1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>八年級數學教案>八年級數學教案

    八年級數學教案

    時間:2022-08-20 12:10:15 八年級數學教案 我要投稿

    有關八年級數學教案五篇

      作為一名默默奉獻的教育工作者,編寫教案是必不可少的,教案有利于教學水平的提高,有助于教研活動的開展。那么優秀的教案是什么樣的呢?下面是小編幫大家整理的八年級數學教案5篇,歡迎大家分享。

    有關八年級數學教案五篇

    八年級數學教案 篇1

      一、學習目標:

      1、會推導兩數差的平方公式,會用式子表示及用文字語言敘述;

      2、會運用兩數差的平方公式進行計算。

      二、學習過程:

      請同學們快速閱讀課本第27—28頁的內容,并完成下面的練習題:

      (一)探索

      1、計算: (a - b) =

      方法一: 方法二:

      方法三:

      2、兩數差的平方用式子表示為_________________________;

      用文字語言敘述為___________________________ 。

      3、兩數差的平方公式結構特征是什么?

      (二)現學現用

      利用兩數差的平方公式計算:

      1、(3 - a) 2、 (2a -1) 3、(3y-x)

      4、(2x – 4y) 5、( 3a - )

      (三)合作攻關

      靈活運用兩數差的平方公式計算:

      1、(999) 2、( a – b – c )

      3、(a + 1) -(a-1)

      (四)達標訓練

      1、、選擇:下列各式中,與(a - 2b) 一定相等的`是( )

      A、a -2ab + 4b B、a -4b

      C、a +4b D、 a - 4ab +4b

      2、填空:

      (1)9x + + 16y = (4y - 3x )

      (2) ( ) = m - 8m + 16

      2、計算:

      ( a - b) ( x -2y )

      3、有一邊長為a米的正方形空地,現準備將這塊空地四周均留出b米寬修筑圍壩,中間修建噴泉水池,你能計算出噴泉水池的面積嗎?

      (四)提升

      1、本節課你學到了什么?

      2、已知a – b = 1,a + b = 25,求ab 的值

    八年級數學教案 篇2

      一、教學目標:

      1、知識目標:能熟練掌握簡單圖形的移動規律,能按要求作出簡單平面圖形平移后的圖形,能夠探索圖形之間的平移關系;

      2、能力目標:

      ①,在實踐操作過程中,逐步探索圖形之間的平移關系;

      ②,對組合圖形要找到一個或者幾個“基本圖案”,并能通過對“基本圖案”的平移,復制所求的圖形;

      3、情感目標:經歷對圖形進行觀察、分析、欣賞和動手操作、畫圖等過程,發展初步的審美能力,增強對圖形欣賞的意識。

      二、重點與難點:

      重點:圖形連續變化的`特點;

      難點:圖形的劃分。

      三、教學方法:

      講練結合。使用多媒體課件輔助教學。

      四、教具準備:

      多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。

      五、教學設計:

      創設情景,探究新知:

      (演示課件):教材上小狗的圖案。提問:

      (1)這個圖案有什么特點?

      (2)它可以通過什么“基本圖案”,經過怎樣的平移而形成?

      (3)在平移過程中,“基本圖案”的大小、形狀、位置是否發生了變化?

      小組討論,派代表回答。(答案可以多種)

      讓學生充分討論,歸納總結,老師給予適當的指導,并對每種答案都要肯定。

      看磁性黑板,展示教材64頁圖3-9,提問:左圖是一個正六邊形,它經過怎樣的平移能得到右圖?誰到黑板做做看?

      小組討論,派代表到臺上給大家講解。

      氣氛要熱烈,充分調動學生的積極性,發掘他們的想象力。

      暢所欲言,互相補充。

      課堂小結:

      在教師的引導下學生總結本節課的主要內容,并啟發學生在我們周圍尋找平移的例子。

      課堂練習:

      小組討論。

      小組討論完成。

      例子一定要和大家接觸緊密、典型。

      答案不惟一,對于每種答案,教師都要給予充分的肯定。

      六、教學反思:

      本節的內容并不是很復雜,借助多媒體進行直觀、形象,內容貼近生活,學生興致較高,課堂氣氛活躍,參與意識較強,學生一般都能在教師的指導下掌握。教學過程中滲透數學美學思想,促進學生綜合素質的提高。

    八年級數學教案 篇3

      教學目標:

