1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>八年級數學教案>八年級數學教案

    八年級數學教案

    時間:2022-08-22 06:13:57 八年級數學教案 我要投稿

    精選八年級數學教案匯編六篇

      作為一位不辭辛勞的人民教師,總不可避免地需要編寫教案,借助教案可以恰當地選擇和運用教學方法,調動學生學習的積極性。那么大家知道正規的教案是怎么寫的嗎?下面是小編為大家收集的八年級數學教案6篇,僅供參考,歡迎大家閱讀。

    精選八年級數學教案匯編六篇

    八年級數學教案 篇1

      分式方程

      教學目標

      1.經歷分式方程的概念,能將實際問題中的等量關系用分式方程 表示,體會分式方程的模型作用.

      2.經歷實際問題-分式方程方程模型的過程,發展學生分析問題、解決問題的能力,滲透數學的轉化思想人體,培養學生的應用意識。

      3.在活動中培養學生樂于探究、合作學習的習慣,培養學 生努力尋找 解決問題的進取心,體會數學的.應用價值.

      教學重點:

      將實際問題中的等量 關系用分式方程表示

      教學難點:

      找實際問題中的等量關系

      教學過程:

      情境導入:

      有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產量。你能找出這一問題中的所有等量關系嗎?(分組交流)

      如果設第一塊試驗田 每公頃的產量為 kg,那么第二塊試驗田每公頃的產量是________kg。

      根據題意,可得方程___________________

      二、講授新課

      從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。

      這 一問題中有哪些等量關系?

      如果設客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。

      根據題意,可得方程_ _____________________。

      學生分組探討、交流,列出方程.

      三.做一做:

      為了幫助遭受自然災害的地區重建家園,某學校號召同學們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數比第一次多20人,而且兩次人均捐款額恰好相等。如果設第一次捐款人數為 人,那么 滿足怎樣的方程?

      四.議一議:

      上面所得到的方程有什么共同特點?

      分母中含有未知數的方程叫做分式方程

      分式方程與整式方程有什么區別?

      五、 隨堂練習

      (1)據聯合國《20xx年全球投資 報告》指出,中國20xx年吸收外國投資額 達530億美元,比上一年增加了13%。設20xx年我國吸收外國投資額為 億美元,請你寫出 滿足的方程。你能寫出幾個方程?其中哪一個是分式方程?

      (2)輪船在順水中航行20千米與逆水航行10千米所用時間相同,水流速度為2. 5千米/小時,求輪船的靜水速度

      (3)根據分式方程 編一道應用題,然后同組交流,看誰編得好

      六、學 習小結

      本節課你學到了哪些知識?有什么感想?

      七.作業布置

    八年級數學教案 篇2

      知識結構:

      重點與難點分析:

      本節內容的重點是等腰三角形的判定定理.本定理是證明兩條線段相等的重要定理,它是把三角形中角的相等關系轉化為邊的相等關系的重要依據,此定理為證明線段相等提供了又一種方法,這是本節的重點.推論1、2提供證明等邊三角形的方法,推論3是直角三角形的一條重要性質,在直角三角形中找邊和角的等量關系經常用到此推論.

      本節內容的難點是性質與判定的區別。等腰三角形的性質定理和判定定理是互逆定理,題設與結論正好相反.學生在應用它們的時候,經常混淆,幫助學生認識判定與性質的區別,這是本節的難點.另外本節的文字敘述題也是難點之一,和上節結合讓學生逐步掌握解題的思路方法.由于知識點的增加,題目的復雜程度也提高,一定要學生真正理解定理和推論,才能在解題時從條件得到用哪個定理及如何用.

      教法建議:

      本節課教學方法主要是“以學生為主體的討論探索法”。在數學教學中要避免過多告訴學生現成結論。提倡教師鼓勵學生討論解決問題的方法,引導他們探索數學的內在規律。具體說明如下:

      (1)參與探索發現,領略知識形成過程

      學生學習過互逆命題和互逆定理的概念,首先提出問題:等腰三角形性質定理的逆命題的什么?找一名學生口述完了,接下來問:此命題是否為真命?等同學們證明完了,找一名學生代表發言.最后找一名學生用文字口述定理的內容。這樣很自然就得到了等腰三角形的判定定理.這樣讓學生親自動手實踐,積極參與發現,滿打滿算了學生的認識沖突,使學生克服思維和探求的惰性,獲得鍛煉機會,對定理的產生過程,真正做到心領神會。

      (2)采用“類比”的學習方法,獲取知識。

      由性質定理的學習,我們得到了幾個推論,自然想到:根據等腰三角形的判定定理,我們能得到哪些特殊的結論或者說哪些推論呢?這里先讓學生發表意見,然后大家共同分析討論,把一些有價值的、甚至就是教材中的推論板書出來。如果學生提到的不完整,教師可以做適當的點撥引導。

      (3)總結,形成知識結構

      為了使學生對本節課有一個完整的認識,便于今后的應用,教師提出如下問題,讓學生思考回答:(1)怎樣判定一個三角形是等腰三角形?有哪些定理依據?(2)怎樣判定一個三角形是等邊三角形?

