1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案

    八年級(jí)數(shù)學(xué)教案

    時(shí)間:2022-08-22 21:22:30 八年級(jí)數(shù)學(xué)教案 我要投稿

    有關(guān)八年級(jí)數(shù)學(xué)教案模板匯編七篇

      作為一名專(zhuān)為他人授業(yè)解惑的人民教師,往往需要進(jìn)行教案編寫(xiě)工作,教案是教學(xué)藍(lán)圖,可以有效提高教學(xué)效率。我們應(yīng)該怎么寫(xiě)教案呢?下面是小編幫大家整理的八年級(jí)數(shù)學(xué)教案7篇,僅供參考,大家一起來(lái)看看吧。

    有關(guān)八年級(jí)數(shù)學(xué)教案模板匯編七篇

    八年級(jí)數(shù)學(xué)教案 篇1

      [教學(xué)分析]

      勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時(shí)在實(shí)際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書(shū)所體現(xiàn)的主要思想。教材在編寫(xiě)時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問(wèn)題的能力,通過(guò)實(shí)際操作,使學(xué)生獲得較為直觀的印象;通過(guò)聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進(jìn)行正確的應(yīng)用。

      本節(jié)教科書(shū)從畢達(dá)哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說(shuō)談起,讓學(xué)生通過(guò)觀察計(jì)算一些以直角三角形兩條直角邊為邊長(zhǎng)的小正方形的面積與以斜邊為邊長(zhǎng)的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長(zhǎng)的小正方形的面積的和,等于以斜邊為邊長(zhǎng)的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時(shí)教科書(shū)以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書(shū)正文中介紹了我國(guó)古人趙爽的證法。之后,通過(guò)三個(gè)探究欄目,研究了勾股定理在解決實(shí)際問(wèn)題和解決數(shù)學(xué)問(wèn)題中的應(yīng)用,使學(xué)生對(duì)勾股定理的作用有一定的認(rèn)識(shí)。

      [教學(xué)目標(biāo)]

      一、 知識(shí)與技能

      1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。

      2、應(yīng)用勾股定理解決簡(jiǎn)單的實(shí)際問(wèn)題

      3學(xué)會(huì)簡(jiǎn)單的合情推理與數(shù)學(xué)說(shuō)理

      二、 過(guò)程與方法

      引入兩段中西關(guān)于勾股定理的`史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過(guò)動(dòng)手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進(jìn)一步發(fā)展合作交流能力和數(shù)學(xué)表達(dá)能力,并感受勾股定理的應(yīng)用知識(shí)。

      三、 情感與態(tài)度目標(biāo)

      通過(guò)對(duì)勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動(dòng)中,學(xué)生親自動(dòng)手對(duì)勾股定理進(jìn)行探索與驗(yàn)證,培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神,以及自主學(xué)習(xí)的能力。

      四、 重點(diǎn)與難點(diǎn)

      1、探索和證明勾股定理

      2熟練運(yùn)用勾股定理

      [教學(xué)過(guò)程]

      一、創(chuàng)設(shè)情景,揭示課題

      1、教師展示圖片并介紹第一情景

      以中國(guó)最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開(kāi)頭為引,介紹周公向商高請(qǐng)教數(shù)學(xué)知識(shí)時(shí)的對(duì)話(huà),為勾股定理的出現(xiàn)埋下伏筆。

      周公問(wèn):“竊聞乎大夫善數(shù)也,請(qǐng)問(wèn)古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請(qǐng)問(wèn)數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤(pán).得成三、四、五,兩矩共長(zhǎng)二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也。”

      2、教師展示圖片并介紹第二情景

      畢達(dá)哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時(shí),發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。

      二、師生協(xié)作,探究問(wèn)題

      1、現(xiàn)在請(qǐng)你也動(dòng)手?jǐn)?shù)一下格子,你能有什么發(fā)現(xiàn)嗎?

      2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點(diǎn)呢?

      3、你能得到什么結(jié)論嗎?

