      (3)已知,如圖,

      梯形ABCD中,AD∥BC,E是AB的中點,DE⊥CE,求證:AD+BC=DC.(延長DE交CB延長線于點F,由全等可得結論)

      師生歸納總結:

      解決梯形問題常用的方法:

      (1)“平移腰”:把梯形分成一個平行四邊形和一個三角形(圖1);

      (2)“作高”:使兩腰在兩個直角三角形中(圖2);

      (3)“延腰”:構造具有公共角的兩個等腰三角形(圖3);

      (4)“平移對角線”:使兩條對角線在同一個三角形中(圖4);

      (5)“等積變形”,連結梯形上底一端點和另一腰中點,并延長與下底延長線交于一點,構成三角形(圖5).

      盡量多地讓學生參與發(fā)言是一個交流的過程.

      梳理本節(jié)課應用過的輔助線添加方法,既可以鍛煉學生思維,又可以留給學生繼續(xù)探究的空間.

      學生通過獨立思考,完成課后作業(yè),便于發(fā)現問題,及時查漏補缺.

    八年級數學教案 篇5

      教學目標

      知識與技能

      用二元一次方程組解決有趣場景中的數字問 題和行程問題,歸納用方程(組)解決實際問題的一般步驟.

      過程與方法

      1.通過設置問題串,讓學生體會分析復雜問題的思考方法.

      2.讓學生進一步經歷和體驗列方程組解決實際問題的過程,體會方程組是刻畫現實世界 的有效數學模型.

      情感態(tài)度與價值觀

      在學習過程中讓學生體驗把復雜問題化為簡單問題的策略,體驗成功感,同時培養(yǎng)學生克服困難的意志和勇氣, 樹立自信心,并鼓勵學生合作 交流,培養(yǎng)學生的團隊精神.

      教學重點

      1.初步體會列方程組解決實際問題的步驟.

      2.學會用圖表 分析較復雜的數量關系問題。

      教學難點

      將實際問題轉化 成二元一次方程組的數學模型;會用圖表分析數 量關系。

      教學準備:

      教具:教材,課件,電腦(視頻播放器)

      學具:教材,練習本

      教學過程

      第一環(huán)節(jié):復習提問(5分鐘,學生口答)

      內容:填空:

      (1)一個兩位數,個位數字是 ,十位數字是 ,則這個兩位數用代數式表示為 ;若交換個位和十位上的數字得到一個新的兩位數,用代數式表示為 .

      (2)一個兩位數,個位上的數為 ,十位上的數為 ,如果在它們之間添上一個0,就得到一個三位數,這個三位數用代數式可以表示為 .

      (3)有兩個兩位數 和 ,如果將 放在 的左邊,就得到一個四位數,那么這個四位數用代數式表示為 ;如果將 放在 的右邊,將得到一個新的四位數,那么這個四位數用代數式可表示為 .

      第二環(huán)節(jié):情境引入(10分鐘,學生動腦思考,全班交流)

      內容:小明爸爸騎著摩托車帶著小明在公路上勻速行駛,下圖是小明每隔1小時看到的里程情況.你能 確定小明在12:00時看到的.里程碑上的數嗎?

      第三環(huán)節(jié):合作學習(10分鐘,小組討論,找等量關系,解決 問題)

      內容:例1

      兩個兩位數的和是68,在較大的兩位數的右邊接著寫較小的兩位數,得到一個四位數;在較大的兩位數的左邊寫上較小的兩位數,也得到一個四位數.已知前一個四位數比后一個四位數大2178,求這兩個兩位數.

      學生先獨立思考例1,在此基礎上,教師根據學生思考情況組織交流與討論.

      第四環(huán)節(jié):鞏固練習(10分鐘,學生嘗試獨立解決問題,全班交流)

      內容:練習

      1.一個兩位數,減去它的各位數字之和的3倍,結果是23;這個兩位數除以它的各位數字 之和,商是5,余數是1.這個兩位數是多少?

      2.一個兩位數是另一個兩位數的3倍,如果把這個兩位數放在另一個兩位數的左 邊與放在右邊所得的數之和為8484.求這個兩位數.

