1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>

    定理與證明(二)

    時間:2022-08-16 21:34:13 七年級數學教案 我要投稿
    • 相關推薦

    定理與證明(二)

    一、教學目標

      1.了解“證明”的必要性和推理過程中要步步有據.

    定理與證明(二)

      2.了解綜合法證明的格式和步驟.

      3.通過一些簡單命題的證明,初步訓練學生的邏輯推理能力.

      4.通過證明步驟中由命題畫出圖形,寫出已知、求證的過程,繼續訓練學生由幾何語句正確畫出幾何圖形的能力.

      5.通過舉例判定一個命題是假命題,使學生學會反面思考問題的方法.

      二、學法引導

      1.教師教法:嘗試指導,引導發現與討論相結合.

      2.學生學法:在教師的指導下,積極思維,主動發現.

      三、重點·難點及解決辦法

      (-)重點

      證明的步驟和格式是本節重點.

      (二)難點

      理解命題,分清其題設和結論,正確對照命題畫出圖形,寫出已知、求證.

      (三)解決辦法

      通過學生分組討論,教師歸納得出證明的步驟和格式,再以練習加以鞏固,解決重點、難點及疑點.

      四、課時安排

      l課時

      五、教具學具準備

      投影儀、三角板、自制膠片.

      六、師生互動活動設計

      1.通過引例創設情境,點題,引入新課.

      2.通過情境教學,學生分組討論,歸納總結及練習鞏固等手段完成新授.

      3.通過提問的形式完成小結.

      七、教學步驟

      (-)明確目標

      使學生嚴密推理過程,掌握推理格式,提高推理能力。

      (二)整體感知

      以情境設計,引出課題,引導討論,例題示范講解新知,以練習鞏固新知.

      (三)教學過程

      創設情境,引出課題

      師:上節課我們學習了定理與證明,了解了這兩個概念.并以證明“兩直線平行,內錯角相等”來說明什么是證明.我們再看這一命題的證明(投影出示).

       例1  已知:如圖1, , 是截線,求證: .

      證明:∵ (已知),∴ (兩直線平行,同位角相等).

      ∵ (對項角相等),∴ (等量代換).

      這節課我們分析這一命題的證明過程,學習命題證明的步驟和格式.

      [板書]2.9  定理與證明

      探究新知

      1.命題證明步驟

      學生活動:由學生分組討論以上命題的證明過程,按自己的理解說出證明一個命題都需要哪幾步.

      【教法說明】根據上一節“兩直線平行,內錯角相等”這一命題的證明過程讓學生討論、分析、歸納命題證明的一般步驟,一是可以加深對命題證明的理解,二是培養學生歸納總結能力。在總結步驟時,學生所說的層次不一定有邏輯性,或不太嚴密,教師要注意引導,使學生分清命題證明幾個步驟的先后層次.

      根據學生討論,回答結果.教師歸納小結,師生共同得出證明命題的步驟(出示投影):

      第一步,畫出命題的圖形.

      先根據命題的題設即已知條件,畫出圖形,再把命題的結論即求證的內容在圖上標出.還要根據證明的需要,在圖上標出必要的字母或符號,以便于敘述或推理過程的表達.

      第二步,結合圖形寫出已知、求證.

      把命題的題設化為幾何符號的語言寫在已知中,命題的結論轉化為幾何符號的語言寫在求證中.

      第三步,經過分析,找出由已知推得求證的途徑,寫出推理的過程.

      學生活動:結合“兩直線平行,內錯角相等”這一命題的證明,理解以上命題證明的一般步驟(給學生一定時間理解記憶).

      【教法說明】在以上第二個步驟中,將文字語言轉化為符號語言是教學中的難點,要注意在練習中加強輔導,第三步由學生獨立完成有困難,要逐步培養訓練,現階段暫不要求學生獨立完成.

      反饋練習:(1)畫出證明命題“兩直線平行,同旁內角互補”時的圖形,寫出已知、求證.

      (2)課本第112頁A組第5題.

      【教法說明】由學生依照例1“兩直線平行,內錯角相等”這一命題的證明畫出圖形,寫出已知、求證,鞏固命題證明的第一、二步.

      2.命題的證明

      例2  證明:鄰補角的平分線互相垂直.

      【教法說明】此例題完全放手讓學生獨立完成有一定困難,但教師也不能包辦代替,最好通過讓學生分步討論,同桌互相磋商,分步完成的方法,使學生對命題證明的每一步都進一步理解,教師可以給學生指明思考步驟.

      (1)分析命題的題設與結論,畫出命題證明所需要的圖形.

