1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>八年級數學教案>八年級數學教案

    八年級數學教案

    時間:2022-08-21 04:37:57 八年級數學教案 我要投稿

    八年級數學教案集合9篇

      作為一名教學工作者,編寫教案是必不可少的,編寫教案有利于我們科學、合理地支配課堂時間。教案應該怎么寫才好呢?下面是小編收集整理的八年級數學教案9篇,歡迎大家分享。

    八年級數學教案集合9篇

    八年級數學教案 篇1

      一、教學目標:

      1、理解極差的定義,知道極差是用來反映數據波動范圍的一個量.

      2、會求一組數據的極差.

      二、重點、難點和難點的突破方法

      1、重點:會求一組數據的'極差.

      2、難點:本節課內容較容易接受,不存在難點.

      三、課堂引入:

      下表顯示的是上海20xx年2月下旬和20xx年同期的每日最高氣溫,如何對這兩段時間的氣溫進行比較呢?

      從表中你能得到哪些信息?

      比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法.

      經計算可以看出,對于2月下旬的這段時間而言,20xx年和20xx年上海地區的平均氣溫相等,都是12度.

      這是不是說,兩個時段的氣溫情況沒有什么差異呢?

      根據兩段時間的氣溫情況可繪成的折線圖.

      觀察一下,它們有區別嗎?說說你觀察得到的結果.

      用一組數據中的最大值減去最小值所得到的差來反映這組數據的變化范圍.用這種方法得到的差稱為極差(range).

      四、例習題分析

      本節課在教材中沒有相應的例題,教材P152習題分析

      問題1可由極差計算公式直接得出,由于差值較大,結合本題背景可以說明該村貧富差距較大.問題2涉及前一個學期統計知識首先應回憶復習已學知識.問題3答案并不唯一,合理即可。

    八年級數學教案 篇2

      菱形

      學習目標(學習重點):

      1.經歷探索菱形的識別方法的過程,在活動中培養探究意識與合作交流的習慣;

      2.運用菱形的識別方法進行有關推理.

      補充例題:

      例1. 如圖,在△ABC中,AD是△ABC的角平分線。DE∥AC交AB于E,DF∥AB交AC于F.四邊形AEDF是菱形嗎?說明你的理由.

      例2.如圖,平行四邊形ABCD的對 角線AC的垂直平分線與邊AD、BC分別交于E、F.

      四邊形AFCE是菱形嗎?說明理由.

      例3.如圖 , ABCD是矩形紙片,翻折B、D,使BC、AD恰好落在AC上,設F、H分別是B、D落在AC上的兩點,E、G分別是折痕CE、AG與AB、CD的交點

      (1)試說明四邊形AECG是平行四邊形;

      (2)若AB=4cm,BC=3cm,求線段EF的長;

      (3)當矩形兩邊AB、BC具備怎樣的關系時,四邊形AECG是菱形.

      課后續助:

      一、填空題

      1.如果四邊形ABCD是平行四邊形,加上條件___________________,就可以是矩形;加上條件_______________________,就可以是菱形

      2.如圖,D、E、F分別是△ABC的邊BC、CA、AB上的點,

      且DE∥BA,DF∥ CA

      (1)要使四邊形AFDE是菱形,則要增加條件______________________

      (2)要使四邊形AFDE是矩形,則要增加條件______________________

      二、解答題

      1.如圖,在□ABCD中 ,若2,判斷□ABCD是矩形還是菱形?并說明理由。

      2.如圖 ,平行四邊形A BCD的兩條對角線AC,BD相交于點O,OA=4,OB=3,AB=5.

      (1) AC,BD互相垂直嗎?為什么?

      (2) 四邊形ABCD是菱形 嗎?

      3.如圖,在□ABCD中,已知ADAB,ABC的'平分線交AD于E,EF∥AB交BC于F,試問: 四 邊形ABFE是菱形嗎?請說明理由。

      4.如圖,把一張矩形的紙ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F.

      ⑴求證:ABF≌

      ⑵若將折疊的圖形恢復原狀,點F與BC邊上的點M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由.

