八年級數學教案模板匯總十篇
作為一名無私奉獻的老師,可能需要進行教案編寫工作,教案是教材及大綱與課堂教學的紐帶和橋梁。優秀的教案都具備一些什么特點呢?下面是小編幫大家整理的八年級數學教案10篇,歡迎大家借鑒與參考,希望對大家有所幫助。
八年級數學教案 篇1
目標設計
一、情境設計
⒈對教材所給情境作適當解釋;
⒉補充適量其它情境,有利于直及主題或拓展引申.
二、活動設計
⒈概念的形成過程;
⒉法則、定理的推導過程;
⒊方法的提煉與思想形成過程;
⒋問題串剖析過程(對概念的深化與挖掘).
三、例題設計
⒈教材例題分析;(解題格式、要點示范)
⒉形成性例題訓練;(思想方法的應用示范)(3題左右)
⒊鞏固性考題剖析.(2題左右)
四、拓展設計(2題左右)
⒈綜合性訓練;
⒉引申性、探究性、創新性活動;
⒊奧數問題點擊.(不一定非得設計)
五、教學反思
六、檢測設計(時間30分鐘,得分集中于85/70分左右)
⒈難度與例題設計、拓展設計相當,個性化的'題型要在例題中出現過;
⒉8k紙,正面為例題回眸,內容為課堂所講解的所有例題題目,根據題型留適量的空白(主要供學生課后復習和考前復習用,任何教師一律不得要求學生完成解答過程,違者按教學違規論處);反面為作業紙,只留標題欄,取消邊框.(凸顯分層)
八年級數學教案 篇2
一、學生起點分析
通過前一章《勾股定理》的學習,學生已經明白什么是勾股數,但也發現并不是所有的直角三角形的邊長都是勾股數,甚至有些直角三角形的邊長連有理數都不是,例如:①腰長為1的等腰直角三角形的底邊長不是有理數,②兩條直角邊分別為1,2的直角三角形的斜邊長不是有理數,這為引入“新數”奠定了必要性.
二、教學任務分析
《數不夠用了》是義務教育課程標準北師大版實驗教科書八年級(上)第二章《實數》的第一節. 本節內容安排了2個課時完成,第1課時讓學生感受無理數的存在,初步建立無理數的印象,結合勾股定理知識,會根據要求畫線段;第2課時借助計算器感受無理數是無限不循環小數,會判斷一個數是無理數.本課是第1課時,學生將在具體的實例中,通過操作、估算、分析等活動,感受無理數的客觀存在性和引入的必要性,并能判斷一個數是不是有理數.
本節課的教學目標是:
①通過拼圖活動,讓學生感受客觀世界中無理數的存在;
②能判斷三角形的某邊長是否為無理數;
③學生親自動手做拼圖活動,培養學生的動手能力和探索精神;
④能正確地進行判斷某些數是否為有理數,加深對有理數和無理數的理解;
三、教學過程設計
本節課設計了6個教學環節:
第一環節:置疑;第二環節:課題引入;第三環節:獲取新知;第四環節:應用與鞏固;第五環節:課堂小結;第六環節:作業布置.
第一環節:質疑
內容:【想一想】
⑴一個整數的平方一定是整數嗎?
⑵一個分數的平方一定是分數嗎?
目的:作必要的知識回顧,為第二環節埋下伏筆,便于后續問題的說理.
效果:為后續環節的進行起了很好的鋪墊的作用
第二環節:課題引入
內容:1.【算一算】
已知一個直角三角形的兩條直角邊長分別為1和2,算一算斜邊長 的平方 ,并提出問題: 是整數(或分數)嗎?
2.【剪剪拼拼】
把邊長為1的兩個小正方形通過剪、拼,設法拼成一個大正方形,你會嗎?
目的:選取客觀存在的“無理數“實例,讓學生深刻感受“數不夠用了”.
效果:巧設問題背景,順利引入本節課題.
第三環節:獲取新知
內容:【議一議】→【釋一釋】→【憶一憶】→【找一找】
【議一議】: 已知 ,請問:① 可能是整數嗎?② 可能是分數嗎?
【釋一釋】:釋1.滿足 的 為什么不是整數?
釋2.滿足 的 為什么不是分數?
【憶一憶】:讓學生回顧“有理數”概念,既然 不是整數也不是分數,那么 一定不是有理數,這表明:有理數不夠用了,為“新數”(無理數)的學習奠定了基礎
【找一找】:在下列正方形網格中,先找出長度為有理數的線段,再找出長度不是有理數的線段
目的:創設從感性到理性的認知過程,讓學生充分感受“新數”(無理數)的存在,從而激發學習新知的興趣
效果:學生感受到無理數產生的過程,確定存在一種數與以往學過的數不同,產生了學習新數的必要性.