      三、得出命題

      勾股定理:如果直角三角形的兩直角邊長(zhǎng)分別為a、b,斜邊長(zhǎng)為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋?zhuān)?由于我國(guó)古代把直角三角形中較短的直角邊稱(chēng)為勾,較長(zhǎng)的邊稱(chēng)為股,斜邊稱(chēng)為弦,所以,把它叫做勾股定理。

      四、勾股定理的證明

      趙爽弦圖的證法(圖2)

      第一種方法:邊長(zhǎng)為 的正方形可以看作是由4個(gè)直角邊分別為 、 ,斜邊為 的直角三角形圍在外面形成的。因?yàn)檫呴L(zhǎng)為 的正方形面積加上4個(gè)直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡(jiǎn)得 。

      第二種方法:邊長(zhǎng)為 的正方形可以看作是由4個(gè)直角邊分別為 、 ,斜邊為 的

      角三角形拼接形成的(虛線(xiàn)表示),不過(guò)中間缺出一個(gè)邊長(zhǎng)為 的正方形“小洞”。

      因?yàn)檫呴L(zhǎng)為 的正方形面積等于4個(gè)直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡(jiǎn)得 。

      這種證明方法很簡(jiǎn)明,很直觀,它表現(xiàn)了我國(guó)古代數(shù)學(xué)家趙爽高超的證題思想和對(duì)數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。

      五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。

      勾股定理的靈活運(yùn)用勾股定理在實(shí)際的生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問(wèn)題,今天我們就來(lái)運(yùn)用勾股定理解決一些問(wèn)題,你可以嗎?試一試。

      例題:小明媽媽買(mǎi)了一部29英寸(74厘米)的電視機(jī),小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘長(zhǎng)和46厘米寬,他覺(jué)得一定是售貨員搞錯(cuò)了,你同意他的想法嗎?你能解釋這是為什么嗎?

      六、歸納總結(jié)1、內(nèi)容總結(jié):探索直角三角形兩直角邊的平方和等于斜邊的平方,利于勾股定理,解決實(shí)際問(wèn)題

      2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫(huà)一個(gè)直角三角形表示正方形面積,再次驗(yàn)證自己的發(fā)現(xiàn)。

      七、討論交流

      讓學(xué)生發(fā)表自己的意見(jiàn),提出他們模糊不清的概念,給他們一個(gè)梳理知識(shí)的機(jī)會(huì),通過(guò)提示性的引導(dǎo),讓學(xué)生對(duì)勾股定理的概念豁然開(kāi)朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。

      我們班的同學(xué)很聰明。大家很快就通過(guò)數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來(lái)交流一下。請(qǐng)同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。

    八年級(jí)數(shù)學(xué)教案 篇2

      1.展示生活中一些平行四邊形的實(shí)際應(yīng)用圖片(推拉門(mén),活動(dòng)衣架,籬笆、井架等),想一想:這里面應(yīng)用了平行四邊形的什么性質(zhì)?

      2.思考:拿一個(gè)活動(dòng)的平行四邊形教具,輕輕拉動(dòng)一個(gè)點(diǎn),觀察不管怎么拉,它還是一個(gè)平行四邊形嗎?為什么?(動(dòng)畫(huà)演示拉動(dòng)過(guò)程如圖)

      3.再次演示平行四邊形的移動(dòng)過(guò)程,當(dāng)移動(dòng)到一個(gè)角是直角時(shí)停止,讓學(xué)生觀察這是什么圖形?(小學(xué)學(xué)過(guò)的長(zhǎng)方形)引出本課題及矩形定義.

      矩形定義:有一個(gè)角是直角的平行四邊形叫做矩形(通常也叫長(zhǎng)方形).

      矩形是我們最常見(jiàn)的圖形之一,例如書(shū)桌面、教科書(shū)的封面等都有矩形形象.

      【探究】在一個(gè)平行四邊形活動(dòng)框架上,用兩根橡皮筋分別套在相對(duì)的兩個(gè)頂點(diǎn)上(作出對(duì)角線(xiàn)),拉動(dòng)一對(duì)不相鄰的頂點(diǎn),改變平行四邊形的形狀.

      ①隨著∠α的變化,兩條對(duì)角線(xiàn)的'長(zhǎng)度分別是怎樣變化的?

      ②當(dāng)∠α是直角時(shí),平行四邊形變成矩形,此時(shí)它的其他內(nèi)角是什么樣的角?它的兩條對(duì)角線(xiàn)的長(zhǎng)度有什么關(guān)系?

      操作,思考、交流、歸納后得到矩形的性質(zhì).

      矩形性質(zhì)1 矩形的四個(gè)角都是直角.

      矩形性質(zhì)2 矩形的對(duì)角線(xiàn)相等.

      如圖,在矩形ABCD中,AC、BD相交于點(diǎn)O,由性質(zhì)2有AO=BO=CO=DO=AC=BD.因此可以得到直角三角形的一個(gè)性質(zhì):直角三角形斜邊上的中線(xiàn)等于斜邊的一半.

