1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>八年級數學教案>八年級數學教案

    八年級數學教案

    時間:2022-08-22 03:27:56 八年級數學教案 我要投稿

    八年級數學教案匯編8篇

      在教學工作者開展教學活動前,時常要開展教案準備工作,編寫教案有利于我們科學、合理地支配課堂時間。那么寫教案需要注意哪些問題呢?以下是小編幫大家整理的八年級數學教案8篇,供大家參考借鑒,希望可以幫助到有需要的朋友。

    八年級數學教案匯編8篇

    八年級數學教案 篇1

      教學目標:

      (1)理解通分的意義,理解最簡公分母的意義;

      (2)掌握分式的通分法則,能熟練掌握通分運算。

      教學重點:分式通分的理解和掌握。

      教學難點:分式通分中最簡公分母的確定。

      教學工具:投影儀

      教學方法:啟發式、討論式

      教學過程:

      (一)引入

      (1)如何計算:

      由此讓學生復習分數通分的意義、通分的根據、通分的法則以及最簡公分母的概念。

      (2)如何計算:

      (3)何計算:

      引導學生思考,猜想如何求解?

      (二)新課

      1、類比分數的通分得到分式的通分:

      把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.

      注意:通分保證

      (1)各分式與原分式相等;

      (2)各分式分母相等。

      2.通分的依據:分式的基本性質.

      3.通分的關鍵:確定幾個分式的最簡公分母.

      通常取各分母的所有因式的'最高次冪的積作最簡公分母,這樣的公分母叫做最簡公分母.

      根據分式通分和最簡公分母的定義,將分式通分:

      最簡公分母為:

      然后根據分式的基本性質,分別對原來的各分式的分子和分母乘一個適當的整式,使各分式的分母都化為通分如下:xxx

      通過本例使學生對于分式的通分大致過程和思路有所了解。讓學生歸納通分的思路過程。

      例1 通分:xxx

      分析:讓學生找分式的公分母,可設問“分母的系數各不相同如何解決?”,依據分數的通分找最小公倍數。

      解:∵ 最簡公分母是12xy2,

      小結:各分母的系數都是整數時,通常取它們的系數的最小公倍數作為最簡公分母的系數.

      解:∵最簡公分母是10a2b2c2,

      由學生歸納最簡公分母的思路。

      分式通分中求最簡公分母概括為:(1)取各分母系數的最小公倍數;(2)凡出現的字母為底的冪的因式都要取;(3)相同字母的冪的因式取指數最大的。取這些因式的積就是最簡公分母。

    八年級數學教案 篇2

      一、學生起點分析

      學生已經了勾股定理,并在先前其他內容學習中已經積累了一定百度一下的逆向思維、逆向研究的經驗,如:已知兩直線平行,有什么樣的結論?

      反之,滿足什么條件的兩直線是平行?因而,本課時由勾股定理出發逆向思考獲得逆命題,學生應該已經具備這樣的意識,但具體研究中

      可能要用到反證等思路,對現階段學生而言可能還具有一定困難,需要教師適時的引導。

      二、學習任務分析

      本節課是北師大版數學八年級(上)第一章《勾股定理》第2節。教學任務有:探索勾股定理的逆定理

      并利用該定理根據邊長判斷一個三角形是否是直角三角形,利用該定理解決一些簡單的實際問題;通過具體的數,增加對勾股數的直觀體驗。為此確定教學目標:

      ● 知識與技能目標

      1.理解勾股定理逆定理的具體內容及勾股數的概念;

      2.能根據所給三角形三邊的條件判斷三角形是否是直角三角形。

      ● 過程與方法目標

      1.經歷一般規律的探索過程,發展學生的抽象思維能力;

      2.經歷從實驗到驗證的過程,發展學生的數學歸納能力。

      ● 情感與態度目標

      1.體驗生活中的數學的應用價值,感受數學與人類生活的密切聯系,激發學生學數學、用數學的興趣;