第四環節:應用與鞏固
內容:【畫一畫1】→【畫一畫2】→【仿一仿】→【賽一賽】
【畫一畫1】:在右1的正方形網格中,畫出兩條線段:
1.長度是有理數的線段
2.長度不是有理數的線段
【畫一畫2】:在右2的正方形網格中畫出四個三角形 (右1)
2.三邊長都是有理數
2.只有兩邊長是有理數
3.只有一邊長是有理數
4.三邊長都不是有理數
【仿一仿】:例:在數軸上表示滿足 的
解: (右2)
仿:在數軸上表示滿足 的
【賽一賽】:右3是由五個單位正方形組成的'紙片,請你把
它剪成三塊,然后拼成一個正方形,你會嗎?試試看! (右3)
目的:進一步感受“新數”的存在,而且能把“新數”表示在數軸上
效果:加深了對“新知”的理解,鞏固了本課所學知識.
第五環節:課堂小結
內容:
1.通過本課學習,感受有理數又不夠用了, 請問你有什么收獲與體會?
2.客觀世界中,的確存在不是有理數的數,你能列舉幾個嗎?
3.除了本課所認識的非有理數的數以外,你還能找到嗎?
目的:引導學生自己小結本節課的知識要點及數學方法,使知識系統化.
效果:學生總結、相互補充,學會進行概括總結.
第六環節:布置作業
習題2.1
六、教學設計反思
(一)生活是數學的源泉,興趣是學習的動力
大量事實都證明一點,與生活貼得越近的東西最容易引起學習者的濃厚興趣,才能激發學習者的學習積極性,學習才可能是主動的.本節課中教師首先用拼圖游戲引發學生學習的欲望,把課程內容通過學生的生活經驗呈現出來,然后進行大膽置疑,生活中的數并不都是有理數,那它們究竟是什么數呢?從而引發了學生的好奇心,為獲取新知,創設了積極的氛圍.在教學中,不要盲目的搶時間,讓學生能夠充分的思考與操作.
(二)化抽象為具體
常言道:“數學是鍛煉思維的體操”,數學教師應通過一系列數學活動開啟學生的思維,因此對新數的學習不能僅僅停留于感性認識,還應要求學生充分理解,并能用恰當數學語言進行解釋.正是基于這個原因,在教學過程中,刻意安排了一些環節,加深對新數的理解,充分感受新數的客觀存在,讓學生覺得新數并不抽象.
(三)強化知識間聯系,注意糾錯
既然稱之為“新數”,那它當然不是有理數,亦即不是整數,也不是分數,所以“新數”不可以用分數來表示,這為進一步學習“新數”,即第二課時教學埋下了伏筆,在教學中,要著重強調這一點:“新數”不能表示成分數,為無理數的教學奠好基.
八年級數學教案 篇3
一、教學目標:
1、知識目標:能熟練掌握簡單圖形的移動規律,能按要求作出簡單平面圖形平移后的圖形,能夠探索圖形之間的平移關系;
2、能力目標:①,在實踐操作過程中,逐步探索圖形之間的平移關系;
②,對組合圖形要找到一個或者幾個“基本圖案”,并能通過對“基本圖案”的平移,復制所求的圖形;
3、情感目標:經歷對圖形進行觀察、分析、欣賞和動手操作、畫圖等過程,發展初步的審美能力,增強對圖形欣賞的意識。
二、重點與難點:
重點:圖形連續變化的特點;
難點:圖形的劃分。
三、教學方法:
講練結合。使用多媒體課件輔助教學。
八年級數學上冊教案四、教具準備:
多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。
五、教學設計:
教師活動
學生活動
設計意圖
創設情景,探究新知:
(演示課件):教材上小狗的圖案。提問:(1)這個圖案有什么特點?(2)它可以通過什么“基本圖案”,經過怎樣的`平移而形成?(3)在平移過程中,“基本圖案”的大小、形狀、位置是否發生了變化?
小組討論,派代表回答。(答案可以多種)
讓學生充分討論,歸納總結,老師給予適當的指導,并對每種答案都要肯定。
看磁性黑板,展示教材64頁圖3-9,提問:左圖是一個正六邊形,它經過怎樣的平移能得到右圖?誰到黑板做做看?
展示教材64頁3-10,提問:左圖是一種“工”字形磚,右圖是怎樣通過左圖得到的?
小組討論,派代表到臺上給大家講解。
氣氛要熱烈,充分調動學生的積極性,發掘他們的想象力。
(演示課件)教材65頁圖3-11,提問:這個圖可以看做是什么“基本圖案”通過平移得到的?