    八年級數學教案 篇3

      教學目標:

      1、掌握一次函數解析式的特點及意義

      2、知道一次函數與正比例函數的關系

      3、理解一次函數圖象特點與解析式的聯系規律

      教學重點:

      1、 一次函數解析式特點

      2、 一次函數圖象特征與解析式的聯系規律

      教學難點:

      1、一次函數與正比例函數關系

      2、根據已知信息寫出一次函數的表達式。

      教學過程:

      Ⅰ.提出問題,創設情境

      問題1 小明暑假第一次去北京.汽車駛上A地的高速公路后,小明觀察里程碑,發現汽車的平均車速是95千米/小時.已知A地直達北京的高速公路全程為570千米,小明想知道汽車從A地駛出后,距北京的路程和汽車在高速公路上行駛的時間有什么關系,以便根據時間估計自己和北京的距離.

      分析 我們知道汽車距北京的路程隨著行車時間而變化,要想找出這兩個變化著的量的關系,并據此得出相應的值,顯然,應該探求這兩個變量的變化規律.為此,我們設汽車在高速公路上行駛時間為t小時,汽車距北京的路程為s千米,根據題意,s和t的函數關系式是

      s=570-95t.

      說明 找出問題中的變量并用字母表示是探求函數關系的第一步,這里的s、t是兩個變量,s是t的函數,t是自變量,s是因變量.

      問題2 小張準備將平時的零用錢節約一些儲存起來.他已存有50元,從現在起每個月節存12元.試寫出小張的存款與從現在開始的月份之間的函數關系式.

      分析 我們設從現在開始的月份數為x,小張的存款數為y元,得到所求的函數關系式為:y=50+12x.

      問題3 以上問題1和問題2表示的這兩個函數有什么共同點?

      Ⅱ.導入新課

      上面的兩個函數關系式都是左邊是因變量y,右邊是含自變量x的代數式。并且自變量和因變量的指數都是一次。若兩個變量x,y間的關系式可以表示成y=kx+b(k,b為常數k≠0)的形式,則稱y是x的一次函數(x為自變量,y為因變量)。特別地,當b=0時,稱

      y是x的正比例函數。

      例1:下列函數中,y是x的一次函數的是( )

      ①y=x-6;②y=2x;③y=;④y=7-x x8

      A、①②③B、①③④ C、①②③④ D、②③④

      例2 下列函數關系中,哪些屬于一次函數,其中哪些又屬于正比例函數?

      (1)面積為10cm2的三角形的底a(cm)與這邊上的高h(cm);

      (2)長為8(cm)的平行四邊形的周長L(cm)與寬b(cm);

      (3)食堂原有煤120噸,每天要用去5噸,x天后還剩下煤y噸;

      (4)汽車每小時行40千米,行駛的路程s(千米)和時間t(小時).

      (5)汽車以60千米/時的速度勻速行駛,行駛路程中y(千米)與行駛時間x(時)之間的關系式;

      (6)圓的面積y(厘米2)與它的半徑x(厘米)之間的關系;

      (7)一棵樹現在高50厘米,每個月長高2厘米,x月后這棵樹的高度為y(厘米) 分析 確定函數是否為一次函數或正比例函數,就是看它們的解析式經過整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此題必須先寫出函數解析式后解答. 解 (1)a?20,不是一次函數. h

      (2)L=2b+16,L是b的一次函數.

      (3)y=150-5x,y是x的一次函數.

      (4)s=40t,s既是t的一次函數又是正比例函數.

      (5)y=60x,y是x的一次函數,也是x的正比例函數;

      (6)y=πx2,y不是x的正比例函數,也不是x的一次函數;

      (7)y=50+2x,y是x的一次函數,但不是x的正比例函數

      例3 已知函數y=(k-2)x+2k+1,若它是正比例函數,求k的值.若它是一次函數,求k的值.

      分析 根據一次函數和正比例函數的定義,易求得k的值.

      解 若y=(k-2)x+2k+1是正比例函數,則2k+1=0,即k=?

      若y=(k-2)x+2k+1是一次函數,則k-2≠0,即k≠2.

      例4 已知y與x-3成正比例,當x=4時,y=3.

      (1)寫出y與x之間的函數關系式;

      (2)y與x之間是什么函數關系;

      (3)求x=2.5時,y的值.

      解 (1)因為 y與x-3成正比例,所以y=k(x-3).

      又因為x=4時,y=3,所以3= k(4-3),解得k=3,

      所以y=3(x-3)=3x-9.

      (2) y是x的一次函數.

      (3)當x=2.5時,y=3×2.5=7.5.

      1. 2

      例5 已知A、B兩地相距30千米,B、C兩地相距48千米.某人騎自行車以每小時12千米的速度從A地出發,經過B地到達C地.設此人騎行時間為x(時),離B地距離為y(千米).