      例習(xí)題分析

      例1(教材P104例1)已知:如圖,矩形ABCD的兩條對(duì)角線(xiàn)相交于點(diǎn)O,∠AOB=60°,AB=4cm,求矩形對(duì)角線(xiàn)的長(zhǎng).

      分析:因?yàn)榫匦问翘厥獾钠叫兴倪呅危运哂袑?duì)角線(xiàn)相等且互相平分的特殊性質(zhì),根據(jù)矩形的這個(gè)特性和已知,可得△OAB是等邊三角形,因此對(duì)角線(xiàn)的長(zhǎng)度可求.

      解:∵ 四邊形ABCD是矩形,

      ∴ AC與BD相等且互相平分.

      ∴ OA=OB.

      又∠AOB=60°,

      ∴△OAB是等邊三角形.

      ∴矩形的對(duì)角線(xiàn)長(zhǎng)AC=BD=2OA=2×4=8(cm).

      例2(補(bǔ)充)已知:如圖,矩形ABCD,AB長(zhǎng)8cm,對(duì)角線(xiàn)比AD邊長(zhǎng)4cm.求AD的長(zhǎng)及點(diǎn)A到BD的距離AE的長(zhǎng).

      分析:(1)因?yàn)榫匦嗡膫(gè)角都是直角,因此矩形中的計(jì)算經(jīng)常要用到直角三角形的性質(zhì),而此題利用方程的思想,解決直角三角形中的計(jì)算,這是幾何計(jì)算題中常用的方法

    八年級(jí)數(shù)學(xué)教案 篇3

      教學(xué)目標(biāo):

      情意目標(biāo):培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作的精神,體驗(yàn)探究成功的樂(lè)趣。

      能力目標(biāo):能利用等腰梯形的性質(zhì)解簡(jiǎn)單的幾何計(jì)算、證明題;培養(yǎng)學(xué)生探究問(wèn)題、自主學(xué)習(xí)的能力。

      認(rèn)知目標(biāo):了解梯形的概念及其分類(lèi);掌握等腰梯形的性質(zhì)。

      教學(xué)重點(diǎn)、難點(diǎn)

      重點(diǎn):等腰梯形性質(zhì)的探索;

      難點(diǎn):梯形中輔助線(xiàn)的添加。

      教學(xué)課件:PowerPoint演示文稿

      教學(xué)方法:?jiǎn)l(fā)法、

      學(xué)習(xí)方法:討論法、合作法、練習(xí)法

      教學(xué)過(guò)程:

      (一)導(dǎo)入

      1、出示圖片,說(shuō)出每輛汽車(chē)車(chē)窗形狀(投影)

      2、板書(shū)課題:5梯形

      3、練習(xí):下列圖形中哪些圖形是梯形?(投影)

      結(jié)梯形概念:只有4、總結(jié)梯形概念:一組對(duì)邊平行另以組對(duì)邊不平行的四邊形是梯形。

      5、指出圖形中各部位的名稱(chēng):上底、下底、腰、高、對(duì)角線(xiàn)。(投影)

      6、特殊梯形的分類(lèi):(投影)

      (二)等腰梯形性質(zhì)的探究

      【探究性質(zhì)一】

      思考:在等腰梯形中,如果將一腰AB沿AD的'方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)

      猜想:由此你能得到等腰梯形的內(nèi)角有什么樣的性質(zhì)?(學(xué)生操作、討論、作答)

      如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C

      想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?

      等腰梯形性質(zhì):等腰梯形的同一條底邊上的兩個(gè)內(nèi)角相等。

      【操練】

      (1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)

      (2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長(zhǎng)線(xiàn)于點(diǎn)E,CA平分∠BCD,求證:∠B=2∠E.(投影)

      【探究性質(zhì)二】

      如果連接等腰梯形的兩條對(duì)角線(xiàn),圖中有哪幾對(duì)全等三角形?哪些線(xiàn)段相等?(學(xué)生操作、討論、作答)

      如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)

      等腰梯形性質(zhì):等腰梯形的兩條對(duì)角線(xiàn)相等。

      【探究性質(zhì)三】

      問(wèn)題一:延長(zhǎng)等腰梯形的兩腰,哪些三角形是軸對(duì)稱(chēng)圖形?為什么?對(duì)稱(chēng)軸呢?(學(xué)生操作、作答)

      問(wèn)題二:等腰梯是否軸對(duì)稱(chēng)圖形?為什么?對(duì)稱(chēng)軸是什么?(重點(diǎn)討論)

