1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>八年級數學教案>八年級數學教案

    八年級數學教案

    時間:2022-08-23 05:07:43 八年級數學教案 我要投稿

    有關八年級數學教案范文錦集9篇

      作為一名教學工作者,就不得不需要編寫教案,教案是教材及大綱與課堂教學的紐帶和橋梁。怎樣寫教案才更能起到其作用呢?以下是小編幫大家整理的八年級數學教案9篇,歡迎大家借鑒與參考,希望對大家有所幫助。

    有關八年級數學教案范文錦集9篇

    八年級數學教案 篇1

      一、學生起點分析

      學生已經了勾股定理,并在先前其他內容學習中已經積累了一定百度一下的逆向思維、逆向研究的經驗,如:已知兩直線平行,有什么樣的結論?

      反之,滿足什么條件的兩直線是平行?因而,本課時由勾股定理出發逆向思考獲得逆命題,學生應該已經具備這樣的意識,但具體研究中

      可能要用到反證等思路,對現階段學生而言可能還具有一定困難,需要教師適時的引導。

      二、學習任務分析

      本節課是北師大版數學八年級(上)第一章《勾股定理》第2節。教學任務有:探索勾股定理的逆定理

      并利用該定理根據邊長判斷一個三角形是否是直角三角形,利用該定理解決一些簡單的實際問題;通過具體的數,增加對勾股數的直觀體驗。為此確定教學目標:

      ● 知識與技能目標

      1.理解勾股定理逆定理的具體內容及勾股數的概念;

      2.能根據所給三角形三邊的條件判斷三角形是否是直角三角形。

      ● 過程與方法目標

      1.經歷一般規律的探索過程,發展學生的抽象思維能力;

      2.經歷從實驗到驗證的過程,發展學生的數學歸納能力。

      ● 情感與態度目標

      1.體驗生活中的數學的應用價值,感受數學與人類生活的密切聯系,激發學生學數學、用數學的興趣;

      2.在探索過程中體驗成功的喜悅,樹立學習的自信心。

      教學重點

      理解勾股定理逆定理的具體內容。

      三、教法學法

      1.教學方法:實驗猜想歸納論證

      本節課的教學對象是初二學生,他們的參與意識較強,思維活躍,對通過實驗獲得數學結論已有一定的體驗

      但數學思維嚴謹的.同學總是心存疑慮,利用邏輯推理的方式,讓同學心服口服顯得非常迫切,為了實現本節課的教學目標,我力求從以下三個方面對學生進行引導:

      (1)從創設問題情景入手,通過知識再現,孕育教學過程;

      (2)從學生活動出發,通過以舊引新,順勢教學過程;

      (3)利用探索,研究手段,通過思維深入,領悟教學過程。

      2.課前準備

      教具:教材、電腦、多媒體課件。

      學具:教材、筆記本、課堂練習本、文具。

      四、教學過程設計

      本節課設計了七個環節。第一環節:情境引入;第二環節:合作探究;第三環節:小試牛刀;第四環節:

      登高望遠;第五環節:鞏固提高;第六環節:交流小結;第七環節:布置作業。

      第一環節:情境引入

      內容:

      情境:1.直角三角形中,三邊長度之間滿足什么樣的關系?

      2.如果一個三角形中有兩邊的平方和等于第三邊的平方,那么這個三角形是否就是直角三角形呢?

      意圖:

      通過情境的創設引入新課,激發學生探究熱情。

      效果:

      從勾股定理逆向思維這一情景引入,提出問題,激發了學生的求知欲,為下一環節奠定了良好的基礎。

      第二環節:合作探究

      內容1:探究

      下面有三組數,分別是一個三角形的三邊長 ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個問題:

      1.這三組數都滿足 嗎?

      2.分別以每組數為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學生分為4人活動小組,每個小組可以任選其中的一組數。

      意圖:

      通過學生的合作探究,得出若一個三角形的三邊長 ,滿足 ,則這個三角形是直角三角形這一結論;在活動中體驗出數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律。

      效果:

      經過學生充分討論后,匯總各小組實驗結果發現:①5,12,13滿足 ,可以構成直角三角形;②7,24,25滿足 ,可以構成直角三角形;③8,15,17滿足 ,可以構成直角三角形。

      從上面的分組實驗很容易得出如下結論:

      如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

      內容2:說理

      提問:有同學認為測量結果可能有誤差,不同意這個發現。你認為這個發現正確嗎?你能給出一個更有說服力的理由嗎?