      2.在探索過程中體驗成功的喜悅,樹立學習的自信心。

      教學重點

      理解勾股定理逆定理的具體內容。

      三、教法學法

      1.教學方法:實驗猜想歸納論證

      本節課的教學對象是初二學生,他們的參與意識較強,思維活躍,對通過實驗獲得數學結論已有一定的體驗

      但數學思維嚴謹的同學總是心存疑慮,利用邏輯推理的方式,讓同學心服口服顯得非常迫切,為了實現本節課的教學目標,我力求從以下三個方面對學生進行引導:

      (1)從創設問題情景入手,通過知識再現,孕育教學過程;

      (2)從學生活動出發,通過以舊引新,順勢教學過程;

      (3)利用探索,研究手段,通過思維深入,領悟教學過程。

      2.課前準備

      教具:教材、電腦、多媒體課件。

      學具:教材、筆記本、課堂練習本、文具。

      四、教學過程設計

      本節課設計了七個環節。第一環節:情境引入;第二環節:合作探究;第三環節:小試牛刀;第四環節:

      登高望遠;第五環節:鞏固提高;第六環節:交流小結;第七環節:布置作業。

      第一環節:情境引入

      內容:

      情境:1.直角三角形中,三邊長度之間滿足什么樣的'關系?

      2.如果一個三角形中有兩邊的平方和等于第三邊的平方,那么這個三角形是否就是直角三角形呢?

      意圖:

      通過情境的創設引入新課,激發學生探究熱情。

      效果:

      從勾股定理逆向思維這一情景引入,提出問題,激發了學生的求知欲,為下一環節奠定了良好的基礎。

      第二環節:合作探究

      內容1:探究

      下面有三組數,分別是一個三角形的三邊長 ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個問題:

      1.這三組數都滿足 嗎?

      2.分別以每組數為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學生分為4人活動小組,每個小組可以任選其中的一組數。

      意圖:

      通過學生的合作探究,得出若一個三角形的三邊長 ,滿足 ,則這個三角形是直角三角形這一結論;在活動中體驗出數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律。

      效果:

      經過學生充分討論后,匯總各小組實驗結果發現:①5,12,13滿足 ,可以構成直角三角形;②7,24,25滿足 ,可以構成直角三角形;③8,15,17滿足 ,可以構成直角三角形。

      從上面的分組實驗很容易得出如下結論:

      如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

      內容2:說理

      提問:有同學認為測量結果可能有誤差,不同意這個發現。你認為這個發現正確嗎?你能給出一個更有說服力的理由嗎?

      意圖:讓學生明確,僅僅基于測量結果得到的結論未必可靠,需要進一步通過說理等方式使學生確信結論的可靠性,同時明晰結論:

      如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

      滿足 的三個正整數,稱為勾股數。

      注意事項:為了讓學生確認該結論,需要進行說理,有條件的班級,還可利用幾何畫板動畫演示,讓同學有一個直觀的認識。

      活動3:反思總結

      提問:

      1.同學們還能找出哪些勾股數呢?

      2.今天的結論與前面學習勾股定理有哪些異同呢?

      3.到今天為止,你能用哪些方法判斷一個三角形是直角三角形呢?

      4.通過今天同學們合作探究,你能體驗出一個數學結論的發現要經歷哪些過程呢?

      意圖:進一步讓學生認識該定理與勾股定理之間的關系

      第三環節:小試牛刀

      內容:

      1.下列哪幾組數據能作為直角三角形的三邊長?請說明理由。

      ①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22

      解答:①②

      2.一個三角形的三邊長分別是 ,則這個三角形的面積是( )

      A 250 B 150 C 200 D 不能確定

      解答:B

      3.如圖1:在 中, 于 , ,則 是( )

      A 等腰三角形 B 銳角三角形

      C 直角三角形 D 鈍角三角形

      解答:C

      4.將直角三角形的三邊擴大相同的倍數后, (圖1)

      得到的三角形是( )

      A 直角三角形 B 銳角三角形

      C 鈍角三角形 D 不能確定

      解答:A

      意圖:

      通過練習,加強對勾股定理及勾股定理逆定理認識及應用

      效果

      每題都要求學生獨立完成(5分鐘),并指出各題分別用了哪些知識。

      第四環節:登高望遠

      內容:

      1.一個零件的形狀如圖2所示,按規定這個零件中 都應是直角。工人師傅量得這個零件各邊尺寸如圖3所示,這個零件符合要求嗎?