      等腰梯形性質(zhì):同以底上的兩個(gè)內(nèi)角相等,對(duì)角線(xiàn)相等

      (三)質(zhì)疑反思、小結(jié)

      讓學(xué)生回顧本課教學(xué)內(nèi)容,并提出尚存問(wèn)題;

      學(xué)生小結(jié),教師視具體情況給予提示:性質(zhì)(從邊、角、對(duì)角線(xiàn)、對(duì)稱(chēng)性等角度總結(jié))、解題方法(化梯形問(wèn)題為三角形及平行四邊形問(wèn)題)、梯形中輔助線(xiàn)的添加方法。

    八年級(jí)數(shù)學(xué)教案 篇4

      數(shù)據(jù)的波動(dòng)

      教學(xué)目標(biāo):

      1、經(jīng)歷數(shù)據(jù)離散程度的探索過(guò)程

      2、了解刻畫(huà)數(shù)據(jù)離散程度的三個(gè)量度極差、標(biāo)準(zhǔn)差和方差,能借助計(jì)算器求出相應(yīng)的數(shù)值。

      教學(xué)重點(diǎn):會(huì)計(jì)算某些數(shù)據(jù)的極差、標(biāo)準(zhǔn)差和方差。

      教學(xué)難點(diǎn):理解數(shù)據(jù)離散程度與三個(gè)差之間的關(guān)系。

      教學(xué)準(zhǔn)備:計(jì)算器,投影片等

      教學(xué)過(guò)程:

      一、創(chuàng)設(shè)情境

      1、投影課本P138引例。

      (通過(guò)對(duì)問(wèn)題串的解決,使學(xué)生直觀地估計(jì)從甲、乙兩廠(chǎng)抽取的20只雞腿的平均質(zhì)量,同時(shí)讓學(xué)生初步體會(huì)平均水平相近時(shí),兩者的離散程度未必相同,從而順理成章地引入刻畫(huà)數(shù)據(jù)離散程度的一個(gè)量度極差)

      2、極差:是指一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差,極差是用來(lái)刻畫(huà)數(shù)據(jù)離散程度的一個(gè)統(tǒng)計(jì)量。

      二、活動(dòng)與探究

      如果丙廠(chǎng)也參加了競(jìng)爭(zhēng),從該廠(chǎng)抽樣調(diào)查了20只雞腿,數(shù)據(jù)如圖(投影課本159頁(yè)圖)

      問(wèn)題:1、丙廠(chǎng)這20只雞腿質(zhì)量的平均數(shù)和極差是多少?

      2、如何刻畫(huà)丙廠(chǎng)這20只雞腿質(zhì)量與其平均數(shù)的差距?分別求出甲、丙兩廠(chǎng)的20只雞腿質(zhì)量與對(duì)應(yīng)平均數(shù)的`差距。

      3、在甲、丙兩廠(chǎng)中,你認(rèn)為哪個(gè)廠(chǎng)雞腿質(zhì)量更符合要求?為什么?

      (在上面的情境中,學(xué)生很容易比較甲、乙兩廠(chǎng)被抽取雞腿質(zhì)量的極差,即可得出結(jié)論。這里增加一個(gè)丙廠(chǎng),其平均質(zhì)量和極差與甲廠(chǎng)相同,此時(shí)導(dǎo)致學(xué)生思想認(rèn)識(shí)上的矛盾,為引出另兩個(gè)刻畫(huà)數(shù)據(jù)離散程度的量度標(biāo)準(zhǔn)差和方差作鋪墊。

      三、講解概念:

      方差:各個(gè)數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),記作s2

      設(shè)有一組數(shù)據(jù):x1, x2, x3,,xn,其平均數(shù)為

      則s2= ,

      而s= 稱(chēng)為該數(shù)據(jù)的標(biāo)準(zhǔn)差(既方差的算術(shù)平方根)

      從上面計(jì)算公式可以看出:一組數(shù)據(jù)的極差,方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定。

      四、做一做

      你能用計(jì)算器計(jì)算上述甲、丙兩廠(chǎng)分別抽取的20只雞腿質(zhì)量的方差和標(biāo)準(zhǔn)差嗎?你認(rèn)為選哪個(gè)廠(chǎng)的雞腿規(guī)格更好一些?說(shuō)說(shuō)你是怎樣算的?