      意圖:讓學生明確,僅僅基于測量結果得到的結論未必可靠,需要進一步通過說理等方式使學生確信結論的可靠性,同時明晰結論:

      如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

      滿足 的三個正整數,稱為勾股數。

      注意事項:為了讓學生確認該結論,需要進行說理,有條件的班級,還可利用幾何畫板動畫演示,讓同學有一個直觀的認識。

      活動3:反思總結

      提問:

      1.同學們還能找出哪些勾股數呢?

      2.今天的結論與前面學習勾股定理有哪些異同呢?

      3.到今天為止,你能用哪些方法判斷一個三角形是直角三角形呢?

      4.通過今天同學們合作探究,你能體驗出一個數學結論的發現要經歷哪些過程呢?

      意圖:進一步讓學生認識該定理與勾股定理之間的關系

      第三環節:小試牛刀

      內容:

      1.下列哪幾組數據能作為直角三角形的三邊長?請說明理由。

      ①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22

      解答:①②

      2.一個三角形的三邊長分別是 ,則這個三角形的面積是( )

      A 250 B 150 C 200 D 不能確定

      解答:B

      3.如圖1:在 中, 于 , ,則 是( )

      A 等腰三角形 B 銳角三角形

      C 直角三角形 D 鈍角三角形

      解答:C

      4.將直角三角形的三邊擴大相同的倍數后, (圖1)

      得到的三角形是( )

      A 直角三角形 B 銳角三角形

      C 鈍角三角形 D 不能確定

      解答:A

      意圖:

      通過練習,加強對勾股定理及勾股定理逆定理認識及應用

      效果

      每題都要求學生獨立完成(5分鐘),并指出各題分別用了哪些知識。

      第四環節:登高望遠

      內容:

      1.一個零件的形狀如圖2所示,按規定這個零件中 都應是直角。工人師傅量得這個零件各邊尺寸如圖3所示,這個零件符合要求嗎?

      解答:符合要求 , 又 ,

      2.一艘在海上朝正北方向航行的輪船,航行240海里時方位儀壞了,憑經驗,船長指揮船左傳90,繼續航行70海里,則距出發地250海里,你能判斷船轉彎后,是否沿正西方向航行?

      解答:由題意畫出相應的圖形

      AB=240海里,BC=70海里,,AC=250海里;在△ABC中

      =(250+240)(250-240)

      =4900= = 即 △ABC是Rt△

      答:船轉彎后,是沿正西方向航行的。

      意圖:

      利用勾股定理逆定理解決實際問題,進一步鞏固該定理。

      效果:

      學生能用自己的語言表達清楚解決問題的過程即可;利用三角形三邊數量關系 判斷一個三角形是直角三角形時,當遇見數據較大時,要懂得將 作適當變形( ),以便于計算。

      第五環節:鞏固提高

      內容:

      1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個直角三角形,你是如何判斷的?與你的同伴交流。

      解答:4個直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF

      2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?

      圖4 圖5

      解答:④⑤是直角三角形,①②③⑥不是直角三角形

      意圖:

      第一題考查學生充分利用所學知識解決問題時,考慮問題要全面,不要漏解;第二題在于考查學生如何利用網格進行計算,從而解決問題。

      效果:

      學生在對所學知識有一定的熟悉度后,能夠快速做答并能簡要說明理由即可。注意防漏解及網格的應用。

      第六環節:交流小結

      內容:

      師生相互交流總結出:

      1.今天所學內容①會利用三角形三邊數量關系 判斷一個三角形是直角三角形;②滿足 的三個正整數,稱為勾股數;

      2.從今天所學內容及所作練習中總結出的經驗與方法:①數學是源于生活又服務于生活的;②數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律;③利用三角形三邊數量關系 判斷一個三角形是直角三角形時,當遇見數據較大時,要懂得將 作適當變形, 便于計算。

      意圖:

      鼓勵學生結合本節課的學習談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應用及它們的悠久歷史;敢于面對數學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經驗,進一步體會數學的應用價值,發展運用數學的信心和能力,初步形成積極參與數學活動的意識。

      效果:

      學生暢所欲言自己的切身感受與實際收獲,總結出利用三角形三邊數量關系 判斷一個三角形是直角三角形從古至今在實際生活中的廣泛應用。

      第七環節:布置作業

      課本習題1.4第1,2,4題。

      五、教學反思:

      1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個三角形的三邊長 ,滿足 ,是否能得到這個三角形是直角三角形的問題;充分引用教材中出現的例題和練習。

      2.注重引導學生積極參與實驗活動,從中體驗任何一個數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律。

      3.在利用今天所學知識解決實際問題時,引導學生善于對公式變形,便于簡便計算。

      4.注重對學習新知理解應用偏困難的學生的進一步關注。

      5.對于勾股定理的逆定理的論證可根據學生的實際情況做適當調整,不做要求。

      由于本班學生整體水平較高,因而本設計教學容量相對較大,教學中,應注意根據自己班級學生的狀況進行適當的刪減或調整。

      附:板書設計

      能得到直角三角形嗎

      情景引入 小試牛刀: 登高望遠

    八年級數學教案 篇2

      教材分析

      1本節課的主題:通過一系列的探究活動,引導學生從計算結果中總結出完全平方公式的兩種形式

      1、以教材作為出發點,依據《數學課程標準》,引導學生體會、參與科學探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關系。通過學生自主、獨立的發現問題,對可能的答案做出假設與猜想,并通過多次的檢驗,得出正確的結論。學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態度特別是創新精神和實踐能力等方面的發展。

      2、用標準的數學語言得出結論,使學生感受科學的嚴謹,啟迪學習態度和方法。

      學情分析

      1、在學習本課之前應具備的基本知識和技能:

      ①同類項的定義。

      ②合并同類項法則

      ③多項式乘以多項式法則。

      2、學習者對即將學習的內容已經具備的水平:

      在學習完全平方公式之前,學生已經能夠整理出公式的右邊形式。這節課的目的就是讓學生從等號的左邊形式和右邊形式之間的關系,總結出公式的應用方法。

      教學目標

      (一)教學目標:

      1、經歷探索完全平方公式的過程,進一步發展符號感和推力能力。

      2、會推導完全平方公式,并能運用公式進行簡單的計算。

      (二)知識與技能:經歷從具體情境中抽象出符號的過程,認識有理

      數、實數、代數式、、;掌握必要的`運算,(包括估算)技能;探索具體問題中的數量關系和變化規律,并能運用代數式、、不等式、函數等進行描述。

      (四)解決問題:能結合具體情景發現并提出數學問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經驗。

      (五)情感與態度:敢于面對數學活動中的困難,并有獨立克服困難和運用知識解決問題的成功體驗,有學好數學的自信心;并尊重與理解他人的見解;能從交流中獲益。

      教學重點和難點

      重點:能運用完全平方公式進行簡單的計算。

      難點:會推導完全平方公式

      教學過程

      教學過程設計如下:

      〈一〉、提出問題

      [引入]同學們,前面我們學習了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結出結果與多項式中兩個單項式的關系嗎?

      (2m+3n)2=_______________,(-2m-3n)2=______________,

      (2m-3n)2=_______________,(-2m+3n)2=_______________。

      〈二〉、分析問題

      1、[學生回答]分組交流、討論

      (2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,

      (2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。

      (1)原式的特點。

      (2)結果的項數特點。

      (3)三項系數的特點(特別是符號的特點)。

      (4)三項與原多項式中兩個單項式的關系。

      2、[學生回答]總結完全平方公式的語言描述:

      兩數和的平方,等于它們平方的和,加上它們乘積的兩倍;

      兩數差的平方,等于它們平方的和,減去它們乘積的兩倍。

      3、[學生回答]完全平方公式的數學表達式:

      (a+b)2=a2+2ab+b2;

      (a-b)2=a2-2ab+b2.

      〈三〉、運用公式,解決問題

      1、口答:(搶答形式,活躍課堂氣氛,激發學生的學習積極性)

      (m+n)2=____________, (m-n)2=_______________,

      (-m+n)2=____________, (-m-n)2=______________,

      (a+3)2=______________, (-c+5)2=______________,

      (-7-a)2=______________, (0.5-a)2=______________.