      第五環(huán)節(jié):課堂小結(5分鐘,教師引導學生總結一般步驟)

      內容:

      1.教師提問:本節(jié)課我們學習了那些內容,對這些內容你有什么體會和想法?請與同伴交流.

      2.師生互相交流總結出列方程(組)解決實際問題的一般步驟.

      第 六環(huán)節(jié):布置作業(yè)

      內容:習題7.6

      A組(優(yōu)等生) 2,3,4

      B組(中等生)2、3

      C組(后三分之一生)2

    八年級數學教案 篇6

      一元二次方程根與系數的關系的知識內容主要是以前一單元中的求根公式為基礎的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、2= 得出一元二次方程根與系數的關系,以及以數x1、x2為根的一元二次方程的求方程模型。然后是通過4個例題介紹了利用根與系數的關系簡化一些計算的知識。例如,求方程中的特定系數,求含有方程根的一些代數式的值等問題,由方程的根確定方程的系數的方法等等。

      根與系數的關系也稱為韋達定理(韋達是法國數學家)。韋達定理是初中代數中的一個重要定理。這是因為通過韋達定理的學習,把一元二次方程的研究推向了高級階段,運用韋達定理可以進一步研究數學中的許多問題,如二次三項式的'因式分解,解二元二次方程組;韋達定理對后面函數的學習研究也是作用非凡。

      通過近些年的中考數學試卷的分析可以得出:韋達定理及其應用是各地市中考數學命題的熱點之一。出現的題型有選擇題、填空題和解答題,有的將其與三角函數、幾何、二次函數等內容綜合起來,形成難度系數較大的壓軸題。

      通過韋達定理的教學,可以培養(yǎng)學生的創(chuàng)新意識、創(chuàng)新精神和綜合分析數學問題的能力,也為學生今后學習方程理論打下基礎。

      (二)重點、難點

      一元二次方程根與系數的關系是重點,讓學生從具體方程的根發(fā)現一元二次方程根與系數之間的關系,并用語言表述,以及由一個已知方程求作新方程,使新方程的根與已知的方程的根有某種關系,比較抽象,學生真正掌握有一定的難度,是教學的難點。

      (三)教學目標

      1、知識目標:要求學生在理解的基礎上掌握一元二次方程根與系數的關系式,能運用根與系數的關系由已知一元二次方程的一個根求出另一個根與未知數,會求一元二次方程兩個根的倒數和與平方數,兩根之差。

    八年級數學教案 篇7

      教學目標:

      1、 理解運用平方差公式分解因式的方法。

      2、 掌握提公因式法和平方差公式分解因式的綜合運用。

      3、 進一步培養(yǎng)學生綜合、分析數學問題的能力。

      教學重點:

      運用平方差公式分解因式。

      教學難點:

      高次指數的轉化,提公因式法,平方差公式的靈活運用。

      教學案例:

      我們數學組的觀課議課主題:

      1、關注學生的合作交流

      2、如何使學困生能積極參與課堂交流。

      在精心備課過程中,我設計了這樣的自學提示:

      1、整式乘法中的平方差公式是___,如何用語言描述?把上述公式反過來就得到_____,如何用語言描述?

      2、下列多項式能用平方差公式分解因式嗎?若能,請寫出分解過程,若不能,說出為什么?

      ①-x2+y2 ②-x2-y2 ③4-9x2

      ④ (x+y)2-(x-y)2 ⑤ a4-b4

      3、試總結運用平方差公式因式分解的條件是什么?

      4、仿照例4的分析及旁白你能把x3y-xy因式分解嗎?

      5、試總結因式分解的步驟是什么?

      師巡回指導,生自主探究后交流合作。

      生交流熱情很高,但把全部問題分析完已用了30分鐘。

      生展示自學成果。

      生1: -x2+y2能用平方差公式分解,可分解為(y+x)(y-x)

      生2: -x2+y2=-(x2-y2)=-(x+y)(x-y)

      師:這兩種方法都可以,但第二種方法提出負號后,一定要注意括號里的各項要變號。

      生3:4-9x2 也能用平方差公式分解,可分解為(2+9x)(2-9x)

      生4:不對,應分解為(2+3x)(2-3x),要運用平方差公式必須化為兩個數或整式的平方差的形式。

      生5: a4-b4可分解為(a2+b2)(a2-b2)