      解答:符合要求 , 又 ,

      2.一艘在海上朝正北方向航行的輪船,航行240海里時方位儀壞了,憑經驗,船長指揮船左傳90,繼續航行70海里,則距出發地250海里,你能判斷船轉彎后,是否沿正西方向航行?

      解答:由題意畫出相應的圖形

      AB=240海里,BC=70海里,,AC=250海里;在△ABC中

      =(250+240)(250-240)

      =4900= = 即 △ABC是Rt△

      答:船轉彎后,是沿正西方向航行的。

      意圖:

      利用勾股定理逆定理解決實際問題,進一步鞏固該定理。

      效果:

      學生能用自己的語言表達清楚解決問題的過程即可;利用三角形三邊數量關系 判斷一個三角形是直角三角形時,當遇見數據較大時,要懂得將 作適當變形( ),以便于計算。

      第五環節:鞏固提高

      內容:

      1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個直角三角形,你是如何判斷的?與你的同伴交流。

      解答:4個直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF

      2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?

      圖4 圖5

      解答:④⑤是直角三角形,①②③⑥不是直角三角形

      意圖:

      第一題考查學生充分利用所學知識解決問題時,考慮問題要全面,不要漏解;第二題在于考查學生如何利用網格進行計算,從而解決問題。

      效果:

      學生在對所學知識有一定的熟悉度后,能夠快速做答并能簡要說明理由即可。注意防漏解及網格的應用。

      第六環節:交流小結

      內容:

      師生相互交流總結出:

      1.今天所學內容①會利用三角形三邊數量關系 判斷一個三角形是直角三角形;②滿足 的三個正整數,稱為勾股數;

      2.從今天所學內容及所作練習中總結出的經驗與方法:①數學是源于生活又服務于生活的;②數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律;③利用三角形三邊數量關系 判斷一個三角形是直角三角形時,當遇見數據較大時,要懂得將 作適當變形, 便于計算。

      意圖:

      鼓勵學生結合本節課的學習談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應用及它們的悠久歷史;敢于面對數學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經驗,進一步體會數學的應用價值,發展運用數學的信心和能力,初步形成積極參與數學活動的意識。

      效果:

      學生暢所欲言自己的切身感受與實際收獲,總結出利用三角形三邊數量關系 判斷一個三角形是直角三角形從古至今在實際生活中的廣泛應用。

      第七環節:布置作業

      課本習題1.4第1,2,4題。

      五、教學反思:

      1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個三角形的三邊長 ,滿足 ,是否能得到這個三角形是直角三角形的問題;充分引用教材中出現的例題和練習。

      2.注重引導學生積極參與實驗活動,從中體驗任何一個數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律。

      3.在利用今天所學知識解決實際問題時,引導學生善于對公式變形,便于簡便計算。

      4.注重對學習新知理解應用偏困難的學生的進一步關注。

      5.對于勾股定理的逆定理的論證可根據學生的實際情況做適當調整,不做要求。

      由于本班學生整體水平較高,因而本設計教學容量相對較大,教學中,應注意根據自己班級學生的狀況進行適當的刪減或調整。

      附:板書設計

      能得到直角三角形嗎

      情景引入 小試牛刀: 登高望遠

    八年級數學教案 篇3

      一、學生起點分析

      通過前一章《勾股定理》的學習,學生已經明白什么是勾股數,但也發現并不是所有的直角三角形的邊長都是勾股數,甚至有些直角三角形的邊長連有理數都不是,例如:①腰長為1的等腰直角三角形的底邊長不是有理數,②兩條直角邊分別為1,2的直角三角形的斜邊長不是有理數,這為引入“新數”奠定了必要性.

      二、教學任務分析

      《數不夠用了》是義務教育課程標準北師大版實驗教科書八年級(上)第二章《實數》的第一節. 本節內容安排了2個課時完成,第1課時讓學生感受無理數的存在,初步建立無理數的印象,結合勾股定理知識,會根據要求畫線段;第2課時借助計算器感受無理數是無限不循環小數,會判斷一個數是無理數.本課是第1課時,學生將在具體的實例中,通過操作、估算、分析等活動,感受無理數的客觀存在性和引入的必要性,并能判斷一個數是不是有理數.