      一.教學目標:

      1.使學生掌握等腰三角形的判定定理及其推論;

      2.掌握等腰三角形判定定理的運用;

      3.通過例題的學習,提高學生的邏輯思維能力及分析問題解決問題的能力;

      4.通過自主學習的發展體驗獲取數學知識的感受;

      5.通過知識的縱橫遷移感受數學的辯證特征.

      二.教學重點:等腰三角形的判定定理

      三.教學難點:性質與判定的區別

      四.教學用具:直尺,微機

      五.教學方法:以學生為主體的討論探索法

      六.教學過程:

      1、新課背景知識復習

      (1)請同學們說出互逆命題和互逆定理的概念

      估計學生能用自己的語言說出,這里重點復習怎樣分清題設和結論。

      (2)等腰三角形的性質定理的內容是什么?并檢驗它的逆命題是否為真命題?

      啟發學生用自己的語言敘述上述結論,教師稍加整理后給出規范敘述:

      1.等腰三角形的判定定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等.

      (簡稱“等角對等邊”).

      由學生說出已知、求證,使學生進一步熟悉文字轉化為數學語言的方法.

      已知:如圖,△ABC中,∠B=∠C.

      求證:AB=AC.

      教師可引導學生分析:

      聯想證有關線段相等的知識知道,先需構成以AB、AC為對應邊的全等三角形.因為已知∠B=∠C,沒有對應相等邊,所以需添輔助線為兩個三角形的公共邊,因此輔助線應從A點引起.再讓學生回想等腰三角形中常添的輔助線,學生可找出作∠BAC的平分線AD或作BC邊上的高AD等證三角形全等的不同方法,從而推出AB=AC.

      注意:(1)要弄清判定定理的條件和結論,不要與性質定理混淆.

      (2)不能說“一個三角形兩底角相等,那么兩腰邊相等”,因為還未判定它是一個等腰三角形.

      (3)判定定理得到的結論是三角形是等腰三角形,性質定理是已知三角形是等腰三角形,得到邊邊和角角關系.

      2.推論1:三個角都相等的'三角形是等邊三角形.

      推論2:有一個角等于60°的等腰三角形是等邊三角形.

      要讓學生自己推證這兩條推論.

      小結:證明三角形是等腰三角形的方法:①等腰三角形定義;②等腰三角形判定定理.

      證明三角形是等邊三角形的方法:①等邊三角形定義;②推論1;③推論2.

      3.應用舉例

      例1.求證:如果三角形一個外角的平分線平行于三角形的一邊,那么這個三角形是等腰三角形.

      分析:讓學生畫圖,寫出已知求證,啟發學生遇到已知中有外角時,常常考慮應用外角的兩個特性①它與相鄰的內角互補;②它等于與它不相鄰的兩個內角的和.要證AB=AC,可先證明∠B=∠C,因為已知∠1=∠2,所以可以設法找出∠B、∠C與∠1、∠2的關系.

      已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.

      求證:AB=AC.

      證明:(略)由學生板演即可.

      補充例題:(投影展示)

      1.已知:如圖,AB=AD,∠B=∠D.

      求證:CB=CD.

      分析:解具體問題時要突出邊角轉換環節,要證CB=CD,需構造一個以 CB、CD為腰的等腰三角形,連結BD,需證∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可證∠ABD=∠ADB,從而證得∠CDB=∠CBD,推出CB=CD.

      證明:連結BD,在 中, (已知)

      (等邊對等角)

      (已知)

      即

      (等教對等邊)

      小結:求線段相等一般在三角形中求解,添加適當的輔助線構造三角形,找出邊角關系.

      2.已知,在 中, 的平分線與 的外角平分線交于D,過D作DE//BC交AC與F,交AB于E,求證:EF=BE-CF.

      分析:對于三個線段間關系,盡量轉化為等量關系,由于本題有兩個角平分線和平行線,可以通過角找邊的關系,BE=DE,DF=CF即可證明結論.