      生6:不對,a2-b2 還能繼續(xù)分解為a+b)(a-b)

      師:大家爭論的很好,運用平方差公式分解因式,必須化為兩個數或兩個整式的平方的差的形式,另因式分解必須分解到不能再分解為止。……

      反思:這節(jié)課我備課比較認真,自學提示的設計也動了一番腦筋,為讓學生順利得出運用平方差公式因式分解的條件,我設計了問題2,為讓學生能更容易總結因式分解的步驟,我又設計了問題4,自認為,本節(jié)課一定會上的非常成功,學生的交流、合作,自學展示一定會很精彩,結果卻出乎我的意料,本節(jié)課沒有按計劃完成教學任務,學生練習很少,作業(yè)有很大一部分同學不能獨立完成,反思這節(jié)課主要有以下幾個問題:

      (1) 我在備課時,過高估計了學生的能力,問題2中的③、④、⑤ 多數學生剛預習后不能熟練解答,導致在小組交流時,多數學生都在交流這幾題該怎樣分解,耽誤了寶貴的時間,也分散了學生的注意力,導致難點、重點不突出,若能把問題2改為:

      下列多項式能用平方差公式因式分解嗎?為什么?可能效果會更好。

      (2) 教師備課時,要考慮學生的知識層次,能力水平,真正把學生放在第一位,要考慮學生的接受能力,安排習題要循序漸進,切莫過于心急,過分追求課堂容量、習題類型全等等,例如在問題2的.設計時可寫一些簡單的,像④、⑤ 可到練習時再出現,發(fā)現問題后再強調、歸納,效果也可能會更好。

      我及時調整了自學提示的內容,在另一個班也上了這節(jié)課。果然,學生的討論有了重點,很快(大約10分鐘)便合作得出了結論,課堂氣氛非常活躍,練習量大,準確率高,但隨之我又發(fā)現我在處理課后練習時有點不能應對自如。例如:師:下面我們把課后練習做一下,話音剛落,大家紛紛拿著本到我面前批改。師:都完了?生:全完了。我很興奮。來:“我們再做幾題試試。”生又開始緊張地練習……下課后,無意間發(fā)現竟還有好幾個同學課后題沒做。原因是預習時不會,上課又沒時間,還有幾位同學練習題竟然有誤,也沒改正,原因是上課慌著展示自己,沒顧上改……。看來,以后上課不能單聽學生的齊答,要發(fā)揮組長的職責,注重過關落實。給學生一點機動時間,讓學習有困難的學生有機會釋疑,練習不在于多,要注意融會貫通,會舉一反三。

      確實,“學海無涯,教海無邊”。我們備課再認真,預設再周全,面對不同的學生,不同的學情,仍然會產生新的問題,“沒有最好,只有更好!”我會一直探索、努力,不斷完善教學設計,更新教育觀念,直到永遠……

    八年級數學教案 篇8

      一、教學目標

      1.靈活應用勾股定理及逆定理解決實際問題.

      2.進一步加深性質定理與判定定理之間關系的認識.

      二、重點、難點

      1.重點:靈活應用勾股定理及逆定理解決實際問題.

      2.難點:靈活應用勾股定理及逆定理解決實際問題.

      3.難點的突破方法:

      三、課堂引入

      創(chuàng)設情境:在軍事和航海上經常要確定方向和位置,從而使用一些數學知識和數學方法.

      四、例習題分析

      例1(P83例2)

      分析:⑴了解方位角,及方位名詞;

      ⑵依題意畫出圖形;

      ⑶依題意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;

      ⑷因為242+182=302,PQ2+PR2=QR2,根據勾股定理的逆定理,知∠QPR=90°;

      ⑸∠PRS=∠QPR—∠QPS=45°.

      小結:讓學生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識.

      例2(補充)一根30米長的細繩折成3段,圍成一個三角形,其中一條邊的長度比較短邊長7米,比較長邊短1米,請你試判斷這個三角形的形狀.

      分析:⑴若判斷三角形的形狀,先求三角形的.三邊長;

      ⑵設未知數列方程,求出三角形的三邊長5、12、13;

      ⑶根據勾股定理的逆定理,由52+122=132,知三角形為直角三角形.