暢所欲言,互相補充。
課堂小結:
在教師的引導下學生總結本節課的主要內容,并啟發學生在我們周圍尋找平移的例子。
課堂練習:
(演示課件)教材65頁“隨堂練習”。
小組討論。
小組討論完成。
例子一定要和大家接觸緊密、典型。
答案不惟一,對于每種答案,教師都要給予充分的肯定。
六、教學反思:
本節的內容并不是很復雜,借助多媒體進行直觀、形象,內容貼近生活,學生興致較高,課堂氣氛活躍,參與意識較強,學生一般都能在教師的指導下掌握。教學過程中滲透數學美學思想,促進學生綜合素質的提高。
八年級數學教案 篇4
教學目標:
1、經歷對圖形進行觀察、分析、欣賞和動手操作、畫圖過程,掌握有關畫圖的操作技能,發展初步審美能力,增強對圖形欣賞的意識。
2、能按要求把所給出的圖形補成以某直線為軸的軸對稱圖形,能依據圖形的軸對稱關系設計軸對稱圖形。
教學重點:本節課重點是掌握已知對稱軸L和一個點,要畫出點A關于L的軸對稱點的畫法,在此基礎上掌握有關軸對稱圖形畫圖的操作技能,并能利用圖形之間的軸對稱關系來設計軸對稱圖形,掌握有關畫圖的技能及設計軸對稱圖形是本節課的難點。
教學方法:動手實踐、討論。
教學工具:課件
教學過程:
一、 先復習軸對稱圖形的定義,以及軸對稱的相關的.性質:
1.如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相________,那么這個圖形叫做________________,這條直線叫做_____________
2.軸對稱的三個重要性質______________________________________________
_____________________________________________________________________
二、提出問題:
二、探索練習:
1. 提出問題:
如圖:給出了一個圖案的一半,其中的虛線是這個圖案的對稱軸。
你能畫出這個圖案的另一半嗎?
吸引學生讓學生有一種解決難點的想法。
2.分析問題:
分析圖案:這個圖案是由重要六個點構成的,要將這個圖案的另一半畫出來,根據軸對稱的性質只要畫出這個圖案中六個點的對應點即可
問題轉化成:已知對稱軸和一個點A,要畫出點A關于L的對應點 ,可采用如下方法:`
在學生掌握已知一個點畫對應點的基礎上,解決上述給出的問題,使學生有一條較明確的思路。
三、對所學內容進行鞏固練習:
1. 如圖,直線L是一個軸對稱圖形的對稱軸,畫出這個軸對稱圖形的另一半。
2. 試畫出與線段AB關于直線L的線段
3.如圖,已知 直線MN,畫出以MN為對稱軸 的軸對稱圖形
小 結: 本節課學習了已知對稱軸L和一個點如何畫出它的對應點,以及如何補全圖形,并利用軸對稱的性質知道如何設計軸對稱圖形。
教學后記:學生對這節課的內容掌握比較好,但對于利用軸對稱的性質來設計圖形覺得難度比較大。因本節課內容較有趣,許多學生上課積極性較高
八年級數學教案 篇5
教學任務分析
教學目標
知識技能
一、類比同分母分數的加減,熟練掌握同分母分式的加減運算.
二、類比異分母分數的加減及通分過程,熟練掌握異分母分式的加減及通分過程與方法.
數學思考
在分式的加減運算中,體驗知識的化歸聯系和思維靈活性,培養學生整體思考的分析問題能力.
解決問題
一、會進行同分母和異分母分式的加減運算.
二、會解決與分式的加減有關的簡單實際問題.
三、能進行分式的加、剪、乘、除、乘方的混合運算.
情感態度
通過師生活動、學生自我探究,讓學生充分參與到數學學習的過程中來,使學生在整體思考中開闊視野,養成良好品德,滲透化歸對立統一的辯證觀點.
重點
分式的加減法.
難點
異分母分式的加減法及簡單的分式混合運算.
教學流程安排
活動流程圖
活動內容和目的
活動1:問題引入
活動2:學習同分母分式的加減
活動3:探究異分母分式的加減
活動4:發現分式加減運算法則
活動5:鞏固練習、總結、作業
向學生提出兩個實際問題,使學生體會學習分式加減的必要性及迫切性,創始問題情境,激發學生的.學習熱情.
類比同分母分數的加減,讓學生歸納同分母分式的加減的方法并進行簡單運算.
回憶異分母分數的加減,使學生歸納異分母分式的加減的方法.
通過以上探究過程,讓學生發現分式加減運算的法則,通過分式在物理學的應用及簡單混合運算,使學生深化對分式加減運算法則的理解.
通過練習、作業進一步鞏固分式的運算.
課前準備
教具
學具
補充材料
課件
教學過程設計
問題與情境
師生行為
設計意圖
[活動1]
1.問題一:比較電腦與手抄的錄入時間.
2.問題二;幫幫小明算算時間
所需時間為,
如何求出的值?
3.這里用到了分式的加減,提出本節課的主題.
教師通過課件展示問題.學生積極動腦解決問題,提出困惑:
分式如何進行加減?
通過實際問題中要用到分式的加減,從而提出問題,讓學生思考,可以激發學生探究的熱情.
[活動2]
1.提出小學數學中一道簡單的分數加法題目.
2.用課件引導學生用類比法,歸納總結同分母分式加法法則.
3.教師使用課件展示[例1]
4.教師通過課件出兩個小練習.
教師提出問題,學生回答,進一步回憶同分母分數加減的運算法則.
學生在教師的引導下,探索同分母分式加減的運算方法.
通過例題,讓學生和教師一起體會同分母分式加減運算,同時教師指出運算中的.注意事項.
由兩個學生板書自主完成練習,教師巡視指導學生練習.