      2、判斷:

      ( )① (a-2b)2= a2-2ab+b2

      ( )② (2m+n)2= 2m2+4mn+n2

      ( )③ (-n-3m)2= n2-6mn+9m2

      ( )④ (5a+0.2b)2= 25a2+5ab+0.4b2

      ( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2

      ( )⑥ (-a-2b)2=(a+2b)2

      ( )⑦ (2a-4b)2=(4a-2b)2

      ( )⑧ (-5m+n)2=(-n+5m)2

      3、一現身手

      ① (x+y)2 =______________;② (-y-x)2 =_______________;

      ③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;

      ⑤ (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;

      ⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.

      〈四〉、[學生小結]

      你認為完全平方公式在應用過程中,需要注意那些問題?

      (1)公式右邊共有3項。

      (2)兩個平方項符號永遠為正。

      (3)中間項的符號由等號左邊的兩項符號是否相同決定。

      (4)中間項是等號左邊兩項乘積的2倍。

      〈五〉、探險之旅

      (1)(-3a+2b)2=________________________________

      (2)(-7-2m) 2 =__________________________________

      (3)(-0.5m+2n) 2=_______________________________

      (4)(3/5a-1/2b) 2=________________________________

      (5)(mn+3) 2=__________________________________

      (6)(a2b-0.2) 2=_________________________________

      (7)(2xy2-3x2y) 2=_______________________________

      (8)(2n3-3m3) 2=________________________________

      板書設計

      完全平方公式

      兩數和的平方,等于它們平方的和,加上它們乘積的兩倍;(a+b)2=a2+2ab+b2;

      兩數差的平方,等于它們平方的和,減去它們乘積的兩倍。(a-b)2=a2-2ab+b2

    八年級數學教案 篇3

      教學目的

      1. 使學生熟練地運用等腰三角形的性質求等腰三角形內角的角度。

      2. 熟識等邊三角形的性質及判定.

      2.通過例題教學,幫助學生總結代數法求幾何角度,線段長度的方法。

      教學重點

      等腰三角形的性質及其應用。

      教學難點

      簡潔的邏輯推理。

      教學過程

      一、復習鞏固

      1.敘述等腰三角形的性質,它是怎么得到的?

      等腰三角形的兩個底角相等,也可以簡稱等邊對等角。把等腰三角形對折,折疊兩部分是互相重合的,即AB與AC重合,點B與點 C重合,線段BD與CD也重合,所以C。

      等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱三線合一。由于AD為等腰三角形的對稱軸,所以BD= CD,AD為底邊上的中線;BAD=CAD,AD為頂角平分線,ADB=ADC=90,AD又為底邊上的高,因此三線合一。

      2.若等腰三角形的兩邊長為3和4,則其周長為多少?

      二、新課

      在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時,三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。

      等邊三角形具有什么性質呢?

      1.請同學們畫一個等邊三角形,用量角器量出各個內角的度數,并提出猜想。

      2.你能否用已知的知識,通過推理得到你的猜想是正確的?

      等邊三角形是特殊的等腰三角形,由等腰三角形等邊對等角的性質得到B=C,又由B+C=180,從而推出B=C=60。

      3.上面的條件和結論如何敘述?

      等邊三角形的'各角都相等,并且每一個角都等于60。

      等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?

      等邊三角形也稱為正三角形。

      例1.在△ABC中,AB=AC,D是BC邊上的中點,B=30,求1和ADC的度數。

      分析:由AB=AC,D為BC的中點,可知AB為 BC底邊上的中線,由三線合一可知AD是△ABC的頂角平分線,底邊上的高,從而ADC=90,BAC,由于B=30,BAC可求,所以1可求。

      問題1:本題若將D是BC邊上的中點這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計算的結果是否一樣?

      問題2:求1是否還有其它方法?

      三、練習鞏固

      1.判斷下列命題,對的打,錯的打。

      a.等腰三角形的角平分線,中線和高互相重合( )

      b.有一個角是60的等腰三角形,其它兩個內角也為60( )

      2.如圖(2),在△ABC中,已知AB=AC,AD為BAC的平分線,且2=25,求ADB和B的度數。

      四、小結

      由等腰三角形的性質可以推出等邊三角形的各角相等,且都為60。三線合一性質在實際應用中,只要推出其中一個結論成立,其他兩個結論一樣成立,所以關鍵是尋找其中一個結論成立的條件。

      五、作業

      1.課本P127─7,9

      2、補充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求CBD,BOE,BOC,

      EOD的度數。

      (一)課本P127─1、3、4、8題.