      證明: DE//BC(已知)

      ,

      BE=DE,同理DF=CF.

      EF=DE-DF

      EF=BE-CF

      小結:

      (1)等腰三角形判定定理及推論.

      (2)等腰三角形和等邊三角形的證法.

      七.練習

      教材 P.75中1、2、3.

      八.作業

      教材 P.83 中 1.1)、2)、3);2、3、4、5.

      九.板書設計

    八年級數學教案 篇3

      知識技能

      1.了解兩個圖形成軸對稱性的性質,了解軸對稱圖形的性質。

      2.探究線段垂直平分線的性質。

      過程方法

      1.經歷探索軸對稱圖形性質的過程,進一步體驗軸對稱的特點,發展空間觀察。

      2.探索線段垂直平分線的性質,培養學生認真探究、積極思考的能力。

      情感態度價值觀通過對軸對稱圖形性質的探索,促使學生對軸對稱有了更進一步的認識,活動與探究的過程可以更大程度地激發學生學習的主動性和積極性,并使學生具有一些初步研究問題的能力。

      教學重點

      1.軸對稱的性質。

      2.線段垂直平分線的.性質。

      教學難點體驗軸對稱的特征。

      教學方法和手段多媒體教學

      過程教學內容

      引入中垂線概念

      引出圖形對稱的性質第一張幻燈片

      上節課我們共同探討了軸對稱圖形,知道現實生活中由于有軸對稱圖形,而使得世界非常美麗。那么我們今天繼續來研究軸對稱的性質。

      幻燈片二

      1、圖中的對稱點有哪些?

      2、點A和A的連線與直線MN有什么樣的關系?

      理由?:△ABC與△ABC關于直線MN對稱,點A、B、C分別是點A、B、C的對稱點,設AA交對稱軸MN于點P,將△ABC和△ABC沿MN對折后,點A與A重合,于是有AP=AP,MPA=MPA=90。所以AA、BB和CC與MN除了垂直以外,MN還經過線段AA、BB和CC的中點。

      我們把經過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線。

      定義:經過線段的中點并且垂直于這條線段,就叫這條線段的垂直平分線,也叫中垂線。

    八年級數學教案 篇4

      5 14.3.2.2 等邊三角形(二)

      教學目標

      掌握等邊三角形的性質和判定方法.

      培養分析問題、解決問題的能力.

      教學重點

      等邊三角形的性質和判定方法.

      教學難點

      等邊三角形性質的`應用

      教學過程

      I創設情境,提出問題

      回顧上節課講過的等邊三角形的有關知識

      1.等邊三角形是軸對稱圖形,它有三條對稱軸.

      2.等邊三角形每一個角相等,都等于60°

      3.三個角都相等的三角形是等邊三角形.

      4.有一個角是60°的等腰三角形是等邊三角形.

      其中1、2是等邊三角形的性質;3、4的等邊三角形的判斷方法.

      II例題與練習

      1.△ABC是等邊三角形,以下三種方法分別得到的△ADE都是等邊三角形嗎,為什么?

      ①在邊AB、AC上分別截取AD=AE.

      ②作∠ADE=60°,D、E分別在邊AB、AC上.

      ③過邊AB上D點作DE∥BC,交邊AC于E點.

      2.已知:如右圖,P、Q是△ABC的邊BC上的兩點,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.

      分析:由已知顯然可知三角形APQ是等邊三角形,每個角都是60°.又知△APB與△AQC都是等腰三角形,兩底角相等,由三角形外角性質即可推得∠PAB=30°.

      III課堂小結

      1、等腰三角形和性質

      2、等腰三角形的條件

      V布置作業

      1.教科書第147頁練習1、2

      2.選做題:

      (1)教科書第150頁習題14.3第ll題.

      (2)已知等邊△ABC,求平面內一點P,滿足A,B,C,P四點中的任意三點連線都構成等腰三角形.這樣的點有多少個?

      (3)《課堂感悟與探究》

      5

    八年級數學教案 篇5

      課題:三角形全等的判定(三)

      教學目標:

      1、知識目標:

      (1)掌握已知三邊畫三角形的方法;

      (2)掌握邊邊邊公理,能用邊邊邊公理證明兩個三角形全等;

      (3)會添加較明顯的輔助線.

      2、能力目標:

      (1)通過尺規作圖使學生得到技能的訓練;

      (2)通過公理的初步應用,初步培養學生的邏輯推理能力.