      (1)當此人在A、B兩地之間時,求y與x的函數關系及自變量x取值范圍.

      (2)當此人在B、C兩地之間時,求y與x的函數關系及自變量x的取值范圍.

      分析 (1)當此人在A、B兩地之間時,離B地距離y為A、B兩地的距離與某人所走的路程的差.

      (2)當此人在B、C兩地之間時,離B地距離y為某人所走的路程與A、B兩地的距離的差.

      解 (1) y=30-12x.(0≤x≤2.5)

      (2) y=12x-30.(2.5≤x≤6.5)

      例6 某油庫有一沒儲油的儲油罐,在開始的.8分鐘時間內,只開進油管,不開出油管,油罐的進油至24噸后,將進油管和出油管同時打開16分鐘,油罐中的油從24噸增至40噸.隨后又關閉進油管,只開出油管,直至將油罐內的油放完.假設在單位時間內進油管與出油管的流量分別保持不變.寫出這段時間內油罐的儲油量y(噸)與進出油時間x(分)的函數式及相應的x取值范圍.

      分析 因為在只打開進油管的8分鐘內、后又打開進油管和出油管的16分鐘和最后的只開出油管的三個階級中,儲油罐的儲油量與進出油時間的函數關系式是不同的,所以此題因分三個時間段來考慮.但在這三個階段中,兩變量之間均為一次函數關系.

      解 在第一階段:y=3x(0≤x≤8);

      在第二階段:y=16+x(8≤x≤16);

      在第三階段:y=-2x+88(24≤x≤44).

      Ⅲ.隨堂練習

      根據上表寫出y與x之間的關系式是:________________,y是否為x一的次函數?y是否為x有正比例函數?

      2、為了加強公民的節水意識,合理利用水資源,某城市規定用水收費標準如下:每戶每月用水量不超過6米3時,水費按0.6元/米3收費;每戶每月用水量超過6米3時,超過部分按1元/米3收費。設每戶每月用水量為x米3,應繳水費y元。(1)寫出每月用水量不

      超過6米3和超過6米3時,y與x之間的函數關系式,并判斷它們是否為一次函數。(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費。[①y=0.6x,y=x-2.4,y是x的一次函數。②y=8-2.4=5.6(元)]

      Ⅳ.課時小結

      1、一次函數、正比例函數的概念及關系。

      2、能根據已知簡單信息,寫出一次函數的表達式。

      Ⅴ.課后作業

      1、已知y-3與x成正比例,且x=2時,y=7

      (1)寫出y與x之間的函數關系.

      (2)y與x之間是什么函數關系.

      (3)計算y=-4時x的值.

      2.甲市到乙市的包裹郵資為每千克0.9元,每件另加手續費0.2元,求總郵資y(元)與包裹重量x(千克)之間的函數解析式,并計算5千克重的包裹的郵資.

      3.倉庫內原有粉筆400盒.如果每個星期領出36盒,求倉庫內余下的粉筆盒數Q與星期數t之間的函數關系.

      4.今年植樹節,同學們種的樹苗高約1.80米.據介紹,這種樹苗在10年內平均每年長高0.35米.求樹高與年數之間的函數關系式.并算一算4年后同學們中學畢業時這些樹約有多高.

      5.按照我國稅法規定:個人月收入不超過800元,免交個人所得稅.超過800元不超過1300元部分需繳納5%的個人所得稅.試寫出月收入在800元到1300元之間的人應繳納的稅金y(元)和月收入x(元)之間的函數關系式.

    八年級數學教案 篇4

      一、平移:在平面內,將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。

      1.平移

      2.平移的性質:⑴經過平移,對應點所連的線段平行且相等;⑵對應線段平行且相等,對應角相等。⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。(4)平移后的圖形與原圖形全等。

      3.簡單的平移作圖

      ①確定個圖形平移后的位置的條件:

      ⑴需要原圖形的位置;⑵需要平移的方向;⑶需要平移的距離或一個對應點的位置。

      ②作平移后的圖形的'方法:

      ⑴找出關鍵點;⑵作出這些點平移后的對應點;⑶將所作的對應點按原來方式順次連接,所得的;

      二、旋轉:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉,這個定點稱為旋轉中心,轉動的角稱為旋轉角。