運用類比的方法,從學生熟知的知識入手,有利于學生接受新知識.
師生共同完成例題,使學生感受到自己很棒,自己能夠通過思考學會新知識,提高自信心.
讓學生進一步體會同分母分式的加減運算.
[活動3]
1.教師以練習的形式通過“自我發展的平臺”,向學生展示這樣一道題.
2.教師提出思考題:
異分母的分式加減法要遵守什么法則呢?
教師展示一道異分母分式的加減題目,學生自然就想到異分母分數的加減.
教師通過課件引導學生思考,學生會想到小學數學中,異分母分數的加減法則,從而聯想到異分母分式的加減法則,教師引導學生歸納出異分母分式加減運算的方法思路.
由學生主動提出解決問題的方法,從而激發了學生探究問題的興趣.
通過學生的自我探究、歸納總結,讓學生充分參與到數學學習的過程中來,體會學習的樂趣.
[活動4]
1.在語言敘述分式加減法則的基礎上,用字母表示分式的加減法法則.
2.教師使用課件展示[例2]
3.教師通過課件出4個小練習.
4.[例3]在圖的電路中,已測定CAD支路的電阻是R1歐姆,又知CBD支路的電阻R2比R1大50歐姆,根據電學的有關定律可知總電阻R與R1R2滿足關系式 ;
試用含有R1的式子表示總電阻R
5.教師使用課件展示[例4]
教師提出要求,由學生說出分式加減法則的字母表示形式.
通過例題,讓學生和教師一起體會異分母分式加減運算,同時教師重點演示通分的過程.
教師引導學生找出每道題的方法、如何找最簡公分母及時指出學生在通分中出現的問題,由學生自己完成.
教師引導學生尋找解決問題的突破口,由師生共同完成,對比物理學中的計算,體會各學科知識之間的聯系.
分式的混合運算,師生共同完成,教師提醒學生注意運算順序,通分要仔細.
由此練習學生的抽象表達能力,讓學生體會數學符號語言的精練.
讓學生體會運用的公式解決問題的過程.
鍛煉學生運用法則解決問題的能力,既準確又有速度.
提高學生的計算能力.
通過分式在物理學中的應用,加強了學科之間的聯系,使學生開闊了視野,讓學生體會到學習數學的重要性,體會各學科全面發展的重要性,提高學習的興趣.
提高學生綜合應用知識的能力.
[活動5]
1.教師通過課件出2個分式混合運算的小練習.
2.總結:
a)這節課我們學習了哪些知識?你能說一說嗎?
b)⑴方法思路;
c)⑵計算中的主意事項;
d)⑶結果要化簡.
3.作業:
a)教科書習題16.2第4、5、6題.
學生練習、鞏固.
教師巡視指導.
學生完成、交流.,師生評價.
教師引導學生回憶本節課所學內容,學生回憶交流,師生共同補充完善.
教師布置作業.
鍛煉學生運用法則進行運算的能力,提高準確性及速度.
提高學生歸納總結的能力.
八年級數學教案 篇6
一、學生起點分析
學生已經了勾股定理,并在先前其他內容學習中已經積累了一定百度一下的逆向思維、逆向研究的經驗,如:已知兩直線平行,有什么樣的結論?
反之,滿足什么條件的兩直線是平行?因而,本課時由勾股定理出發逆向思考獲得逆命題,學生應該已經具備這樣的意識,但具體研究中
可能要用到反證等思路,對現階段學生而言可能還具有一定困難,需要教師適時的引導。
二、學習任務分析
本節課是北師大版數學八年級(上)第一章《勾股定理》第2節。教學任務有:探索勾股定理的逆定理
并利用該定理根據邊長判斷一個三角形是否是直角三角形,利用該定理解決一些簡單的實際問題;通過具體的數,增加對勾股數的直觀體驗。為此確定教學目標:
● 知識與技能目標
1.理解勾股定理逆定理的具體內容及勾股數的概念;
2.能根據所給三角形三邊的條件判斷三角形是否是直角三角形。
● 過程與方法目標
1.經歷一般規律的探索過程,發展學生的抽象思維能力;
2.經歷從實驗到驗證的過程,發展學生的數學歸納能力。
● 情感與態度目標
1.體驗生活中的數學的應用價值,感受數學與人類生活的密切聯系,激發學生學數學、用數學的興趣;
2.在探索過程中體驗成功的喜悅,樹立學習的自信心。
教學重點
理解勾股定理逆定理的具體內容。
三、教法學法
1.教學方法:實驗猜想歸納論證
本節課的教學對象是初二學生,他們的參與意識較強,思維活躍,對通過實驗獲得數學結論已有一定的體驗
但數學思維嚴謹的同學總是心存疑慮,利用邏輯推理的方式,讓同學心服口服顯得非常迫切,為了實現本節課的教學目標,我力求從以下三個方面對學生進行引導:
(1)從創設問題情景入手,通過知識再現,孕育教學過程;
(2)從學生活動出發,通過以舊引新,順勢教學過程;
(3)利用探索,研究手段,通過思維深入,領悟教學過程。
2.課前準備
教具:教材、電腦、多媒體課件。
學具:教材、筆記本、課堂練習本、文具。
四、教學過程設計
本節課設計了七個環節。第一環節:情境引入;第二環節:合作探究;第三環節:小試牛刀;第四環節:
登高望遠;第五環節:鞏固提高;第六環節:交流小結;第七環節:布置作業。
第一環節:情境引入
內容:
情境:1.直角三角形中,三邊長度之間滿足什么樣的關系?