      本節課的教學目標是:

      ①通過拼圖活動,讓學生感受客觀世界中無理數的存在;

      ②能判斷三角形的某邊長是否為無理數;

      ③學生親自動手做拼圖活動,培養學生的動手能力和探索精神;

      ④能正確地進行判斷某些數是否為有理數,加深對有理數和無理數的理解;

      三、教學過程設計

      本節課設計了6個教學環節:

      第一環節:置疑;第二環節:課題引入;第三環節:獲取新知;第四環節:應用與鞏固;第五環節:課堂小結;第六環節:作業布置.

      第一環節:質疑

      內容:【想一想】

      ⑴一個整數的平方一定是整數嗎?

      ⑵一個分數的平方一定是分數嗎?

      目的:作必要的知識回顧,為第二環節埋下伏筆,便于后續問題的說理.

      效果:為后續環節的進行起了很好的鋪墊的作用

      第二環節:課題引入

      內容:1.【算一算】

      已知一個直角三角形的兩條直角邊長分別為1和2,算一算斜邊長 的平方 ,并提出問題: 是整數(或分數)嗎?

      2.【剪剪拼拼】

      把邊長為1的兩個小正方形通過剪、拼,設法拼成一個大正方形,你會嗎?

      目的:選取客觀存在的“無理數“實例,讓學生深刻感受“數不夠用了”.

      效果:巧設問題背景,順利引入本節課題.

      第三環節:獲取新知

      內容:【議一議】→【釋一釋】→【憶一憶】→【找一找】

      【議一議】: 已知 ,請問:① 可能是整數嗎?② 可能是分數嗎?

      【釋一釋】:釋1.滿足 的 為什么不是整數?

      釋2.滿足 的 為什么不是分數?

      【憶一憶】:讓學生回顧“有理數”概念,既然 不是整數也不是分數,那么 一定不是有理數,這表明:有理數不夠用了,為“新數”(無理數)的學習奠定了基礎

      【找一找】:在下列正方形網格中,先找出長度為有理數的線段,再找出長度不是有理數的線段

      目的:創設從感性到理性的認知過程,讓學生充分感受“新數”(無理數)的存在,從而激發學習新知的興趣

      效果:學生感受到無理數產生的過程,確定存在一種數與以往學過的數不同,產生了學習新數的必要性.

      第四環節:應用與鞏固

      內容:【畫一畫1】→【畫一畫2】→【仿一仿】→【賽一賽】

      【畫一畫1】:在右1的正方形網格中,畫出兩條線段:

      1.長度是有理數的線段

      2.長度不是有理數的線段

      【畫一畫2】:在右2的正方形網格中畫出四個三角形 (右1)

      2.三邊長都是有理數

      2.只有兩邊長是有理數

      3.只有一邊長是有理數

      4.三邊長都不是有理數

      【仿一仿】:例:在數軸上表示滿足 的

      解: (右2)

      仿:在數軸上表示滿足 的

      【賽一賽】:右3是由五個單位正方形組成的紙片,請你把

      它剪成三塊,然后拼成一個正方形,你會嗎?試試看! (右3)

      目的:進一步感受“新數”的存在,而且能把“新數”表示在數軸上

      效果:加深了對“新知”的理解,鞏固了本課所學知識.

      第五環節:課堂小結

      內容:

      1.通過本課學習,感受有理數又不夠用了, 請問你有什么收獲與體會?

      2.客觀世界中,的確存在不是有理數的數,你能列舉幾個嗎?

      3.除了本課所認識的非有理數的數以外,你還能找到嗎?

      目的:引導學生自己小結本節課的知識要點及數學方法,使知識系統化.

      效果:學生總結、相互補充,學會進行概括總結.