      3、情感目標:

      (1)在公理的形成過程中滲透:實驗、觀察、歸納;

      (2)通過變式訓練,培養學生“舉一反三”的學習習慣.

      教學重點:SSS公理、靈活地應用學過的各種判定方法判定三角形全等。

      教學難點:如何根據題目條件和求證的結論,靈活地選擇四種判定方法中最適當的方法判定兩個三角形全等。

      教學用具:直尺,微機

      教學方法:自學輔導

      教學過程:

      1、新課引入

      投影顯示

      問題:有一塊三角形玻璃窗戶破碎了,要去配一塊新的,你最少要對窗框測量哪幾個數據?如果你手頭沒有測量角度的儀器,只有尺子,你能保證新配的玻璃恰好不大不小嗎?

      這個問題讓學生議論后回答,他們的答案或許只是一種感覺。于是教師要引導學生,抓住問題的本質:三角形的'三個元素――三條邊。

      2、公理的獲得

      問:通過上面問題的分析,滿足什么條件的兩個三角形全等?

      讓學生粗略地概括出邊邊邊的公理。然后和學生一起畫圖做實驗,根據三角形全等定義對公理進行驗證。(這里用尺規畫圖法)

      公理:有三邊對應相等的兩個三角形全等。

      應用格式: (略)

      強調說明:

      (1)、格式要求:先指出在哪兩個三角形中證全等;再按公理順序列出三個條件,并用括號把它們括在一起;寫出結論。

      (2)、在應用時,怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時圖形中隱含的(如公共邊)

      (3)、此公理與前面學過的公理區別與聯系

      (4)、三角形的穩定性:演示三角形的穩定性與四邊形的不穩定性。在演示中,其實可以去掉組成三角形的一根小木條,以顯示三角形條件不可減少,這也為下面總結“三角形全等需要有3全獨立的條件”做好了準備,進行了溝通。

      (5)說明AAA與SSA不能判定三角形全等。

      3、公理的應用

      (1) 講解例1。學生分析完成,教師注重完成后的點評。

      例1 如圖△ABC是一個鋼架,AB=ACAD是連接點A與BC中點D的支架

      求證:AD⊥BC

      分析:(設問程序)

      (1)要證AD⊥BC只要證什么?

      (2)要證∠1=

      只要證什么?(3)要證∠1=∠2只要證什么?

      (4)△ABD和△ACD全等的條件具備嗎?依據是什么?

      證明:(略)

    八年級數學教案 篇6

      教學建議

      1、平行線等分線段定理

      定理:如果一組平行線在一條直線上截得的線段相等,那么在其他需直線上截得的線段也相等。

      注意事項:定理中的平行線組是指每相鄰的兩條距離都相等的特殊的平行線組;它是由三條或三條以上的平行線組成。

      定理的作用:可以用來證明同一直線上的線段相等;可以等分線段。

      2、平行線等分線段定理的推論

      推論1:經過梯形一腰的中點與底平行的直線,必平分另一腰。

      推論2:經過三角形一邊的中點與另一邊平行的直線,必平分第三邊。

      記憶方法:“中點”+“平行”得“中點”。

      推論的用途:(1)平分已知線段;(2)證明線段的倍分。

      重難點分析

      本節的重點是平行線等分線段定理。因為它不僅是推證三角形、梯形中位線定理的基礎,而且是第五章中“平行線分線段成比例定理”的基礎。

      本節的.難點也是平行線等分線段定理。由于學生初次接觸到平行線等分線段定理,在認識和理解上有一定的難度,在加上平行線等分線段定理的兩個推論以及各種變式,學生難免會有應接不暇的感覺,往往會有感覺新鮮有趣但掌握不深的情況發生,教師在教學中要加以注意。

      教法建議

      平行線等分線段定理的引入

      生活中有許多平行線等分線段定理的例子,并不陌生,平行線等分線段定理的引入可從下面幾個角度考慮:

      ①從生活實例引入,如刻度尺、作業本、柵欄、等等;

      ②可用問題式引入,開始時設計一系列與平行線等分線段定理概念相關的問題由學生進行思考、研究,然后給出平行線等分線段定理和推論。

      教學設計示例

      一、教學目標

      1、使學生掌握平行線等分線段定理及推論。

      2、能夠利用平行線等分線段定理任意等分一條已知線段,進一步培養學生的作圖能力。

      3、通過定理的變式圖形,進一步提高學生分析問題和解決問題的能力。

      4、通過本節學習,體會圖形語言和符號語言的和諧美

      二、教法設計

      學生觀察發現、討論研究,教師引導分析

      三、重點、難點

      1、教學重點:平行線等分線段定理

      2、教學難點:平行線等分線段定理

      四、課時安排

      l課時

      五、教具學具

      計算機、投影儀、膠片、常用畫圖工具

      六、師生互動活動設計

      教師復習引入,學生畫圖探索;師生共同歸納結論;教師示范作圖,學生板演練習

      七、教學步驟

      【復習提問】

      1、什么叫平行線?平行線有什么性質。

      2、什么叫平行四邊形?平行四邊形有什么性質?