2.如果一個三角形中有兩邊的平方和等于第三邊的平方,那么這個三角形是否就是直角三角形呢?
意圖:
通過情境的創設引入新課,激發學生探究熱情。
效果:
從勾股定理逆向思維這一情景引入,提出問題,激發了學生的求知欲,為下一環節奠定了良好的基礎。
第二環節:合作探究
內容1:探究
下面有三組數,分別是一個三角形的三邊長 ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個問題:
1.這三組數都滿足 嗎?
2.分別以每組數為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學生分為4人活動小組,每個小組可以任選其中的一組數。
意圖:
通過學生的合作探究,得出若一個三角形的三邊長 ,滿足 ,則這個三角形是直角三角形這一結論;在活動中體驗出數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律。
效果:
經過學生充分討論后,匯總各小組實驗結果發現:①5,12,13滿足 ,可以構成直角三角形;②7,24,25滿足 ,可以構成直角三角形;③8,15,17滿足 ,可以構成直角三角形。
從上面的分組實驗很容易得出如下結論:
如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形
內容2:說理
提問:有同學認為測量結果可能有誤差,不同意這個發現。你認為這個發現正確嗎?你能給出一個更有說服力的理由嗎?
意圖:讓學生明確,僅僅基于測量結果得到的結論未必可靠,需要進一步通過說理等方式使學生確信結論的.可靠性,同時明晰結論:
如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形
滿足 的三個正整數,稱為勾股數。
注意事項:為了讓學生確認該結論,需要進行說理,有條件的班級,還可利用幾何畫板動畫演示,讓同學有一個直觀的認識。
活動3:反思總結
提問:
1.同學們還能找出哪些勾股數呢?
2.今天的結論與前面學習勾股定理有哪些異同呢?
3.到今天為止,你能用哪些方法判斷一個三角形是直角三角形呢?
4.通過今天同學們合作探究,你能體驗出一個數學結論的發現要經歷哪些過程呢?
意圖:進一步讓學生認識該定理與勾股定理之間的關系
第三環節:小試牛刀
內容:
1.下列哪幾組數據能作為直角三角形的三邊長?請說明理由。
①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22
解答:①②
2.一個三角形的三邊長分別是 ,則這個三角形的面積是( )
A 250 B 150 C 200 D 不能確定
解答:B
3.如圖1:在 中, 于 , ,則 是( )
A 等腰三角形 B 銳角三角形
C 直角三角形 D 鈍角三角形
解答:C
4.將直角三角形的三邊擴大相同的倍數后, (圖1)
得到的三角形是( )
A 直角三角形 B 銳角三角形
C 鈍角三角形 D 不能確定
解答:A
意圖:
通過練習,加強對勾股定理及勾股定理逆定理認識及應用
效果
每題都要求學生獨立完成(5分鐘),并指出各題分別用了哪些知識。
第四環節:登高望遠
內容:
1.一個零件的形狀如圖2所示,按規定這個零件中 都應是直角。工人師傅量得這個零件各邊尺寸如圖3所示,這個零件符合要求嗎?
解答:符合要求 , 又 ,
2.一艘在海上朝正北方向航行的輪船,航行240海里時方位儀壞了,憑經驗,船長指揮船左傳90,繼續航行70海里,則距出發地250海里,你能判斷船轉彎后,是否沿正西方向航行?
解答:由題意畫出相應的圖形
AB=240海里,BC=70海里,,AC=250海里;在△ABC中
=(250+240)(250-240)
=4900= = 即 △ABC是Rt△
答:船轉彎后,是沿正西方向航行的。
意圖:
利用勾股定理逆定理解決實際問題,進一步鞏固該定理。
效果:
學生能用自己的語言表達清楚解決問題的過程即可;利用三角形三邊數量關系 判斷一個三角形是直角三角形時,當遇見數據較大時,要懂得將 作適當變形( ),以便于計算。
第五環節:鞏固提高
內容:
1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個直角三角形,你是如何判斷的?與你的同伴交流。
解答:4個直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF
2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?