      第六環節:布置作業

      習題2.1

      六、教學設計反思

      (一)生活是數學的源泉,興趣是學習的`動力

      大量事實都證明一點,與生活貼得越近的東西最容易引起學習者的濃厚興趣,才能激發學習者的學習積極性,學習才可能是主動的.本節課中教師首先用拼圖游戲引發學生學習的欲望,把課程內容通過學生的生活經驗呈現出來,然后進行大膽置疑,生活中的數并不都是有理數,那它們究竟是什么數呢?從而引發了學生的好奇心,為獲取新知,創設了積極的氛圍.在教學中,不要盲目的搶時間,讓學生能夠充分的思考與操作.

      (二)化抽象為具體

      常言道:“數學是鍛煉思維的體操”,數學教師應通過一系列數學活動開啟學生的思維,因此對新數的學習不能僅僅停留于感性認識,還應要求學生充分理解,并能用恰當數學語言進行解釋.正是基于這個原因,在教學過程中,刻意安排了一些環節,加深對新數的理解,充分感受新數的客觀存在,讓學生覺得新數并不抽象.

      (三)強化知識間聯系,注意糾錯

      既然稱之為“新數”,那它當然不是有理數,亦即不是整數,也不是分數,所以“新數”不可以用分數來表示,這為進一步學習“新數”,即第二課時教學埋下了伏筆,在教學中,要著重強調這一點:“新數”不能表示成分數,為無理數的教學奠好基.

    八年級數學教案 篇4

      一、素質教育目標

      (一)知識教學點

      1.掌握平行四邊形的判定定理1、2、3、4,并能與性質定理、定義綜合應用.

      2.使學生理解判定定理與性質定理的.區別與聯系.

      3.會根據簡單的條件畫出平行四邊形,并說明畫圖的依據是哪幾個定理.

      (二)能力訓練點

      1.通過“探索式試明法”開拓學生思路,發展學生思維能力.

      2.通過教學,使學生逐步學會分別從題設或結論出發尋求論證思路的分析方法,進一步提高學生分析問題,解決問題的能力.

      (三)德育滲透點

      通過一題多解激發學生的學習興趣.

      (四)美育滲透點

      通過學習,體會幾何證明的方法美.

      二、學法引導

      構造逆命題,分析探索證明,啟發講解.

      三、重點·難點·疑點及解決辦法

      1.教學重點:平行四邊形的判定定理1、2、3的應用.

      2.教學難點:綜合應用判定定理和性質定理.

      3.疑點及解決辦法:在綜合應用判定定理及性質定理時,在什么條件下用判定定理,在什么條件下用性質定理

      (強調在求證平行四邊形時用判定定理在已知平行四邊形時用性質定理).

    八年級數學教案 篇5

      一、教學目標

      1.理解一個數平方根和算術平方根的意義;

      2.理解根號的意義,會用根號表示一個數的平方根和算術平方根;

      3.通過本節的訓練,提高學生的邏輯思維能力;

      4.通過學習乘方和開方運算是互為逆運算,體驗各事物間的對立統一的辯證關系,激發學生探索數學奧秘的興趣。

      二、教學重點和難點

      教學重點:平方根和算術平方根的概念及求法。

      教學難點:平方根與算術平方根聯系與區別。

      三、教學方法

      講練結合

      四、教學手段

      幻燈片

      五、教學過程

      (一)提問

      1、已知一正方形面積為50平方米,那么它的邊長應為多少?

      2、已知一個數的平方等于1000,那么這個數是多少?

      3、一只容積為0。125立方米的正方體容器,它的棱長應為多少?

      這些問題的共同特點是:已知乘方的結果,求底數的值,如何解決這些問題呢?這就是本節內容所要學習的。下面作一個小練習:填空

      1、()2=9; 2、()2 =0、25;

      3、

      5、()2=0、0081

      學生在完成此練習時,最容易出現的錯誤是丟掉負數解,在教學時應注意糾正。

      由練習引出平方根的概念。

      (二)平方根概念

      如果一個數的平方等于a,那么這個數就叫做a的平方根(二次方根)。

      用數學語言表達即為:若x2=a,則x叫做a的平方根。

      由練習知:±3是9的平方根;

      ±0.5是0。25的平方根;

      0的平方根是0;

      ±0.09是0。0081的平方根。

      由此我們看到+3與—3均為9的平方根,0的平方根是0,下面看這樣一道題,填空:

      ( )2=—4

      學生思考后,得到結論此題無答案。反問學生為什么?因為正數、0、負數的`平方為非負數。由此我們可以得到結論,負數是沒有平方根的。下面總結一下平方根的性質(可由學生總結,教師整理)。

      (三)平方根性質

      1.一個正數有兩個平方根,它們互為相反數。

      2.0有一個平方根,它是0本身。

      3.負數沒有平方根。

      (四)開平方

      求一個數a的平方根的運算,叫做開平方的運算。

      由練習我們看到+3與—3的平方是9,9的平方根是+3和—3,可見平方運算與開平方運算互為逆運算。根據這種關系,我們可以通過平方運算來求一個數的平方根。與其他運算法則不同之處在于只能對非負數進行運算,而且正數的運算結果是兩個。

      (五)平方根的表示方法

      一個正數a的正的平方根,用符號“ ”表示,a叫做被開方數,2叫做根指數,正數a的負的平方根用符號“— ”表示,a的平方根合起來記作 ,其中 讀作“二次根號”, 讀作“二次根號下a”。根指數為2時,通常將這個2省略不寫,所以正數a的平方根也可記作“ ”讀作“正、負根號a”。

      練習:1.用正確的符號表示下列各數的平方根:

      ①26 ②247 ③0。2 ④3 ⑤

      解:①26 的平方根是

      ②247的平方根是

      ③0。2的平方根是

      ④3的平方根是

      ⑤ 的平方根是

      由學生說出上式的讀法。

      例1。下列各數的平方根:

      (1)81; (2) ; (3) ; (4)0。49

      解:(1)∵(±9)2=81,

      ∴81的平方根為±9。即:

      (2)

      的平方根是 ,即

      (3)

      的平方根是 ,即

      (4)∵(±0。7)2=0。49,

      ∴0。49的平方根為±0。7。

      小結:讓學生熟悉平方根的概念,掌握一個正數的平方根有兩個。

      六、總結

      本節課主要學習了平方根的概念、性質,以及表示方法,回去后要仔細閱讀教科書,鞏固所學知識。

      七、作業

      教材P。127練習1、2、3、4。

      八、板書設計

      平方根

      (一)概念 (四)表示方法 例1

      (二)性質

      (三)開平方

      探究活動

      求平方根近似值的一種方法

      求一個正數的平方根的近似值,通常是查表。這里研究一種筆算求法。

      例1。求 的值。

      解 ∵92102,

      兩邊平方并整理得

      ∵x1為純小數。

      18x1≈16,解得x1≈0。9,

      便可依次得到精確度

      為0。01,0。001,……的近似值,如:

      兩邊平方,舍去x2得19.8x2≈—1.01

    八年級數學教案 篇6

      教學目標:

      1.了解算術平方根的概念,會用根號表示正數的算術平方根,并了解算術平方根的非負性。

      2.了解開方與乘方互為逆運算,會用平方運算求某些非負數的算術平方根。

      教學重點:

      算術平方根的概念。

      教學難點:

      根據算術平方根的概念正確求出非負數的算術平方根。

      教學過程

      一、情境導入

      請同學們欣賞本節導圖,并回答問題,學校要舉行金秋美術作品比賽,小歐很高興,他想裁出一塊面積為25 的正方形畫布,畫上自己的得意之作參加比賽,這塊正方形畫布的邊長應取多少 ?如果這塊畫布的面積是 ?這個問題實際上是已知一個正數的.平方,求這個正數的問題?

      這就要用到平方根的概念,也就是本章的主要學習內容.這節課我們先學習有關算術平方根的概念.

      二、導入新課:

      1、提出問題:(書P68頁的問題)

      你是怎樣算出畫框的邊長等于5dm的呢?(學生思考并交流解法)

      這個問題相當于在等式擴=25中求出正數x的值.

      一般地,如果一個正數x的平方等于a,即 =a,那么這個正數x叫做a的算術平方根.a的算術平方根記為 ,讀作根號a,a叫做被開方數.規定:0的算術平方根是0.

      也就是,在等式 =a (x0)中,規定x = .