      情意目標:培養學生團結協作的精神,體驗探究成功的樂趣。

      能力目標:能利用等腰梯形的性質解簡單的幾何計算、證明題;培養學生探究問題、自主學習的能力。

      認知目標:了解梯形的'概念及其分類;掌握等腰梯形的性質。

      教學重點、難點

      重點:等腰梯形性質的探索;

      難點:梯形中輔助線的添加。

      教學課件:PowerPoint演示文稿

      教學方法:啟發法、

      學習方法:討論法、合作法、練習法

      教學過程:

      (一)導入

      1、出示圖片,說出每輛汽車車窗形狀(投影)

      2、板書課題:5梯形

      3、練習:下列圖形中哪些圖形是梯形?(投影)

      結梯形概念:只有4、總結梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。

      5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)

      6、特殊梯形的分類:(投影)

      (二)等腰梯形性質的探究

      【探究性質一】

      思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)

      猜想:由此你能得到等腰梯形的內角有什么樣的性質?(學生操作、討論、作答)

      如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C

      想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?

      等腰梯形性質:等腰梯形的同一條底邊上的兩個內角相等。

      【操練】

      (1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)

      (2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E.(投影)

      【探究性質二】

      如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學生操作、討論、作答)

      如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)

      等腰梯形性質:等腰梯形的兩條對角線相等。

      【探究性質三】

      問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學生操作、作答)

      問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)

      等腰梯形性質:同以底上的兩個內角相等,對角線相等

      (三)質疑反思、小結

      讓學生回顧本課教學內容,并提出尚存問題;

      學生小結,教師視具體情況給予提示:性質(從邊、角、對角線、對稱性等角度總結)、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。

    八年級數學教案 篇4

      一、教學目標

      1.理解一個數平方根和算術平方根的意義;

      2.理解根號的意義,會用根號表示一個數的平方根和算術平方根;

      3.通過本節的訓練,提高學生的邏輯思維能力;

      4.通過學習乘方和開方運算是互為逆運算,體驗各事物間的對立統一的辯證關系,激發學生探索數學奧秘的興趣。

      二、教學重點和難點

      教學重點:平方根和算術平方根的概念及求法。

      教學難點:平方根與算術平方根聯系與區別。

      三、教學方法

      講練結合

      四、教學手段

      幻燈片

      五、教學過程

      (一)提問

      1、已知一正方形面積為50平方米,那么它的邊長應為多少?

      2、已知一個數的平方等于1000,那么這個數是多少?

      3、一只容積為0。125立方米的正方體容器,它的棱長應為多少?

      這些問題的共同特點是:已知乘方的結果,求底數的值,如何解決這些問題呢?這就是本節內容所要學習的。下面作一個小練習:填空

      1、()2=9; 2、()2 =0、25;

      3、

      5、()2=0、0081

      學生在完成此練習時,最容易出現的錯誤是丟掉負數解,在教學時應注意糾正。

      由練習引出平方根的概念。

      (二)平方根概念

      如果一個數的平方等于a,那么這個數就叫做a的平方根(二次方根)。

      用數學語言表達即為:若x2=a,則x叫做a的平方根。

      由練習知:±3是9的平方根;

      ±0.5是0。25的平方根;

      0的平方根是0;

      ±0.09是0。0081的平方根。

      由此我們看到+3與—3均為9的平方根,0的平方根是0,下面看這樣一道題,填空:

      ( )2=—4

      學生思考后,得到結論此題無答案。反問學生為什么?因為正數、0、負數的平方為非負數。由此我們可以得到結論,負數是沒有平方根的.。下面總結一下平方根的性質(可由學生總結,教師整理)。

      (三)平方根性質

      1.一個正數有兩個平方根,它們互為相反數。

      2.0有一個平方根,它是0本身。

      3.負數沒有平方根。

      (四)開平方

      求一個數a的平方根的運算,叫做開平方的運算。

      由練習我們看到+3與—3的平方是9,9的平方根是+3和—3,可見平方運算與開平方運算互為逆運算。根據這種關系,我們可以通過平方運算來求一個數的平方根。與其他運算法則不同之處在于只能對非負數進行運算,而且正數的運算結果是兩個。

      (五)平方根的表示方法

      一個正數a的正的平方根,用符號“ ”表示,a叫做被開方數,2叫做根指數,正數a的負的平方根用符號“— ”表示,a的平方根合起來記作 ,其中 讀作“二次根號”, 讀作“二次根號下a”。根指數為2時,通常將這個2省略不寫,所以正數a的平方根也可記作“ ”讀作“正、負根號a”。