圖4 圖5
解答:④⑤是直角三角形,①②③⑥不是直角三角形
意圖:
第一題考查學生充分利用所學知識解決問題時,考慮問題要全面,不要漏解;第二題在于考查學生如何利用網格進行計算,從而解決問題。
效果:
學生在對所學知識有一定的熟悉度后,能夠快速做答并能簡要說明理由即可。注意防漏解及網格的應用。
第六環節:交流小結
內容:
師生相互交流總結出:
1.今天所學內容①會利用三角形三邊數量關系 判斷一個三角形是直角三角形;②滿足 的三個正整數,稱為勾股數;
2.從今天所學內容及所作練習中總結出的經驗與方法:①數學是源于生活又服務于生活的;②數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律;③利用三角形三邊數量關系 判斷一個三角形是直角三角形時,當遇見數據較大時,要懂得將 作適當變形, 便于計算。
意圖:
鼓勵學生結合本節課的學習談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應用及它們的悠久歷史;敢于面對數學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經驗,進一步體會數學的應用價值,發展運用數學的信心和能力,初步形成積極參與數學活動的意識。
效果:
學生暢所欲言自己的切身感受與實際收獲,總結出利用三角形三邊數量關系 判斷一個三角形是直角三角形從古至今在實際生活中的廣泛應用。
第七環節:布置作業
課本習題1.4第1,2,4題。
五、教學反思:
1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個三角形的三邊長 ,滿足 ,是否能得到這個三角形是直角三角形的問題;充分引用教材中出現的例題和練習。
2.注重引導學生積極參與實驗活動,從中體驗任何一個數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律。
3.在利用今天所學知識解決實際問題時,引導學生善于對公式變形,便于簡便計算。
4.注重對學習新知理解應用偏困難的學生的進一步關注。
5.對于勾股定理的逆定理的論證可根據學生的實際情況做適當調整,不做要求。
由于本班學生整體水平較高,因而本設計教學容量相對較大,教學中,應注意根據自己班級學生的狀況進行適當的刪減或調整。
附:板書設計
能得到直角三角形嗎
情景引入 小試牛刀: 登高望遠
八年級數學教案 篇7
一、教學目標:
1、理解極差的定義,知道極差是用來反映數據波動范圍的一個量.
2、會求一組數據的極差.
二、重點、難點和難點的突破方法
1、重點:會求一組數據的極差.
2、難點:本節課內容較容易接受,不存在難點.
三、課堂引入:
下表顯示的是上海20xx年2月下旬和20xx年同期的每日最高氣溫,如何對這兩段時間的氣溫進行比較呢?
從表中你能得到哪些信息?
比較兩段時間氣溫的.高低,求平均氣溫是一種常用的方法.
經計算可以看出,對于2月下旬的這段時間而言,20xx年和20xx年上海地區的平均氣溫相等,都是12度.
這是不是說,兩個時段的氣溫情況沒有什么差異呢?
根據兩段時間的氣溫情況可繪成的折線圖.
觀察一下,它們有區別嗎?說說你觀察得到的結果.
用一組數據中的最大值減去最小值所得到的差來反映這組數據的變化范圍.用這種方法得到的差稱為極差(range).
四、例習題分析
本節課在教材中沒有相應的例題,教材P152習題分析
問題1可由極差計算公式直接得出,由于差值較大,結合本題背景可以說明該村貧富差距較大.問題2涉及前一個學期統計知識首先應回憶復習已學知識.問題3答案并不唯一,合理即可。
八年級數學教案 篇8
一、教學目標
1.靈活應用勾股定理及逆定理解決實際問題.
2.進一步加深性質定理與判定定理之間關系的認識.
二、重點、難點
1.重點:靈活應用勾股定理及逆定理解決實際問題.
2.難點:靈活應用勾股定理及逆定理解決實際問題.
3.難點的突破方法:
三、課堂引入
創設情境:在軍事和航海上經常要確定方向和位置,從而使用一些數學知識和數學方法.
四、例習題分析
例1(P83例2)
分析:⑴了解方位角,及方位名詞;
⑵依題意畫出圖形;
⑶依題意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;
⑷因為242+182=302,PQ2+PR2=QR2,根據勾股定理的逆定理,知∠QPR=90°;
⑸∠PRS=∠QPR—∠QPS=45°.
小結:讓學生養成“已知三邊求角,利用勾股定理的逆定理”的意識.
例2(補充)一根30米長的細繩折成3段,圍成一個三角形,其中一條邊的長度比較短邊長7米,比較長邊短1米,請你試判斷這個三角形的`形狀.
分析:⑴若判斷三角形的形狀,先求三角形的三邊長;
⑵設未知數列方程,求出三角形的三邊長5、12、13;
⑶根據勾股定理的逆定理,由52+122=132,知三角形為直角三角形.
解略.
本題幫助培養學生利用方程思想解決問題,進一步養成利用勾股定理的逆定理解決實際問題的意識.
八年級數學教案 篇9
1.展示生活中一些平行四邊形的實際應用圖片(推拉門,活動衣架,籬笆、井架等),想一想:這里面應用了平行四邊形的什么性質?
2.思考:拿一個活動的平行四邊形教具,輕輕拉動一個點,觀察不管怎么拉,它還是一個平行四邊形嗎?為什么?(動畫演示拉動過程如圖)
3.再次演示平行四邊形的移動過程,當移動到一個角是直角時停止,讓學生觀察這是什么圖形?(小學學過的長方形)引出本課題及矩形定義.