    八年級數學教案 篇4

      11.1 與三角形有關的線段

      11.1.1 三角形的邊

      1.理解三角形的概念,認識三角形的頂點、邊、角,會數三角形的個數.(重點)

      2.能利用三角形的三邊關系判斷三條線段能否構成三角形.(重點)

      3.三角形在實際生活中的應用.(難點)

      一、情境導入

      出示金字塔、戰機、大橋等圖片,讓學生感受生活中的三角形,體會生活中處處有數學.

      教師利用多媒體演示三角形的形成過程,讓學生觀察.

      問:你能不能給三角形下一個完整的定義?

      二、合作探究

      探究點一:三角形的概念

      圖中的銳角三角形有( )

      A.2個

      B.3個

      C.4個

      D.5個

      解析:(1)以A為頂點的銳角三角形有△ABC、△ADC共2個;(2)以E為頂點的銳角三角形有△EDC共1個.所以圖中銳角三角形的個數有2+1=3(個).故選B.

      方法總結:數三角形的個數,可以按照數線段條數的方法,如果一條線段上有n個點,那么就有n(n-1)2條線段,也可以與線段外的一點組成n(n-1)2個三角形.

      探究點二:三角形的三邊關系

      【類型一】 判定三條線段能否組成三角形

      以下列各組線段為邊,能組成三角形的是( )

      A.2c,3c,5c

      B.5c,6c,10c

      C.1c,1c,3c

      D.3c,4c,9c

      解析:選項A中2+3=5,不能組成三角形,故此選項錯誤;選項B中5+6>10,能組成三角形,故此選項正確;選項C中1+1<3,不能組成三角形,故此選項錯誤;選項D中3+4<9,不能組成三角形,故此選項錯誤.故選B.

      方法總結:判定三條線段能否組成三角形,只要判定兩條較短的線段長度之和大于第三條線段的長度即可.

      【類型二】 判斷三角形邊的取值范圍

      一個三角形的三邊長分別為4,7,x,那么x的取值范圍是( )

      A.3<x<11 B.4<x<7

      C.-3<x<11 D.x>3

      解析:∵三角形的三邊長分別為4,7,x,∴7-4<x<7+4,即3<x<11.故選A.

      方法總結:判斷三角形邊的取值范圍要同時運用兩邊之和大于第三邊,兩邊之差小于第三邊.有時還要結合不等式的知識進行解決.

      【類型三】 等腰三角形的三邊關系

      已知一個等腰三角形的兩邊長分別為4和9,求這個三角形的周長.

      解析:先根據等腰三角形兩腰相等的性質可得出第三邊長的兩種情況,再根據兩邊和大于第三邊來判斷能否構成三角形,從而求解.

      解:根據題意可知等腰三角形的三邊可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能構成三角形,應舍去;4+9>9,故4,9,9能構成三角形,∴它的周長是4+9+9=22.

      方法總結:在求三角形的邊長時,要注意利用三角形的三邊關系驗證所求出的邊長能否組成三角形.

      【類型四】 三角形三邊關系與絕對值的綜合

      若a,b,c是△ABC的三邊長,化簡|a-b-c|+|b-c-a|+|c+a-b|.

      解析:根據三角形三邊關系:兩邊之和大于第三邊,兩邊之差小于第三邊,來判定絕對值里的式子的正負,然后去絕對值符號進行計算即可.

      解:根據三角形的三邊關系,兩邊之和大于第三邊,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.

      方法總結:絕對值的'化簡首先要判斷絕對值符號里面的式子的正負,然后根據絕對值的性質將絕對值的符號去掉,最后進行化簡.此類問題就是根據三角形的三邊關系,判斷絕對值符號里面式子的正負,然后進行化簡.

      三、板書設計

      三角形的邊

      1.三角形的概念:

      由不在同一直線上的三條線段首尾順次相接所組成的圖形.

      2.三角形的三邊關系:

      兩邊之和大于第三邊,兩邊之差小于第三邊.

      本節課讓學生經歷一個探究解決問題的過程,抓住“任意的三條線段能不能圍成一個三角形”引發學生探究的欲望,圍繞這個問題讓學生自己動手操作,發現有的能圍成,有的不能圍成,由學生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關系,重點研究“能圍成三角形的三條邊之間到底有什么關系”.通過觀察、驗證、再操作,最終發現三角形任意兩邊之和大于第三邊這一結論.這樣教學符合學生的認知特點,既提高了學生學習的興趣,又增強了學生的動手能力.