      2、 試一試:你能根據等式: =144說出144的算術平方根是多少嗎?并用等式表示出來.

      3、 想一想:下列式子表示什么意思?你能求出它們的值嗎?

      建議:求值時,要按照算術平方根的意義,寫出應該滿足的關系式,然后按照算術平方根的記法寫出對應的值.例如 表示25的算術平方根。

      4、例1 求下列各數的算術平方根:

      (1)100;(2)1;(3) ;(4)0.0001

      三、練習

      P69練習 1、2

      四、探究:(課本第69頁)

      怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?

      方法1:課本中的方法,略;

      方法2:

      可還有其他方法,鼓勵學生探究。

      問題:這個大正方形的邊長應該是多少呢?

      大正方形的邊長是 ,表示2的算術平方根,它到底是個多大的數?你能求出它的值嗎?

      建議學生觀察圖形感受 的大小.小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節課探究.

      五、小結:

      1、這節課學習了什么呢?

      2、算術平方根的具體意義是怎么樣的?

      3、怎樣求一個正數的算術平方根

      六、課外作業:

      P75習題13.1活動第1、2、3題

    八年級數學教案 篇7

      復習第一步::

      勾股定理的有關計算

      例1:(20xx年甘肅省定西市中考題)下圖陰影部分是一個正方形,則此正方形的面積為.

      析解:圖中陰影是一個正方形,面積正好是直角三角形一條直角邊的平方,因此由勾股定理得正方形邊長平方為:172-152=64,故正方形面積為6

      勾股定理解實際問題

      例2.(20xx年吉林省中考試題)圖①是一面矩形彩旗完全展平時的尺寸圖(單位:cm).其中矩形ABCD是由雙層白布縫制的穿旗桿用的旗褲,陰影部分DCEF為矩形綢緞旗面,將穿好彩旗的旗桿垂直插在操場上,旗桿旗頂到地面的高度為220cm.在無風的天氣里,彩旗自然下垂,如圖②.求彩旗下垂時最低處離地面的最小高度h.

      析解:彩旗自然下垂的長度就是矩形DCEF

      的對角線DE的長度,連接DE,在Rt△DEF中,根據勾股定理,

      得DE=h=220-150=70(cm)

      所以彩旗下垂時的最低處離地面的最小高度h為70cm

      與展開圖有關的計算

      例3、(20xx年青島市中考試題)如圖,在棱長為1的.正方體ABCD—A’B’C’D’的表面上,求從頂點A到頂點C’的最短距離.

      析解:正方體是由平面圖形折疊而成,反之,一個正方體也可以把它展開成平面圖形,如圖是正方體展開成平面圖形的一部分,在矩形ACC’A’中,線段AC’是點A到點C’的最短距離.而在正方體中,線段AC’變成了折線,但長度沒有改變,所以頂點A到頂點C’的最短距離就是在圖2中線段AC’的長度.

      在矩形ACC’A’中,因為AC=2,CC’=1

      所以由勾股定理得AC’=.

      ∴從頂點A到頂點C’的最短距離為

      復習第二步:

      1.易錯點:本節同學們的易錯點是:在用勾股定理求第三邊時,分不清直角三角形的斜邊和直角邊;另外不論是否是直角三角形就用勾股定理;為了避免這些錯誤的出現,在解題中,同學們一定要找準直角邊和斜邊,同時要弄清楚解題中的三角形是否為直角三角形.

      例4:在Rt△ABC中,a,b,c分別是三條邊,∠B=90°,已知a=6,b=10,求邊長c.

      錯解:因為a=6,b=10,根據勾股定理得c=剖析:上面解法,由于審題不仔細,忽視了∠B=90°,這一條件而導致沒有分清直角三角形的斜邊和直角邊,錯把c當成了斜邊.

      正解:因為a=6,b=10,根據勾股定理得,c=溫馨提示:運用勾股定理時,一定分清斜邊和直角邊,不能機械套用c2=a2+b2

      例5:已知一個Rt△ABC的兩邊長分別為3和4,則第三邊長的平方是

      錯解:因為Rt△ABC的兩邊長分別為3和4,根據勾股定理得:第三邊長的平方是32+42=25

      剖析:此題并沒有告訴我們已知的邊長4一定是直角邊,而4有可能是斜邊,因此要分類討論.