      解略.

      本題幫助培養(yǎng)學生利用方程思想解決問題,進一步養(yǎng)成利用勾股定理的逆定理解決實際問題的意識.

    八年級數學教案 篇9

      教材分析

      1本節(jié)課的主題:通過一系列的探究活動,引導學生從計算結果中總結出完全平方公式的兩種形式

      1、以教材作為出發(fā)點,依據《數學課程標準》,引導學生體會、參與科學探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關系。通過學生自主、獨立的發(fā)現問題,對可能的答案做出假設與猜想,并通過多次的檢驗,得出正確的結論。學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。

      2、用標準的數學語言得出結論,使學生感受科學的嚴謹,啟迪學習態(tài)度和方法。

      學情分析

      1、在學習本課之前應具備的基本知識和技能:

      ①同類項的定義。

      ②合并同類項法則

      ③多項式乘以多項式法則。

      2、學習者對即將學習的內容已經具備的水平:

      在學習完全平方公式之前,學生已經能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學生從等號的左邊形式和右邊形式之間的關系,總結出公式的應用方法。

      教學目標

      (一)教學目標:

      1、經歷探索完全平方公式的過程,進一步發(fā)展符號感和推力能力。

      2、會推導完全平方公式,并能運用公式進行簡單的計算。

      (二)知識與技能:經歷從具體情境中抽象出符號的過程,認識有理

      數、實數、代數式、、;掌握必要的運算,(包括估算)技能;探索具體問題中的數量關系和變化規(guī)律,并能運用代數式、、不等式、函數等進行描述。

      (四)解決問題:能結合具體情景發(fā)現并提出數學問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經驗。

      (五)情感與態(tài)度:敢于面對數學活動中的困難,并有獨立克服困難和運用知識解決問題的成功體驗,有學好數學的自信心;并尊重與理解他人的見解;能從交流中獲益。

      教學重點和難點

      重點:能運用完全平方公式進行簡單的計算。

      難點:會推導完全平方公式

      教學過程

      教學過程設計如下:

      〈一〉、提出問題

      [引入]同學們,前面我們學習了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結出結果與多項式中兩個單項式的關系嗎?

      (2m+3n)2=_______________,(-2m-3n)2=______________,

      (2m-3n)2=_______________,(-2m+3n)2=_______________。

      〈二〉、分析問題

      1、[學生回答]分組交流、討論

      (2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,

      (2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。

      (1)原式的特點。

      (2)結果的項數特點。

      (3)三項系數的特點(特別是符號的特點)。

      (4)三項與原多項式中兩個單項式的關系。

      2、[學生回答]總結完全平方公式的語言描述:

      兩數和的平方,等于它們平方的和,加上它們乘積的`兩倍;

      兩數差的平方,等于它們平方的和,減去它們乘積的兩倍。

      3、[學生回答]完全平方公式的數學表達式:

      (a+b)2=a2+2ab+b2;

      (a-b)2=a2-2ab+b2.

      〈三〉、運用公式,解決問題

      1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學生的學習積極性)

      (m+n)2=____________, (m-n)2=_______________,

      (-m+n)2=____________, (-m-n)2=______________,

      (a+3)2=______________, (-c+5)2=______________,

      (-7-a)2=______________, (0.5-a)2=______________.

      2、判斷:

      ( )① (a-2b)2= a2-2ab+b2

      ( )② (2m+n)2= 2m2+4mn+n2

      ( )③ (-n-3m)2= n2-6mn+9m2

      ( )④ (5a+0.2b)2= 25a2+5ab+0.4b2

      ( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2

      ( )⑥ (-a-2b)2=(a+2b)2

      ( )⑦ (2a-4b)2=(4a-2b)2

      ( )⑧ (-5m+n)2=(-n+5m)2

      3、一現身手

      ① (x+y)2 =______________;② (-y-x)2 =_______________;

      ③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;

      ⑤ (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;

      ⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.

      〈四〉、[學生小結]

      你認為完全平方公式在應用過程中,需要注意那些問題?