      【引入新課】

      由學生動手做一實驗:每個同學拿一張橫格紙,首先觀察橫線之間有什么關系?(橫線是互相平等的,并且它們之間的距離是相等的),然后在橫格紙上畫一條垂直于橫線的直線 ,看看這條直線被相鄰橫線截成的各線段有什么關系?(相等,為什么?)這時在橫格紙上再任畫一條與橫線相交的直線 ,測量它被相鄰橫線截得的線段是否也相等?

      (引導學生把做實驗的條件和得到的結論寫成一個命題,教師總結,由此得到平行線等分線段定理)

      平行線等分線段定理:如果一組平行線在一條直線上掛得的線段相等,那么在其他直線上截得的線段也相等。

      注意:定理中的“一組平行線”指的是一組具有特殊條件的平行線,即每相鄰兩條平行線間的距離都相等的特殊平行線組,這一點必須使學生明確。

      下面我們以三條平行線為例來證明這個定理(由學生口述已知,求證)。

      已知:如圖,直線 , 。

      求證: 。

      分析1:如圖把已知相等的線段平移,與要求證的兩條線段組成三角形(也可應用平行線間的平行線段相等得 ),通過全等三角形性質,即可得到要證的結論。

      (引導學生找出另一種證法)

      分析2:要證的兩條線段分別是梯形的腰,我們借助于前面常用的輔助線,把梯形轉化為平行四邊形和三角形,然后再利用這些熟悉的知識即可證得 。

      證明:過 點作 分別交 、 于點 、 ,得 和 ,如圖。

      ∴

      ∵ ,

      ∴

      又∵ , ,

      ∴

      ∴

      為使學生對定理加深理解和掌握,把知識學活,可讓學生認識幾種定理的變式圖形,如圖(用計算機動態演示)。

      引導學生觀察下圖,在梯形 中, , ,則可得到 ,由此得出推論 1。

      推論1:經過梯形一腰的中點與底平行的直線,必平分另一腰。

      再引導學生觀察下圖,在 中, , ,則可得到 ,由此得出推論2。

      推論2:經過三角形一邊的中點與另一邊平行的直線必平分第三邊。

      注意:推論1和推論2也都是很重要的定理,在今后的論證和計算中經常用到,因此,要求學生必須掌握好。

      接下來講如何利用平行線等分線段定理來任意等分一條線段。

      例 已知:如圖,線段 。

      求作:線段 的五等分點。

      作法:①作射線 。

      ②在射線 上以任意長順次截取 。

      ③連結 。

      ④過點 。 、 、 分別作 的平行線 、 、 、 ,分別交 于點 、 、 、 。

      、 、 、 就是所求的五等分點。

      (說明略,由學生口述即可)

      【總結、擴展】

      小結:

      (l)平行線等分線段定理及推論。

      (2)定理的證明只取三條平行線,是在較簡單的情況下證明的,對于多于三條的平行線的情況,也可用同樣方法證明。

      (3)定理中的“平行線組”,是指每相鄰兩條平行線間的距離都相等的特殊平行線組。

      (4)應用定理任意等分一條線段。

      八、布置作業

      教材P188中A組2、9

      九、板書設計

      十、隨堂練習

      教材P182中1、2

    【八年級數學教案】相關文章:

    八年級的數學教案12-14

    八年級數學教案06-18

    八年級上冊數學教案11-09

    人教版八年級數學教案11-04

    【熱門】八年級數學教案11-29

    【熱】八年級數學教案12-07

    八年級數學教案【薦】12-06

    【推薦】八年級數學教案12-05

    【薦】八年級數學教案12-03

    八年級數學教案【熱門】12-03

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      亚洲男人的天堂在线视频 | 午夜精品福利视频 | 在线看片免费人成影片 | 亚洲日本va一区二区 | 亚洲中文字幕一区精品 | 亚洲线精品一区二区三区四区 |