      1.旋轉

      2.旋轉的性質

      ⑴旋轉變化前后,對應線段,對應角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。

      ⑵旋轉過程中,圖形上每一個點都繞旋轉中心沿相同方向轉動了相同的角度。

      ⑶任意一對對應點與旋轉中心的連線所成的角都是旋轉角,對應點到旋轉中心的距離相等。

      ⑷旋轉前后的兩個圖形全等。

      3.簡單的旋轉作圖

      ⑴已知原圖,旋轉中心和一對對應點,求作旋轉后的圖形。

      ⑵已知原圖,旋轉中心和一對對應線段,求作旋轉后的圖形。

      ⑶已知原圖,旋轉中心和旋轉角,求作旋轉后的圖形。

      三、分析組合圖案的形成

      ①確定組合圖案中的“基本圖案”

      ②發現該圖案各組成部分之間的內在聯系

      ③探索該圖案的形成過程,類型有:⑴平移變換;⑵旋轉變換;⑶軸對稱變換;⑷旋轉變換與平移變換的組合;

      ⑸旋轉變換與軸對稱變換的組合;⑹軸對稱變換與平移變換的組合。

    八年級數學教案 篇5

      一、教學目標

      (一)、知識與技能:

      (1)使學生了解因式分解的意義,理解因式分解的概念。

      (2)認識因式分解與整式乘法的相互關系——互逆關系,并能運用這種關系尋求因式分解的方法。

      (二)、過程與方法:

      (1)由學生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數分解之間的關系,培養學生的觀察能力,進一步發展學生的類比思想。

      (2)由整式乘法的逆運算過渡到因式分解,發展學生的逆向思維能力。

      (3)通過對分解因式與整式的乘法的觀察與比較,培養學生的分析問題能力與綜合應用能力。

      (三)、情感態度與價值觀:讓學生初步感受對立統一的辨證觀點以及實事求是的科學態度。

      二、教學重點和難點

      重點:因式分解的概念及提公因式法。

      難點:正確找出多項式各項的公因式及分解因式與整式乘法的區別和聯系。

      三、教學過程

      教學環節:

      活動1:復習引入

      看誰算得快:用簡便方法計算:

      (1)7/9 ×13-7/9 ×6+7/9 ×2= ;

      (2)-2.67×132+25×2.67+7×2.67= ;

      (3)992–1= 。

      設計意圖:

      如果說學生對因式分解還相當陌生的話,相信學生對用簡便方法進行計算應該相當熟悉.引入這一步的目的旨在讓學生通過回顧用簡便方法計算——因數分解這一特殊算法,使學生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環節設計的計算992–1的值是為了降低下一環節的難度,為下一環節的理解搭一個臺階.

      注意事項:學生對于(1)(2)兩小題逆向利用乘法的分配律進行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導學生復習七年級所學過的整式的乘法運算中的平方差公式,幫助他們順利地逆向運用平方差公式。

      活動2:導入課題

      P165的探究(略);

      2. 看誰想得快:993–99能被哪些數整除?你是怎么得出來的?

      設計意圖:

      引導學生把這個式子分解成幾個數的積的形式,繼續強化學生對因數分解的理解,為學生類比因式分解提供必要的精神準備。

      活動3:探究新知

      看誰算得準:

      計算下列式子:

      (1)3x(x-1)= ;

      (2)(a+b+c)= ;

      (3)(+4)(-4)= ;

      (4)(-3)2= ;

      (5)a(a+1)(a-1)= ;

      根據上面的.算式填空:

      (1)a+b+c= ;

      (2)3x2-3x= ;

      (3)2-16= ;

      (4)a3-a= ;

      (5)2-6+9= 。

      在第一組的整式乘法的計算上,學生通過對第一組式子的觀察得出第二組式子的結果,然后通過對這兩組式子的結果的比較,使學生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發展學生的逆向思維能力。

      活動4:歸納、得出新知

      比較以下兩種運算的聯系與區別:

      a(a+1)(a-1)= a3-a

      a3-a= a(a+1)(a-1)

      在第三環節的運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?

    八年級數學教案 篇6

      1、教材分析

      (1)知識結構

      (2)重點、難點分析

      本節內容的重點是線段垂直平分線定理及其逆定理. 定理反映了線段垂直平分線的性質,是證明兩條線段相等的依據;逆定理反映了線段垂直平分線的判定,是證明某點在某條直線上及一條直線是已知線段的垂直平分線的依據.