      練習:1.用正確的符號表示下列各數的平方根:

      ①26 ②247 ③0。2 ④3 ⑤

      解:①26 的平方根是

      ②247的平方根是

      ③0。2的平方根是

      ④3的平方根是

      ⑤ 的平方根是

      由學生說出上式的讀法。

      例1。下列各數的平方根:

      (1)81; (2) ; (3) ; (4)0。49

      解:(1)∵(±9)2=81,

      ∴81的平方根為±9。即:

      (2)

      的平方根是 ,即

      (3)

      的平方根是 ,即

      (4)∵(±0。7)2=0。49,

      ∴0。49的平方根為±0。7。

      小結:讓學生熟悉平方根的概念,掌握一個正數的平方根有兩個。

      六、總結

      本節課主要學習了平方根的概念、性質,以及表示方法,回去后要仔細閱讀教科書,鞏固所學知識。

      七、作業

      教材P。127練習1、2、3、4。

      八、板書設計

      平方根

      (一)概念 (四)表示方法 例1

      (二)性質

      (三)開平方

      探究活動

      求平方根近似值的一種方法

      求一個正數的平方根的近似值,通常是查表。這里研究一種筆算求法。

      例1。求 的值。

      解 ∵92102,

      兩邊平方并整理得

      ∵x1為純小數。

      18x1≈16,解得x1≈0。9,

      便可依次得到精確度

      為0。01,0。001,……的近似值,如:

      兩邊平方,舍去x2得19.8x2≈—1.01

    八年級數學教案 篇5

      課題:一元二次方程實數根錯例剖析課

      【教學目的】 精選學生在解一元二次方程有關問題時出現的典型錯例加以剖析,幫助學生找出產生錯誤的原因和糾正錯誤的方法,使學生在解題時少犯錯誤,從而培養學生思維的批判性和深刻性。

      【課前練習】

      1、關于x的方程ax2+bx+c=0,當a_____時,方程為一元一次方程;當 a_____時,方程為一元二次方程。

      2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當△_______時,方程有兩個相等的實數根,當△_______時,方程有兩個不相等的實數根,當△________時,方程沒有實數根。

      【典型例題】

      例1 下列方程中兩實數根之和為2的方程是()

      (A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

      錯答: B

      正解: C

      錯因剖析:由根與系數的關系得x1+x2=2,極易誤選B,又考慮到方程有實數根,故由△可知,方程B無實數根,方程C合適。

      例2 若關于x的方程x2+2(k+2)x+k2=0 兩個實數根之和大于-4,則k的取值范圍是( )

      (A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

      錯解 :B

      正解:D

      錯因剖析:漏掉了方程有實數根的前提是△≥0

      例3(20xx廣西中考題) 已知關于x的一元二次方程(1-2k)x2-2 x-1=0有兩個不相等的實根,求k的取值范圍。

      錯解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2

      錯因剖析:漏掉了二次項系數1-2k≠0這個前提。事實上,當1-2k=0即k= 時,原方程變為一次方程,不可能有兩個實根。

      正解: -1≤k<2且k≠

      例4 (20xx山東太原中考題) 已知x1,x2是關于x的`一元二次方程x2+(2m+1)x+m2+1=0的兩個實數根,當x12+x22=15時,求m的值。

      錯解:由根與系數的關系得

      x1+x2= -(2m+1), x1x2=m2+1,

      ∵x12+x22=(x1+x2)2-2 x1x2

      =[-(2m+1)]2-2(m2+1)

      =2 m2+4 m-1

      又∵ x12+x22=15

      ∴ 2 m2+4 m-1=15

      ∴ m1 = -4 m2 = 2

      錯因剖析:漏掉了一元二次方程有兩個實根的前提條件是判別式△≥0。因為當m = -4時,方程為x2-7x+17=0,此時△=(-7)2-4×17×1= -19<0,方程無實數根,不符合題意。

      正解:m = 2

      例5 若關于 x的方程(m2-1)x2-2 (m+2)x+1=0有實數根,求m的取值范圍。

      錯解:△=[-2(m+2)]2-4(m2-1) =16 m+20

      ∵ △≥0

      ∴ 16 m+20≥0,

      ∴ m≥ -5/4

      又 ∵ m2-1≠0,

      ∴ m≠±1

      ∴ m的取值范圍是m≠±1且m≥ -

      錯因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關于未知數x的方程,而未限定方程的次數,所以在解題時就必須考慮m2-1=0和m2-1≠0兩種情況。當m2-1=0時,即m=±1時,方程變為一元一次方程,仍有實數根。