矩形定義:有一個角是直角的平行四邊形叫做矩形(通常也叫長方形).
矩形是我們最常見的圖形之一,例如書桌面、教科書的封面等都有矩形形象.
【探究】在一個平行四邊形活動框架上,用兩根橡皮筋分別套在相對的兩個頂點上(作出對角線),拉動一對不相鄰的頂點,改變平行四邊形的形狀.
①隨著∠α的變化,兩條對角線的長度分別是怎樣變化的?
②當∠α是直角時,平行四邊形變成矩形,此時它的其他內角是什么樣的角?它的兩條對角線的長度有什么關系?
操作,思考、交流、歸納后得到矩形的性質.
矩形性質1 矩形的四個角都是直角.
矩形性質2 矩形的對角線相等.
如圖,在矩形ABCD中,AC、BD相交于點O,由性質2有AO=BO=CO=DO=AC=BD.因此可以得到直角三角形的一個性質:直角三角形斜邊上的中線等于斜邊的一半.
例習題分析
例1(教材P104例1)已知:如圖,矩形ABCD的兩條對角線相交于點O,∠AOB=60°,AB=4cm,求矩形對角線的長.
分析:因為矩形是特殊的平行四邊形,所以它具有對角線相等且互相平分的特殊性質,根據矩形的這個特性和已知,可得△OAB是等邊三角形,因此對角線的長度可求.
解:∵ 四邊形ABCD是矩形,
∴ AC與BD相等且互相平分.
∴ OA=OB.
又∠AOB=60°,
∴△OAB是等邊三角形.
∴矩形的.對角線長AC=BD=2OA=2×4=8(cm).
例2(補充)已知:如圖,矩形ABCD,AB長8cm,對角線比AD邊長4cm.求AD的長及點A到BD的距離AE的長.
分析:(1)因為矩形四個角都是直角,因此矩形中的計算經常要用到直角三角形的性質,而此題利用方程的思想,解決直角三角形中的計算,這是幾何計算題中常用的方法
八年級數學教案 篇10
教學任務分析
教學目標
知識技能
探索并掌握梯形的有關概念和基本性質,探索、了解并掌握等腰梯形的性質.
數學思考
能夠運用梯形的有關概念和性質進行有關問題的論證和計算,進一步培養學生的分析問題能力和計算能力.
解決問題
通過添加輔助線,把梯形的問題轉化成平行四邊形或三角形問題,使學生體會圖形變換的方法和轉化的思想.
情感態度
在應用等腰梯形的性質的過程養成獨立思考的習慣, 在數學學習活動中獲得成功的體驗.
重點
等腰梯形的性質及其應用.
難點
解決梯形問題的基本方法(將梯形轉化為平行四邊形和三角形及正確運用輔助線),及梯形有關知識的應用.
教學流程安排
活動流程圖
活動的內容和目的
活動1想一想
活動2說一說
活動3畫一畫
活動4做—做
活動5練一練
活動6理一理
觀察梯形圖片,引入本節課的.學習內容.
了解梯形定義、各部分名稱及分類.
通過畫圖活動,初步發現梯形與三角形的轉化關系.
探究得到等腰梯形的性質.
通過解決具體問題,尋找解決梯形問題的方法.
通過整理回顧,鞏固知識、提高能力、滲透思想.
教學過程設計
問題與情景
師生行為
設計意圖
[活動1]
觀察下圖中,有你熟悉的圖形嗎?它們有什么共同的特點?
演示圖片,學生欣賞.
結合圖片,教師引導學生注意這些圖片的共同特征:一組對邊平行而另一組對邊不平行.
由現實中實際問題入手,設置問題情境,引出本課主題.通過學生觀察圖片和歸納圖形的特點,培養學生的觀察、概括能力.
[活動2]
梯形定義 一組對邊平行而另一組對邊不平行的四邊形叫做梯形.
學生根據梯形概念畫出圖形,教師可以進一步引導學生類比梯形與平行四邊形的區別和聯系.
通過類比,培養學生歸納、總結的能力.
問題與情景
師生行為
設計意圖
一些基本概念
(1)(如圖):底、腰、高.
(2)等腰梯形:兩腰相等的梯形叫做等腰梯形.
(3)直角梯形:有一個角是直角的梯形叫做直角梯形.
學生在小學已經對梯形有一定的感性認識,因此教師讓學生自己介紹(1)中的基本概念,在聆聽學生發言后, 教師可以強調:①梯形與四邊形的關系;
②上、下底的概念是由底的長短來定義的,而并不是指位置來說的.
熟悉圖形,明確概念,為探究圖形性質做準備.
[活動3]
畫一畫
在下列所給圖中的每個三角形中畫一條線段,
(1)怎樣畫才能得到一個梯形?
(2)在哪些三角形中,能夠得到一個等腰梯形?
在學生獨立探究的基礎上,學生分組交流.
教師參與小組活動,指導、傾聽學生交流.針對不同認識水平的學生,引導其正確作圖.