      本節內容的難點是定理及逆定理的關系. 垂直平分線定理和其逆定理,題設與結論正好相反. 學生在應用它們的時候,容易混淆,幫助學生認識定理及其逆定理的區別,這是本節的難點.

      2、 教法建議

      本節課教學模式主要采用“學生主體性學習”的教學模式. 提出問題讓學生想,設計問題讓學生做,錯誤原因讓學生說,方法與規律讓學生歸納. 教師的作用在于組織、點撥、引導,促進學生主動探索,積極思考,大膽想象,總結規律,充分發揮學生的主體作用,讓學生真正成為教學活動的主人. 具體說明如下:

      (1)參與探索發現,領略知識形成過程

      學生前面,學習過線段垂直平分線的概念,這樣由復習概念入手,順其自然提出問題:在垂直平分線上任取一點P,它到線段兩端的距離有何關系?學生會很容易得出“相等”. 然后學生完成證明,找一名學生的證明過程,進行投影總結. 最后,由學生將上述問題,用文字的形式進行歸納,即得線段垂直平分線定理. 這樣讓學生親自動手實踐,積極參與發現,激發了學生的.認識沖突,使學生克服思維和探求的惰性,獲得鍛煉機會,對定理的產生過程,真正做到心領神會.

      (2)采用“類比”的學習方法,獲取逆定理

      線段垂直平分線的定理及逆定理的證明都比較簡單,學生學習一般沒有什么困難,這一節的難點仍然的定理及逆定理的關系,為了很好的突破這一難點,教學時采用與角的平分線的性質定理和逆定理對照,類比的方法進行教學,使學生進一步認識這兩個定理的區別和聯系.

      (3) 通過問題的解決,讓學生學會從不同角度分析問題、解決問題;讓學生學會引申、變更問題,以培養學生發現問題、提出問題的創造性能力.

    八年級數學教案 篇7

      第一步:情景創設

      乒乓球的標準直徑為40mm,質檢部門從A、B兩廠生產的乒乓球中各抽取了10只,對這些乒乓球的直徑了進行檢測。結果如下(單位:mm):

      A廠:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;

      B廠:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.

      你認為哪廠生產的乒乓球的直徑與標準的誤差更小呢?

      (1)請你算一算它們的平均數和極差。

      (2)是否由此就斷定兩廠生產的乒乓球直徑同樣標準?

      今天我們一起來探索這個問題。

      探索活動

      通過計算發現極差只能反映一組數據中兩個極值之間的大小情況,而對其他數據的波動情況不敏感。讓我們一起來做下列的數學活動

      算一算

      把所有差相加,把所有差取絕對值相加,把這些差的平方相加。

      想一想

      你認為哪種方法更能明顯反映數據的波動情況?

      第二步:講授新知:

      (一)方差

      定義:設有n個數據,各數據與它們的平均數的差的平方分別是,…,我們用它們的平均數,即用

      來衡量這組數據的波動大小,并把它叫做這組數據的方差(variance),記作。

      意義:用來衡量一批數據的波動大小

      在樣本容量相同的情況下,方差越大,說明數據的波動越大,越不穩定

      歸納:(1)研究離散程度可用(2)方差應用更廣泛衡量一組數據的波動大小

      (3)方差主要應用在平均數相等或接近時

      (4)方差大波動大,方差小波動小,一般選波動小的

      方差的簡便公式:

      推導:以3個數為例

      (二)標準差:

      方差的算術平方根,即④

      并把它叫做這組數據的標準差.它也是一個用來衡量一組數據的波動大小的重要的.量.

      注意:波動大小指的是與平均數之間差異,那么用每個數據與平均值的差完全平方后便可以反映出每個數據的波動大小,整體的波動大小可以通過對每個數據的波動大小求平均值得到。所以方差公式是能夠反映一組數據的波動大小的一個統計量,教師也可以根據學生程度和課堂時間決定是否介紹平均差等可以反映數據波動大小的其他統計量。

    八年級數學教案 篇8

      教材分析

      本章屬于“數與代數”領域,整式的乘除運算和因式分解是基本而重要的代數初步知識,在后續的數學學習中具有重要的意義。本章內容建立在已經學習了有理數的運算,列簡單的代數式、一次方程及不等式、整式的加減運算等知識的基礎上,而本節課的知識是學習本章的基礎,為后續章節的學習作鋪墊,因此,學得好壞直接關乎到后續章節的學習效果。