      (通過(guò)對(duì)此問(wèn)題的解決,使學(xué)生回顧了用計(jì)算器求平均數(shù)的步驟,并自由探索求方差的詳細(xì)步驟)

      五、鞏固練習(xí):課本第172頁(yè)隨堂練習(xí)

      六、課堂小結(jié):

      1、怎樣刻畫(huà)一組數(shù)據(jù)的離散程度?

      2、怎樣求方差和標(biāo)準(zhǔn)差?

      七、布置作業(yè):習(xí)題5.5第1、2題。

    八年級(jí)數(shù)學(xué)教案 篇5

      教學(xué)建議

      知識(shí)結(jié)構(gòu)

      重難點(diǎn)分析

      本節(jié)的重點(diǎn)是中位線(xiàn)定理.三角形中位線(xiàn)定理和梯形中位線(xiàn)定理不但給出了三角形或梯形中線(xiàn)段的位置關(guān)系,而且給出了線(xiàn)段的數(shù)量關(guān)系,為平面幾何中證明線(xiàn)段平行和線(xiàn)段相等提供了新的思路.

      本節(jié)的難點(diǎn)是中位線(xiàn)定理的證明.中位線(xiàn)定理的證明教材中采用了同一法,同一法學(xué)生初次接觸,思維上不容易理解,而其他證明方法都需要添加2條或2條以上的輔助線(xiàn),添加的目的性和必要性,同以前遇到的情況對(duì)比有一定的難度.

      教法建議

      1. 對(duì)于中位線(xiàn)定理的引入和證明可采用發(fā)現(xiàn)法,由學(xué)生自己觀察、猜想、測(cè)量、論證,實(shí)際掌握效果比應(yīng)用講授法應(yīng)好些,教師可根據(jù)學(xué)生情況參考采用

      2.對(duì)于定理的證明,有條件的教師可考慮利用多媒體課件來(lái)進(jìn)行演示知識(shí)的形成及證明過(guò)程,效果可能會(huì)更直接更易于理解

      教學(xué)設(shè)計(jì)示例

      一、教學(xué)目標(biāo)

      1.掌握中位線(xiàn)的概念和三角形中位線(xiàn)定理

      2.掌握定理“過(guò)三角形一邊中點(diǎn)且平行另一邊的直線(xiàn)平分第三邊”

      3.能夠應(yīng)用三角形中位線(xiàn)概念及定理進(jìn)行有關(guān)的`論證和計(jì)算,進(jìn)一步提高學(xué)生的計(jì)算能力

      4.通過(guò)定理證明及一題多解,逐步培養(yǎng)學(xué)生的分析問(wèn)題和解決問(wèn)題的能力

      5. 通過(guò)一題多解,培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的興趣

      二、教學(xué)設(shè)計(jì)

      畫(huà)圖測(cè)量,猜想討論,啟發(fā)引導(dǎo).

      三、重點(diǎn)、難點(diǎn)

      1.教學(xué)重點(diǎn):三角形中位線(xiàn)的概論與三角形中位線(xiàn)性質(zhì).

      2.教學(xué)難點(diǎn):三角形中位線(xiàn)定理的證明.

      四、課時(shí)安排

      1課時(shí)

      五、教具學(xué)具準(zhǔn)備

      投影儀、膠片、常用畫(huà)圖工具

      六、教學(xué)步驟

      【復(fù)習(xí)提問(wèn)】

      1.敘述平行線(xiàn)等分線(xiàn)段定理及推論的內(nèi)容(結(jié)合學(xué)生的敘述,教師畫(huà)出草圖,結(jié)合圖形,加以說(shuō)明).

      2.說(shuō)明定理的證明思路.

      3.如圖所示,在平行四邊形ABCD中,M、N分別為BC、DA中點(diǎn),AM、CN分別交BD于點(diǎn)E、F,如何證明 ?

      分析:要證三條線(xiàn)段相等,一般情況下證兩兩線(xiàn)段相等即可.如要證 ,只要 即可.首先證出四邊形AMCN是平行四邊形,然后用平行線(xiàn)等分線(xiàn)段定理即可證出.

      4.什么叫三角形中線(xiàn)?(以上復(fù)習(xí)用投影儀打出)

      【引入新課】

      1.三角形中位線(xiàn):連結(jié)三角形兩邊中點(diǎn)的線(xiàn)段叫做三角形中位線(xiàn).

      (結(jié)合三角形中線(xiàn)的定義,讓學(xué)生明確兩者區(qū)別,可做一練習(xí),在 中,畫(huà)出中線(xiàn)、中位線(xiàn))

      2.三角形中位線(xiàn)性質(zhì)

      了解了三角形中位線(xiàn)的定義后,我們來(lái)研究一下,三角形中位線(xiàn)有什么性質(zhì).