    八年級數學教案 篇5

      一、教學目標

      1.靈活應用勾股定理及逆定理解決實際問題.

      2.進一步加深性質定理與判定定理之間關系的認識.

      二、重點、難點

      1.重點:靈活應用勾股定理及逆定理解決實際問題.

      2.難點:靈活應用勾股定理及逆定理解決實際問題.

      3.難點的突破方法:

      三、課堂引入

      創設情境:在軍事和航海上經常要確定方向和位置,從而使用一些數學知識和數學方法.

      四、例習題分析

      例1(P83例2)

      分析:⑴了解方位角,及方位名詞;

      ⑵依題意畫出圖形;

      ⑶依題意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;

      ⑷因為242+182=302,PQ2+PR2=QR2,根據勾股定理的逆定理,知∠QPR=90°;

      ⑸∠PRS=∠QPR—∠QPS=45°.

      小結:讓學生養成“已知三邊求角,利用勾股定理的逆定理”的意識.

      例2(補充)一根30米長的細繩折成3段,圍成一個三角形,其中一條邊的長度比較短邊長7米,比較長邊短1米,請你試判斷這個三角形的`形狀.

      分析:⑴若判斷三角形的形狀,先求三角形的三邊長;

      ⑵設未知數列方程,求出三角形的三邊長5、12、13;

      ⑶根據勾股定理的逆定理,由52+122=132,知三角形為直角三角形.

      解略.

      本題幫助培養學生利用方程思想解決問題,進一步養成利用勾股定理的逆定理解決實際問題的意識.

    八年級數學教案 篇6

      一、教學目標:

      1、理解極差的定義,知道極差是用來反映數據波動范圍的一個量.

      2、會求一組數據的極差.

      二、重點、難點和難點的突破方法

      1、重點:會求一組數據的極差.

      2、難點:本節課內容較容易接受,不存在難點.

      三、課堂引入:

      下表顯示的'是上海20xx年2月下旬和20xx年同期的每日最高氣溫,如何對這兩段時間的氣溫進行比較呢?

      從表中你能得到哪些信息?

      比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法.

      經計算可以看出,對于2月下旬的這段時間而言,20xx年和20xx年上海地區的平均氣溫相等,都是12度.

      這是不是說,兩個時段的氣溫情況沒有什么差異呢?

      根據兩段時間的氣溫情況可繪成的折線圖.

      觀察一下,它們有區別嗎?說說你觀察得到的結果.

      用一組數據中的最大值減去最小值所得到的差來反映這組數據的變化范圍.用這種方法得到的差稱為極差(range).

      四、例習題分析

      本節課在教材中沒有相應的例題,教材P152習題分析

      問題1可由極差計算公式直接得出,由于差值較大,結合本題背景可以說明該村貧富差距較大.問題2涉及前一個學期統計知識首先應回憶復習已學知識.問題3答案并不唯一,合理即可。

    八年級數學教案 篇7

      教材分析

      本章屬于“數與代數”領域,整式的乘除運算和因式分解是基本而重要的代數初步知識,在后續的數學學習中具有重要的意義。本章內容建立在已經學習了有理數的運算,列簡單的代數式、一次方程及不等式、整式的加減運算等知識的基礎上,而本節課的知識是學習本章的基礎,為后續章節的學習作鋪墊,因此,學得好壞直接關乎到后續章節的學習效果。

      學情分析

      本節課知識是學習整章的基礎,因此,教學的好壞直接影響了后續章節的學習。學生在學習本章前,已經掌握了用字母表示數,列簡單的代數式,掌握了乘方的意義及相關概念,并且本節課的知識相對較簡單,學生比較容易理解和掌握,但是教師在教學中要注意引導學生導出同底數冪的乘法的運算性質的過程是一個由特殊到一般的認識過程,并且注意導出這一性質的每一步的`根據。

      從學生做練習和作業來看,大部分學生都已經掌握本節課的知識,并且掌握的很好,但是還是存在一些問題,那就是符號問題,這方面還有待加強。

      教學目標

      1、知識與技能:

      掌握同底數冪乘法的運算性質,能熟練運用性質進行同底數冪乘法運算。

      2、過程與方法:

      (1)通過同底數冪乘法性質的推導過程,體會不完全歸納法的運用,進一步發展演繹推理能力;

      (2)通過性質運用幫助學生理解字母表達式所代表的數量關系,進一步積累選擇適當的程序和算法解決用符號所表達問題的經驗。

      3、情感態度與價值觀:

      (1)通過引例問題情境的創設,誘發學生的求知欲,進一步認識數學與生活的密切聯系;

      (2)通過性質的推導體會“特殊。

    八年級數學教案 篇8

      教學任務分析

      教學目標

      知識技能

      一、類比同分母分數的加減,熟練掌握同分母分式的加減運算.