本次活動教師應重點關注:
(1)學生在活動過程中能否發現梯形與三角形之間的聯系,他們之間的轉化方法.
(2)學生能否將等腰三角形轉化為等腰梯形.
(3)學生能否主動參與探究活動,在討論中發表自己的見解,傾聽他人的意見,對不同的觀點進行質疑,從中獲益.
等腰梯形的性質與等腰三角形相仿,因此在活動3中設計了第(2)題,在推導等腰梯形性質或需要添加輔助線時,可以借助等腰三角形來研究.尤其是根據等腰三角形是軸對稱圖形,可得到等腰梯形是軸對稱圖形這條性質,為活動4種開展探究奠定了基礎.
問題與情景
師生行為
設計意圖
[活動4]
做—做
探索等腰梯形的性質(引入用軸對稱解決問題的思想).
在一張方格紙上作一個等腰梯形,連接兩條對角線.
(1)這個圖形是軸對稱圖形嗎?對稱軸在哪里?你能發現哪些相等的線段和相等的角?學生畫圖并通過觀察猜想;
(2)這個等腰梯形的兩條對角線的長度有什么關系?
學生按照實驗步驟,獨立完成畫圖過程,觀察圖形,思考教師提出的問題,猜想、驗證、歸納結論.
針對不同認識水平的學生,教師指導學生活動.
師生共同歸納:
①等腰梯形是軸對稱圖形,上下底的中點連線是對稱軸.
②等腰梯形兩腰相等.
③等腰梯形同一底上的兩個角相等.
④等腰梯形的兩條對角線相等.
教學中要注意引導學生證明等腰梯形的性質,尤其在證明“等腰梯形同一底上的兩個角相等”這條性質時,“平移腰”和“作高”這兩種常見的輔助線,在教學中頭一次出現,可以借此機會,給學生介紹這兩種輔助線的添加方法.
[活動5]
練—練
例1 (教材P118的例1)略.
例2 如圖,梯形ABCD中,AD∥BC,
∠B=70°,∠C=40°,AD=6cm,BC=15cm.
求CD的長.
師生共同分析,尋找解決問題的方法和策略.
例1是等腰梯形性質的直接運用,請學生分析、解答,教師聆聽,同時注意指導學生,在證明△EAD是等腰三角形時,要用到梯形的定義“上下底互相平行(AD∥BC)”這一點.
分析:設法把已知中所給的條件都移到一個三角形中,便可以解決問題.
其方法是:平移一腰,過點A作AE∥DC交BC于E,因此四邊形AECD是平行四邊形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.
解:(略)
通過題目的練習與講解應讓學生知道:解決梯形問題的基本思想和方法就是通過添加適當的輔助線,把梯形問題轉化為已經熟悉的平行四邊形和三角形問題來解決.在教學時應讓學生注意它們的作用,掌握這些輔助線的使用對于學好梯形內容很有幫助.
問題與情景
師生行為
設計意圖
例3已知:如圖,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,
BE⊥AC于E.
求證:BE=CD.
分析:要證BE=CD,需添加適當的輔助線,構造全等三角形,其方法是:平移一腰,過點D作DF∥AB交BC于F,因此四邊形ABFD是平行四邊形,則DF=AB,由已知可導出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.
證明(略)
例2與例3這里給出的輔助線均是“平移一腰”,老師們在教學或練習中可以根據學生的實際情況,再引導、補充其他輔助線的添加方法,讓學生多了解、多見識.
[活動6]
1.小結
2.布置作業
(1)已知等腰梯形的銳角等于60°它的兩底分別為15cm和49cm,求它的腰長和面積.
(2)已知:如圖,
梯形ABCD中,CD//AB,,.
求證:AD=AB—DC.
(3)已知,如圖,
梯形ABCD中,AD∥BC,E是AB的中點,DE⊥CE,求證:AD+BC=DC.(延長DE交CB延長線于點F,由全等可得結論)
師生歸納總結:
解決梯形問題常用的方法:
(1)“平移腰”:把梯形分成一個平行四邊形和一個三角形(圖1);
(2)“作高”:使兩腰在兩個直角三角形中(圖2);
(3)“延腰”:構造具有公共角的兩個等腰三角形(圖3);
(4)“平移對角線”:使兩條對角線在同一個三角形中(圖4);
(5)“等積變形”,連結梯形上底一端點和另一腰中點,并延長與下底延長線交于一點,構成三角形(圖5).
盡量多地讓學生參與發言是一個交流的過程.
梳理本節課應用過的輔助線添加方法,既可以鍛煉學生思維,又可以留給學生繼續探究的空間.
學生通過獨立思考,完成課后作業,便于發現問題,及時查漏補缺.
【八年級數學教案】相關文章:
八年級的數學教案12-14
八年級數學教案06-18
八年級數學教案【熱門】12-03
【精】八年級數學教案12-04
八年級數學教案【精】12-04
八年級數學教案【薦】12-06
【推薦】八年級數學教案12-05
八年級數學教案【推薦】12-04
【熱】八年級數學教案12-07
八年級下冊數學教案01-01