      正解:m的取值范圍是m≥-

      例6 已知二次方程x2+3 x+a=0有整數根,a是非負數,求方程的整數根。

      錯解:∵方程有整數根,

      ∴△=9-4a>0,則a<2.25

      又∵a是非負數,∴a=1或a=2

      令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2

      ∴方程的整數根是x1= -1, x2= -2

      錯因剖析:概念模糊。非負整數應包括零和正整數。上面答案僅是一部分,當a=0時,還可以求出方程的另兩個整數根,x3=0, x4= -3

      正解:方程的整數根是x1= -1, x2= -2 , x3=0, x4= -3

      【練習】

      練習1、(01濟南中考題)已知關于x的方程k2x2+(2k-1)x+1=0有兩個不相等的實數根x1、x2。

      (1)求k的取值范圍;

      (2)是否存在實數k,使方程的兩實數根互為相反數?如果存在,求出k的值;如果不存在,請說明理由。

      解:(1)根據題意,得△=(2k-1)2-4 k2>0 解得k<

      ∴當k< 時,方程有兩個不相等的實數根。

      (2)存在。

      如果方程的兩實數根x1、x2互為相反數,則x1+ x2=- =0,得k= 。經檢驗k= 是方程- 的解。

      ∴當k= 時,方程的兩實數根x1、x2互為相反數。

      讀了上面的解題過程,請判斷是否有錯誤?如果有,請指出錯誤之處,并直接寫出正確答案。

      解:上面解法錯在如下兩個方面:

      (1)漏掉k≠0,正確答案為:當k< 時且k≠0時,方程有兩個不相等的實數根。

      (2)k= 。不滿足△>0,正確答案為:不存在實數k,使方程的兩實數根互為相反數

      練習2(02廣州市)當a取什么值時,關于未知數x的方程ax2+4x-1=0只有正實數根 ?

      解:(1)當a=0時,方程為4x-1=0,∴x=

      (2)當a≠0時,∵△=16+4a≥0 ∴a≥ -4

      ∴當a≥ -4且a≠0時,方程有實數根。

      又因為方程只有正實數根,設為x1,x2,則:

      x1+x2=- >0 ;

      x1. x2=- >0 解得 :a<0

      綜上所述,當a=0、a≥ -4、a<0時,即當-4≤a≤0時,原方程只有正實數根。

      【小結】

      以上數例,說明我們在求解有關二次方程的問題時,往往急于尋求結論而忽視了實數根的存在與“△”之間的關系。

      1、運用根的判別式時,若二次項系數為字母,要注意字母不為零的條件。

      2、運用根與系數關系時,△≥0是前提條件。

      3、條件多面時(如例5、例6)考慮要周全。

      【布置作業】

      1、當m為何值時,關于x的方程x2+2(m-1)x+ m2-9=0有兩個正根?

      2、已知,關于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實數根。

      求證:關于x的方程

      (m-5)x2-2(m+2)x + m=0一定有一個或兩個實數根。

      考題匯編

      1、(20xx年廣東省中考題)設x1、 x2是方程x2-5x+3=0的兩個根,不解方程,利用根與系數的關系,求(x1-x2)2的值。

      2、(20xx年廣東省中考題)已知關于x的方程x2-2x+m-1=0

      (1)若方程的一個根為1,求m的值。

      (2)m=5時,原方程是否有實數根,如果有,求出它的實數根;如果沒有,請說明理由。

      3、(20xx年廣東省中考題)已知關于x的方程x2+2(m-2)x+ m2=0有兩個實數根,且兩根的平方和比兩根的積大33,求m的值。

      4、(20xx年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個根,且x1+x2=6,x12+x22=20,求p和q的值。

    【八年級數學教案】相關文章:

    八年級的數學教案12-14

    八年級數學教案06-18

    八年級上冊人教版數學教案02-27

    八年級的數學教案15篇12-14

    八年級下冊數學教案01-01

    【薦】八年級數學教案12-03

    【熱】八年級數學教案12-07

    【精】八年級數學教案12-04

    八年級數學教案【精】12-04

    八年級數學教案【熱門】12-03

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      婷婷亚洲久悠悠色悠在线播放 | 日韩亚洲欧美在线观看 | 亚洲综合区第二页 | 日本免费一区二区三区在线播放 | 亚洲日韩在线三区 | 午夜福利麻豆国产精品午夜福利 |