      二、類比異分母分數的加減及通分過程,熟練掌握異分母分式的加減及通分過程與方法.

      數學思考

      在分式的加減運算中,體驗知識的化歸聯系和思維靈活性,培養學生整體思考的分析問題能力.

      解決問題

      一、會進行同分母和異分母分式的加減運算.

      二、會解決與分式的加減有關的簡單實際問題.

      三、能進行分式的加、剪、乘、除、乘方的混合運算.

      情感態度

      通過師生活動、學生自我探究,讓學生充分參與到數學學習的過程中來,使學生在整體思考中開闊視野,養成良好品德,滲透化歸對立統一的辯證觀點.

      重點

      分式的加減法.

      難點

      異分母分式的加減法及簡單的分式混合運算.

      教學流程安排

      活動流程圖

      活動內容和目的

      活動1:問題引入

      活動2:學習同分母分式的加減

      活動3:探究異分母分式的加減

      活動4:發現分式加減運算法則

      活動5:鞏固練習、總結、作業

      向學生提出兩個實際問題,使學生體會學習分式加減的必要性及迫切性,創始問題情境,激發學生的學習熱情.

      類比同分母分數的加減,讓學生歸納同分母分式的加減的方法并進行簡單運算.

      回憶異分母分數的加減,使學生歸納異分母分式的加減的方法.

      通過以上探究過程,讓學生發現分式加減運算的法則,通過分式在物理學的應用及簡單混合運算,使學生深化對分式加減運算法則的理解.

      通過練習、作業進一步鞏固分式的運算.

      課前準備

      教具

      學具

      補充材料

      課件

      教學過程設計

      問題與情境

      師生行為

      設計意圖

      [活動1]

      1.問題一:比較電腦與手抄的錄入時間.

      2.問題二;幫幫小明算算時間

      所需時間為,

      如何求出的值?

      3.這里用到了分式的加減,提出本節課的主題.

      教師通過課件展示問題.學生積極動腦解決問題,提出困惑:

      分式如何進行加減?

      通過實際問題中要用到分式的加減,從而提出問題,讓學生思考,可以激發學生探究的熱情.

      [活動2]

      1.提出小學數學中一道簡單的分數加法題目.

      2.用課件引導學生用類比法,歸納總結同分母分式加法法則.

      3.教師使用課件展示[例1]

      4.教師通過課件出兩個小練習.

      教師提出問題,學生回答,進一步回憶同分母分數加減的運算法則.

      學生在教師的引導下,探索同分母分式加減的運算方法.

      通過例題,讓學生和教師一起體會同分母分式加減運算,同時教師指出運算中的.注意事項.

      由兩個學生板書自主完成練習,教師巡視指導學生練習.

      運用類比的方法,從學生熟知的知識入手,有利于學生接受新知識.

      師生共同完成例題,使學生感受到自己很棒,自己能夠通過思考學會新知識,提高自信心.

      讓學生進一步體會同分母分式的加減運算.

      [活動3]

      1.教師以練習的形式通過“自我發展的平臺”,向學生展示這樣一道題.

      2.教師提出思考題:

      異分母的分式加減法要遵守什么法則呢?

      教師展示一道異分母分式的加減題目,學生自然就想到異分母分數的`加減.

      教師通過課件引導學生思考,學生會想到小學數學中,異分母分數的加減法則,從而聯想到異分母分式的加減法則,教師引導學生歸納出異分母分式加減運算的方法思路.

      由學生主動提出解決問題的方法,從而激發了學生探究問題的興趣.

      通過學生的自我探究、歸納總結,讓學生充分參與到數學學習的過程中來,體會學習的樂趣.

      [活動4]

      1.在語言敘述分式加減法則的基礎上,用字母表示分式的加減法法則.

      2.教師使用課件展示[例2]

      3.教師通過課件出4個小練習.