      正解:當4為直角邊時,根據勾股定理第三邊長的平方是25;當4為斜邊時,第三邊長的平方為:42-32=7,因此第三邊長的平方為:25或7.

      溫馨提示:在用勾股定理時,當斜邊沒有確定時,應進行分類討論.

      例6:已知a,b,c為⊿ABC三邊,a=6,b=8,bc,且c為整數,則c=.

      錯解:由勾股定理得c=剖析:此題并沒有告訴你⊿ABC為直角三角形

    八年級數學教案 篇8

      一、課堂引入

      1.什么叫做平行四邊形?什么叫做矩形?

      2.矩形有哪些性質?

      3.矩形與平行四邊形有什么共同之處?有什么不同之處?

      4.事例引入:小華想要做一個矩形像框送給媽媽做生日禮物,于是找來兩根長度相等的短木條和兩根長度相等的長木條制作,你有什么辦法可以檢測他做的是矩形像框嗎?看看誰的方法可行?

      通過討論得到矩形的判定方法.

      矩形判定方法1:對角錢相等的平行四邊形是矩形.

      矩形判定方法2:有三個角是直角的四邊形是矩形.

      (指出:判定一個四邊形是矩形,知道三個角是直角,條件就夠了.因為由四邊形內角和可知,這時第四個角一定是直角.)

      二、例習題分析

      例1(補充)下列各句判定矩形的說法是否正確?為什么?

      (1)有一個角是直角的四邊形是矩形;(×)

      (2)有四個角是直角的四邊形是矩形;(√)

      (3)四個角都相等的四邊形是矩形;(√)

      (4)對角線相等的四邊形是矩形;(×)

      (5)對角線相等且互相垂直的四邊形是矩形;(×)

      (6)對角線互相平分且相等的四邊形是矩形;(√)

      (7)對角線相等,且有一個角是直角的四邊形是矩形;(×)

      (8)一組鄰邊垂直,一組對邊平行且相等的四邊形是矩形;(√)

      (9)兩組對邊分別平行,且對角線相等的四邊形是矩形.(√)

      指出:

      (l)所給四邊形添加的條件不滿足三個的.肯定不是矩形;

      (2)所給四邊形添加的條件是三個獨立條件,但若與判定方法不同,則需要利用定義和判定方法證明或舉反例,才能下結論.

      例2(補充)已知ABCD的對角線AC、BD相交于點O,△AOB是等邊三角形,AB=4cm,求這個平行四邊形的面積.

      分析:首先根據△AOB是等邊三角形及平行四邊形對角線互相平分的性質判定出ABCD是矩形,再利用勾股定理計算邊長,從而得到面積值.

      解:∵ 四邊形ABCD是平行四邊形,

      ∴AO=AC,BO=BD.

      ∵ AO=BO,

      ∴ AC=BD.

      ∴ ABCD是矩形(對角線相等的平行四邊形是矩形).

      在Rt△ABC中,

      ∵ AB=4cm,AC=2AO=8cm,

      ∴BC=(cm).

      例3(補充)已知:如圖(1),ABCD的四個內角的平分線分別相交于點E,F,G,H.求證:四邊形EFGH是矩形.

      分析:要證四邊形EFGH是矩形,由于此題目可分解出基本圖形,如圖(2),因此,可選用“三個角是直角的四邊形是矩形”來證明

    【八年級數學教案】相關文章:

    八年級的數學教案12-14

    八年級數學教案06-18

    八年級數學教案【熱門】12-03

    【精】八年級數學教案12-04

    八年級數學教案【精】12-04

    八年級數學教案【薦】12-06

    【推薦】八年級數學教案12-05

    八年級數學教案【推薦】12-04

    【熱】八年級數學教案12-07

    八年級下冊數學教案01-01

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      日日摸夜夜摸狠狠摸婷婷 | 这里精品国产清自在天天线 | 在线观看中文字幕码 | 午夜福利国产精品久久婷婷 | 日本中文字幕乱码系列 | 亚洲欧美在线综合色影视 |