      如圖所示,DE是 的一條中位線(xiàn),如果過(guò)D作 ,交AC于 ,那么根據(jù)平行線(xiàn)等分線(xiàn)段定理推論2,得 是AC的中點(diǎn),可見(jiàn) 與DE重合,所以 .由此得到:三角形中位線(xiàn)平行于第三邊.同樣,過(guò)D作 ,且DE FC,所以DE .因此,又得出一個(gè)結(jié)論,那就是:三角形中位線(xiàn)等于第三邊的一半.由此得到三角形中位線(xiàn)定理.

      三角形中位線(xiàn)定理:三角形中位城平行于第三邊,并且等于它的一半.

      應(yīng)注意的兩個(gè)問(wèn)題:①為便于同學(xué)對(duì)定理能更好的掌握和應(yīng)用,可引導(dǎo)學(xué)生分析此定理的特點(diǎn),即同一個(gè)題設(shè)下有兩個(gè)結(jié)論,第一個(gè)結(jié)論是表明中位線(xiàn)與第三邊的位置關(guān)系,第二個(gè)結(jié)論是說(shuō)明中位線(xiàn)與第三邊的數(shù)量關(guān)系,在應(yīng)用時(shí)可根據(jù)需要來(lái)選用其中的結(jié)論(可以單獨(dú)用其中結(jié)論).②這個(gè)定理的證明方法很多,關(guān)鍵在于如何添加輔助線(xiàn).可以引導(dǎo)學(xué)生用不同的方法來(lái)證明以活躍學(xué)生的思維,開(kāi)闊學(xué)生思路,從而提高分析問(wèn)題和解決問(wèn)題的能力.但也應(yīng)指出,當(dāng)一個(gè)命題有多種證明方法時(shí),要選用比較簡(jiǎn)捷的方法證明.

      由學(xué)生討論,說(shuō)出幾種證明方法,然后教師總結(jié)如下圖所示(用投影儀演示).

      (l)延長(zhǎng)DE到F,使 ,連結(jié)CF,由 可得AD FC.

      (2)延長(zhǎng)DE到F,使 ,利用對(duì)角線(xiàn)互相平分的四邊形是平行四邊形,可得AD FC.

      (3)過(guò)點(diǎn)C作 ,與DE延長(zhǎng)線(xiàn)交于F,通過(guò)證 可得AD FC.

      上面通過(guò)三種不同方法得出AD FC,再由 得BD FC,所以四邊形DBCF是平行四邊形,DF BC,又因DE ,所以DE .

      (證明過(guò)程略)

      例 求證:順次連結(jié)四邊形四條邊的中點(diǎn),所得的四邊形是平行四邊形.

      (由學(xué)生根據(jù)命題,說(shuō)出已知、求證)

      已知:如圖所示,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn).

      求證:四邊形EFGH是平行四邊形.‘

      分析:因?yàn)橐阎c(diǎn)分別是四邊形各邊中點(diǎn),如果連結(jié)對(duì)角線(xiàn)就可以把四邊形分成三角形,這樣就可以用三角形中位線(xiàn)定理來(lái)證明出四邊形EFGH對(duì)邊的關(guān)系,從而證出四邊形EFGH是平行四邊形.

      證明:連結(jié)AC.

      ∴ (三角形中位線(xiàn)定理).

      同理,

      ∴GH EF

      ∴四邊形EFGH是平行四邊形.

      【小結(jié)】

      1.三角形中位線(xiàn)及三角形中位線(xiàn)與三角形中線(xiàn)的區(qū)別.

      2.三角形中位線(xiàn)定理及證明思路.

      七、布置作業(yè)

      教材P188中1(2)、4、7

    八年級(jí)數(shù)學(xué)教案 篇6

      教材分析

      1本節(jié)課的主題:通過(guò)一系列的探究活動(dòng),引導(dǎo)學(xué)生從計(jì)算結(jié)果中總結(jié)出完全平方公式的兩種形式

      1、以教材作為出發(fā)點(diǎn),依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會(huì)、參與科學(xué)探究過(guò)程。首先提出等號(hào)左邊的兩個(gè)相乘的多項(xiàng)式和等號(hào)右邊得出的三項(xiàng)有什么關(guān)系。通過(guò)學(xué)生自主、獨(dú)立的發(fā)現(xiàn)問(wèn)題,對(duì)可能的答案做出假設(shè)與猜想,并通過(guò)多次的檢驗(yàn),得出正確的結(jié)論。學(xué)生通過(guò)收集和處理信息、表達(dá)與交流等活動(dòng),獲得知識(shí)、技能、方法、態(tài)度特別是創(chuàng)新精神和實(shí)踐能力等方面的發(fā)展。