      4.[例3]在圖的電路中,已測定CAD支路的電阻是R1歐姆,又知CBD支路的電阻R2比R1大50歐姆,根據電學的有關定律可知總電阻R與R1R2滿足關系式 ;

      試用含有R1的式子表示總電阻R

      5.教師使用課件展示[例4]

      教師提出要求,由學生說出分式加減法則的字母表示形式.

      通過例題,讓學生和教師一起體會異分母分式加減運算,同時教師重點演示通分的過程.

      教師引導學生找出每道題的方法、如何找最簡公分母及時指出學生在通分中出現的問題,由學生自己完成.

      教師引導學生尋找解決問題的突破口,由師生共同完成,對比物理學中的計算,體會各學科知識之間的聯系.

      分式的混合運算,師生共同完成,教師提醒學生注意運算順序,通分要仔細.

      由此練習學生的抽象表達能力,讓學生體會數學符號語言的精練.

      讓學生體會運用的公式解決問題的過程.

      鍛煉學生運用法則解決問題的能力,既準確又有速度.

      提高學生的計算能力.

      通過分式在物理學中的應用,加強了學科之間的聯系,使學生開闊了視野,讓學生體會到學習數學的重要性,體會各學科全面發展的重要性,提高學習的興趣.

      提高學生綜合應用知識的能力.

      [活動5]

      1.教師通過課件出2個分式混合運算的小練習.

      2.總結:

      a)這節課我們學習了哪些知識?你能說一說嗎?

      b)⑴方法思路;

      c)⑵計算中的主意事項;

      d)⑶結果要化簡.

      3.作業:

      a)教科書習題16.2第4、5、6題.

      學生練習、鞏固.

      教師巡視指導.

      學生完成、交流.,師生評價.

      教師引導學生回憶本節課所學內容,學生回憶交流,師生共同補充完善.

      教師布置作業.

      鍛煉學生運用法則進行運算的能力,提高準確性及速度.

      提高學生歸納總結的能力.

    八年級數學教案 篇9

      知識技能

      1.了解兩個圖形成軸對稱性的性質,了解軸對稱圖形的性質。

      2.探究線段垂直平分線的性質。

      過程方法

      1.經歷探索軸對稱圖形性質的過程,進一步體驗軸對稱的特點,發展空間觀察。

      2.探索線段垂直平分線的性質,培養學生認真探究、積極思考的能力。

      情感態度價值觀通過對軸對稱圖形性質的探索,促使學生對軸對稱有了更進一步的認識,活動與探究的過程可以更大程度地激發學生學習的主動性和積極性,并使學生具有一些初步研究問題的`能力。

      教學重點

      1.軸對稱的性質。

      2.線段垂直平分線的性質。

      教學難點體驗軸對稱的特征。

      教學方法和手段多媒體教學

      過程教學內容

      引入中垂線概念

      引出圖形對稱的性質第一張幻燈片

      上節課我們共同探討了軸對稱圖形,知道現實生活中由于有軸對稱圖形,而使得世界非常美麗。那么我們今天繼續來研究軸對稱的性質。

      幻燈片二

      1、圖中的對稱點有哪些?

      2、點A和A的連線與直線MN有什么樣的關系?

      理由?:△ABC與△ABC關于直線MN對稱,點A、B、C分別是點A、B、C的對稱點,設AA交對稱軸MN于點P,將△ABC和△ABC沿MN對折后,點A與A重合,于是有AP=AP,MPA=MPA=90。所以AA、BB和CC與MN除了垂直以外,MN還經過線段AA、BB和CC的中點。

      我們把經過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線。

      定義:經過線段的中點并且垂直于這條線段,就叫這條線段的垂直平分線,也叫中垂線。

    【八年級數學教案】相關文章:

    八年級的數學教案12-14

    八年級數學教案06-18

    八年級上冊數學教案11-09

    人教版八年級數學教案11-04

    【熱門】八年級數學教案11-29

    【熱】八年級數學教案12-07

    八年級數學教案【薦】12-06

    【推薦】八年級數學教案12-05

    【薦】八年級數學教案12-03

    八年級數學教案【熱門】12-03

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      亚洲影院午夜在线免费 | 午夜福利在线不卡 | 思思99思思久久最新地址精品 | 在线播放亚洲视频 | 亚洲免费人a成电影 | 亚洲日韩欧美黑人专区 |