      學情分析

      本節課知識是學習整章的基礎,因此,教學的好壞直接影響了后續章節的學習。學生在學習本章前,已經掌握了用字母表示數,列簡單的代數式,掌握了乘方的意義及相關概念,并且本節課的.知識相對較簡單,學生比較容易理解和掌握,但是教師在教學中要注意引導學生導出同底數冪的乘法的運算性質的過程是一個由特殊到一般的認識過程,并且注意導出這一性質的每一步的根據。

      從學生做練習和作業來看,大部分學生都已經掌握本節課的知識,并且掌握的很好,但是還是存在一些問題,那就是符號問題,這方面還有待加強。

      教學目標

      1、知識與技能:

      掌握同底數冪乘法的運算性質,能熟練運用性質進行同底數冪乘法運算。

      2、過程與方法:

      (1)通過同底數冪乘法性質的推導過程,體會不完全歸納法的運用,進一步發展演繹推理能力;

      (2)通過性質運用幫助學生理解字母表達式所代表的數量關系,進一步積累選擇適當的程序和算法解決用符號所表達問題的經驗。

      3、情感態度與價值觀:

      (1)通過引例問題情境的創設,誘發學生的求知欲,進一步認識數學與生活的密切聯系;

      (2)通過性質的推導體會“特殊。

    八年級數學教案 篇9

      教學目標:

      1.了解算術平方根的概念,會用根號表示正數的算術平方根,并了解算術平方根的非負性。

      2.了解開方與乘方互為逆運算,會用平方運算求某些非負數的算術平方根。

      教學重點:

      算術平方根的概念。

      教學難點:

      根據算術平方根的概念正確求出非負數的算術平方根。

      教學過程

      一、情境導入

      請同學們欣賞本節導圖,并回答問題,學校要舉行金秋美術作品比賽,小歐很高興,他想裁出一塊面積為25 的正方形畫布,畫上自己的得意之作參加比賽,這塊正方形畫布的邊長應取多少 ?如果這塊畫布的面積是 ?這個問題實際上是已知一個正數的平方,求這個正數的問題?

      這就要用到平方根的概念,也就是本章的主要學習內容.這節課我們先學習有關算術平方根的概念.

      二、導入新課:

      1、提出問題:(書P68頁的問題)

      你是怎樣算出畫框的邊長等于5dm的呢?(學生思考并交流解法)

      這個問題相當于在等式擴=25中求出正數x的值.

      一般地,如果一個正數x的平方等于a,即 =a,那么這個正數x叫做a的算術平方根.a的算術平方根記為 ,讀作根號a,a叫做被開方數.規定:0的算術平方根是0.

      也就是,在等式 =a (x0)中,規定x = .

      2、 試一試:你能根據等式: =144說出144的算術平方根是多少嗎?并用等式表示出來.

      3、 想一想:下列式子表示什么意思?你能求出它們的值嗎?

      建議:求值時,要按照算術平方根的意義,寫出應該滿足的關系式,然后按照算術平方根的記法寫出對應的值.例如 表示25的算術平方根。

      4、例1 求下列各數的算術平方根:

      (1)100;(2)1;(3) ;(4)0.0001

      三、練習

      P69練習 1、2

      四、探究:(課本第69頁)

      怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?

      方法1:課本中的方法,略;

      方法2:

      可還有其他方法,鼓勵學生探究。

      問題:這個大正方形的`邊長應該是多少呢?

      大正方形的邊長是 ,表示2的算術平方根,它到底是個多大的數?你能求出它的值嗎?

      建議學生觀察圖形感受 的大小.小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節課探究.

      五、小結:

      1、這節課學習了什么呢?

      2、算術平方根的具體意義是怎么樣的?

      3、怎樣求一個正數的算術平方根

      六、課外作業:

      P75習題13.1活動第1、2、3題

    【八年級數學教案】相關文章:

    八年級的數學教案12-14

    八年級數學教案06-18

    八年級上冊人教版數學教案02-27

    八年級數學教案人教版01-03

    八年級下冊數學教案01-01

    八年級的數學教案15篇12-14

    八年級數學教案【薦】12-06

    初中八年級數學教案11-03

    人教版八年級數學教案11-04

    【熱門】八年級數學教案11-29

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      亚洲婷婷天堂婷婷色五月 | 亚洲乱色熟女一区二区三区 | 亚洲精品欧洲精品乱码不卡 | 中文字幕成乱码熟女 | 日本在线一区二区三区欧美 | 在线人成视频午夜福利 |