      (1)公式右邊共有3項。

      (2)兩個平方項符號永遠為正。

      (3)中間項的符號由等號左邊的兩項符號是否相同決定。

      (4)中間項是等號左邊兩項乘積的2倍。

      〈五〉、探險之旅

      (1)(-3a+2b)2=________________________________

      (2)(-7-2m) 2 =__________________________________

      (3)(-0.5m+2n) 2=_______________________________

      (4)(3/5a-1/2b) 2=________________________________

      (5)(mn+3) 2=__________________________________

      (6)(a2b-0.2) 2=_________________________________

      (7)(2xy2-3x2y) 2=_______________________________

      (8)(2n3-3m3) 2=________________________________

      板書設計

      完全平方公式

      兩數和的平方,等于它們平方的和,加上它們乘積的兩倍;(a+b)2=a2+2ab+b2;

      兩數差的平方,等于它們平方的和,減去它們乘積的兩倍。(a-b)2=a2-2ab+b2

    八年級數學教案 篇10

      數據的波動

      教學目標:

      1、經歷數據離散程度的探索過程

      2、了解刻畫數據離散程度的三個量度極差、標準差和方差,能借助計算器求出相應的數值。

      教學重點:會計算某些數據的極差、標準差和方差。

      教學難點:理解數據離散程度與三個差之間的關系。

      教學準備:計算器,投影片等

      教學過程:

      一、創(chuàng)設情境

      1、投影課本P138引例。

      (通過對問題串的解決,使學生直觀地估計從甲、乙兩廠抽取的20只雞腿的平均質量,同時讓學生初步體會平均水平相近時,兩者的離散程度未必相同,從而順理成章地引入刻畫數據離散程度的一個量度極差)

      2、極差:是指一組數據中最大數據與最小數據的差,極差是用來刻畫數據離散程度的一個統(tǒng)計量。

      二、活動與探究

      如果丙廠也參加了競爭,從該廠抽樣調查了20只雞腿,數據如圖(投影課本159頁圖)

      問題:1、丙廠這20只雞腿質量的平均數和極差是多少?

      2、如何刻畫丙廠這20只雞腿質量與其平均數的差距?分別求出甲、丙兩廠的20只雞腿質量與對應平均數的差距。

      3、在甲、丙兩廠中,你認為哪個廠雞腿質量更符合要求?為什么?

      (在上面的情境中,學生很容易比較甲、乙兩廠被抽取雞腿質量的極差,即可得出結論。這里增加一個丙廠,其平均質量和極差與甲廠相同,此時導致學生思想認識上的矛盾,為引出另兩個刻畫數據離散程度的量度標準差和方差作鋪墊。

      三、講解概念:

      方差:各個數據與平均數之差的平方的平均數,記作s2

      設有一組數據:x1, x2, x3,,xn,其平均數為

      則s2= ,

      而s= 稱為該數據的標準差(既方差的.算術平方根)

      從上面計算公式可以看出:一組數據的極差,方差或標準差越小,這組數據就越穩(wěn)定。

      四、做一做

      你能用計算器計算上述甲、丙兩廠分別抽取的20只雞腿質量的方差和標準差嗎?你認為選哪個廠的雞腿規(guī)格更好一些?說說你是怎樣算的?

      (通過對此問題的解決,使學生回顧了用計算器求平均數的步驟,并自由探索求方差的詳細步驟)

      五、鞏固練習:課本第172頁隨堂練習

      六、課堂小結:

      1、怎樣刻畫一組數據的離散程度?

      2、怎樣求方差和標準差?

      七、布置作業(yè):習題5.5第1、2題。

    【八年級數學教案】相關文章:

    八年級的數學教案12-14

    八年級數學教案06-18

    【熱門】八年級數學教案11-29

    八年級數學教案人教版01-03

    八年級下冊數學教案01-01

    八年級數學教案【熱】11-29

    【薦】八年級數學教案12-03

    八年級數學教案【薦】12-06

    八年級的數學教案15篇12-14

    八年級數學教案【推薦】12-04

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      亚洲综合丝袜一区二区 | 亚洲岛国精品视频在线 | 日韩AⅤ精品国内在线 | 视频二区三区中文字幕在线 | 午夜性色一区二区视频 | 亚洲国产中文精品高清在线电影 |