      2、用標(biāo)準(zhǔn)的數(shù)學(xué)語(yǔ)言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。

      學(xué)情分析

      1、在學(xué)習(xí)本課之前應(yīng)具備的`基本知識(shí)和技能:

      ①同類(lèi)項(xiàng)的定義。

      ②合并同類(lèi)項(xiàng)法則

      ③多項(xiàng)式乘以多項(xiàng)式法則。

      2、學(xué)習(xí)者對(duì)即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:

      在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號(hào)的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。

      教學(xué)目標(biāo)

      (一)教學(xué)目標(biāo):

      1、經(jīng)歷探索完全平方公式的過(guò)程,進(jìn)一步發(fā)展符號(hào)感和推力能力。

      2、會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。

      (二)知識(shí)與技能:經(jīng)歷從具體情境中抽象出符號(hào)的過(guò)程,認(rèn)識(shí)有理

      數(shù)、實(shí)數(shù)、代數(shù)式、、;掌握必要的運(yùn)算,(包括估算)技能;探索具體問(wèn)題中的數(shù)量關(guān)系和變化規(guī)律,并能運(yùn)用代數(shù)式、、不等式、函數(shù)等進(jìn)行描述。

      (四)解決問(wèn)題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問(wèn)題;嘗試從不同角度尋求解決問(wèn)題的方法,并能有效地解決問(wèn)題,嘗試評(píng)價(jià)不同方法之間的差異;通過(guò)對(duì)解決問(wèn)題過(guò)程的反思,獲得解決問(wèn)題的經(jīng)驗(yàn)。

      (五)情感與態(tài)度:敢于面對(duì)數(shù)學(xué)活動(dòng)中的困難,并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問(wèn)題的成功體驗(yàn),有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見(jiàn)解;能從交流中獲益。

      教學(xué)重點(diǎn)和難點(diǎn)

      重點(diǎn):能運(yùn)用完全平方公式進(jìn)行簡(jiǎn)單的計(jì)算。

      難點(diǎn):會(huì)推導(dǎo)完全平方公式

      教學(xué)過(guò)程

      教學(xué)過(guò)程設(shè)計(jì)如下:

      〈一〉、提出問(wèn)題

      [引入]同學(xué)們,前面我們學(xué)習(xí)了多項(xiàng)式乘多項(xiàng)式法則和合并同類(lèi)項(xiàng)法則,通過(guò)運(yùn)算下列四個(gè)小題,你能總結(jié)出結(jié)果與多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系嗎?

      (2m+3n)2=_______________,(-2m-3n)2=______________,

      (2m-3n)2=_______________,(-2m+3n)2=_______________。

      〈二〉、分析問(wèn)題

      1、[學(xué)生回答]分組交流、討論

      (2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,

      (2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。

      (1)原式的特點(diǎn)。

      (2)結(jié)果的項(xiàng)數(shù)特點(diǎn)。

      (3)三項(xiàng)系數(shù)的特點(diǎn)(特別是符號(hào)的特點(diǎn))。

      (4)三項(xiàng)與原多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系。

      2、[學(xué)生回答]總結(jié)完全平方公式的語(yǔ)言描述:

      兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;

      兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。

      3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:

      (a+b)2=a2+2ab+b2;

      (a-b)2=a2-2ab+b2.

      〈三〉、運(yùn)用公式,解決問(wèn)題

      1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)

      (m+n)2=____________, (m-n)2=_______________,

      (-m+n)2=____________, (-m-n)2=______________,

      (a+3)2=______________, (-c+5)2=______________,

      (-7-a)2=______________, (0.5-a)2=______________.

      2、判斷:

      ( )① (a-2b)2= a2-2ab+b2

      ( )② (2m+n)2= 2m2+4mn+n2

      ( )③ (-n-3m)2= n2-6mn+9m2

      ( )④ (5a+0.2b)2= 25a2+5ab+0.4b2

      ( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2

      ( )⑥ (-a-2b)2=(a+2b)2

      ( )⑦ (2a-4b)2=(4a-2b)2

      ( )⑧ (-5m+n)2=(-n+5m)2

      3、一現(xiàn)身手

      ① (x+y)2 =______________;② (-y-x)2 =_______________;

      ③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;

      ⑤ (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;

      ⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.

      〈四〉、[學(xué)生小結(jié)]

      你認(rèn)為完全平方公式在應(yīng)用過(guò)程中,需要注意那些問(wèn)題?

      (1)公式右邊共有3項(xiàng)。

      (2)兩個(gè)平方項(xiàng)符號(hào)永遠(yuǎn)為正。

      (3)中間項(xiàng)的符號(hào)由等號(hào)左邊的兩項(xiàng)符號(hào)是否相同決定。

      (4)中間項(xiàng)是等號(hào)左邊兩項(xiàng)乘積的2倍。

      〈五〉、探險(xiǎn)之旅

      (1)(-3a+2b)2=________________________________

      (2)(-7-2m) 2 =__________________________________

      (3)(-0.5m+2n) 2=_______________________________

      (4)(3/5a-1/2b) 2=________________________________

      (5)(mn+3) 2=__________________________________

      (6)(a2b-0.2) 2=_________________________________

      (7)(2xy2-3x2y) 2=_______________________________

      (8)(2n3-3m3) 2=________________________________

      板書(shū)設(shè)計(jì)

      完全平方公式

      兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;(a+b)2=a2+2ab+b2;

      兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。(a-b)2=a2-2ab+b2

    八年級(jí)數(shù)學(xué)教案 篇7

      一、學(xué)習(xí)目標(biāo):

      1、會(huì)推導(dǎo)兩數(shù)差的平方公式,會(huì)用式子表示及用文字語(yǔ)言敘述;

      2、會(huì)運(yùn)用兩數(shù)差的平方公式進(jìn)行計(jì)算。

      二、學(xué)習(xí)過(guò)程:

      請(qǐng)同學(xué)們快速閱讀課本第27—28頁(yè)的內(nèi)容,并完成下面的練習(xí)題:

      (一)探索

      1、計(jì)算: (a - b) =

      方法一: 方法二:

      方法三:

      2、兩數(shù)差的.平方用式子表示為_(kāi)________________________;

      用文字語(yǔ)言敘述為_(kāi)__________________________ 。

      3、兩數(shù)差的平方公式結(jié)構(gòu)特征是什么?

      (二)現(xiàn)學(xué)現(xiàn)用

      利用兩數(shù)差的平方公式計(jì)算:

      1、(3 - a) 2、 (2a -1) 3、(3y-x)

      4、(2x – 4y) 5、( 3a - )

      (三)合作攻關(guān)

      靈活運(yùn)用兩數(shù)差的平方公式計(jì)算:

      1、(999) 2、( a – b – c )

      3、(a + 1) -(a-1)

      (四)達(dá)標(biāo)訓(xùn)練

      1、、選擇:下列各式中,與(a - 2b) 一定相等的是( )

      A、a -2ab + 4b B、a -4b

      C、a +4b D、 a - 4ab +4b

      2、填空:

      (1)9x + + 16y = (4y - 3x )

      (2) ( ) = m - 8m + 16

      2、計(jì)算:

      ( a - b) ( x -2y )

      3、有一邊長(zhǎng)為a米的正方形空地,現(xiàn)準(zhǔn)備將這塊空地四周均留出b米寬修筑圍壩,中間修建噴泉水池,你能計(jì)算出噴泉水池的面積嗎?

      (四)提升

      1、本節(jié)課你學(xué)到了什么?

      2、已知a – b = 1,a + b = 25,求ab 的值

    【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:

    八年級(jí)的數(shù)學(xué)教案12-14

    八年級(jí)數(shù)學(xué)教案06-18

    初中八年級(jí)數(shù)學(xué)教案11-03

    八年級(jí)的數(shù)學(xué)教案15篇12-14

    【熱門(mén)】八年級(jí)數(shù)學(xué)教案11-29

    八年級(jí)數(shù)學(xué)教案【熱】11-29

    八年級(jí)數(shù)學(xué)教案【薦】12-06

    【熱】八年級(jí)數(shù)學(xué)教案12-07

    八年級(jí)上冊(cè)數(shù)學(xué)教案11-09

    人教版八年級(jí)數(shù)學(xué)教案11-04

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      亚洲日韩a∨在线观看 | 亚洲国产日韩欧美性 | 性色αv国产精品久久久 | 羞羞影院午夜男女爽爽在线观看 | 亚洲国产国语高清在线网址 | 亚洲中文字幕第30页 |