      鄰補角用圖2表示:


    圖2

      添畫鄰補角的平分線,見圖3:


    圖3

      (2)根據命題的題設與結論寫出已知、求證.鄰補角用幾何符號語言提示: ,角平分線用幾何符號語言表示: , ,求證鄰補角平分錢互相垂直,用符號語言表示: .

      (3)分析由已知誰出求證途徑,寫出證明過程.

       有什么結論后可得 ( ),由已知可以推導 嗎?學生討論思考.

      【教法說明】以上步驟的完成教師只提供思路,具體結論的得出與操作要由學生獨立完成.找一個學生到黑板上板演,其他同學在練習本上寫出完成整過程.

      已知:如圖, , , .

      求證:

      證明:∵ (已知),又∵ , (已知),∴ .

      ∴ (垂直定義).

      證明完成后提醒學生注意以下幾點:

      ①要證明的是一個簡單敘述的命題,題設和結論不明顯,可以先根據題意畫出圖形.如例2,結合圖形分析命題的題設和結論.

      ②在寫已知、求證的內容時,要將文字語言轉化為符號語言來表示,轉化時的寫法也不是惟一的,要根據使用的方便來寫,如: 與 互為鄰補角,在已知中寫為 ,角平分線有幾種表示方法,如 是 的平分線, , ,根據此題寫成 較好,方便于下面的推理計算.

      ③對命題的分析、畫圖,如何推理的思考過程,證明時不必寫出來,不屬于證明內容.

      反饋練習:按證明命題的步驟證明:“兩條直線被第三條直線所截,如果同位角相等,那么內錯角相等.”

      【教法說明】由學生獨立完成,找學生板演,發現問題教師及時糾正.

      3.判定一個命題是假命題的方法

      師:以上我們的推理是說明一個命題是真命題的判定方法.那么如何判定一個命題是假命題呢?如“相等的角是對項角”,同學們都知道這是一個假命題,如何說明它是一個假命題呢?誰能試著說明一下?

       【教法說明】教師先不告訴學生判定一個命題是假命題的方法,而是由很明顯的“相等角是對頂角”這一假命題,讓學生自己嘗試著去說明,體驗從反面去說明一個問題的方法,然后教師歸納小結.

      根據學生說明,教師小結:

      判定一個命題是假命題,只要舉出一個反例即可,也就是說你所舉命題符合命題的題設,但不滿足結論.如“同位角相等”可如圖, 與 是同位角但不相等就說明“同位角相等是假命題”.

      反饋練習:課本第111頁習題2.3A組第4題.

      【教法說明】在做以上練習時一定讓學生學會從反面思考問題的方法,再就是要澄清一些錯誤的概念.

      反饋練習

      投影出示以下練習:

      1.指出下列命題的題設和結論

      (1)兩條平行線被第三條直線所截,同旁內角互補.

      (2)兩個角的和等于直角,這兩個角互為余角.

      (3)對項角相等.

      (4)同角或等角的余角相等.

      2.畫圖,寫出已知,求證(不證明)

      (1)同垂直于一條直線的兩條直線平行.

      (2)兩條平行直線被第三條直線所截,同位角的平分線互相平行.

       3.抄寫下題并填空

      已知:如圖, .

      求證: .

      證明:∵ (  ),

       ∴ (  ).

       ∴ (  ).

      【教法說明】以上練習讓學生獨立完成,第1題主要是訓練學生分清命題的題設和結論;第2題是訓練學生把命題轉化為幾何語言、幾何圖形的能力;第3題是讓學生進一步體會命題證明的三個步驟.

      總結、擴展

      以提問的形式歸納出本節課的知識結構:

      八、布置作業

      (-)必做題

      課本第110頁習題2.3A組第3(2)、(3)、(4)題.

      (二)思考題

      課本第112頁B組第l、2題.

       作業答案

      A組(略)

      B組1.已知兩直線平行,同旁內角互補。

       (兩直線平行,同旁內角互補) (同角的補角相等).

      2.已知:如圖, , 、 分別平分 與 .求證: .

    熱門文章 青少年思想道德建設
    當前我國作文教學改革的新趨勢
    古詩三首(墨梅 竹石 石灰吟)
    第一場雪
    Unit 2 Look at me第五課時
    植物媽媽有辦法
    威尼斯的小艇
    等比數列的前n項和
    相關文章 ·定理與證明(一)
    ·命題 教學設計方案(二)
    ·命題
    ·空間里的平行關系
    ·平行線的性質 教學設計方案(二)
    ·平行線的性質
    ·平行線的判定
    ·平行線的判定

    【定理與證明(二)】相關文章:

    二項式定理教學反思08-24

    《二項式定理》教學反思03-17

    初二數學教案《勾股定理》06-06

    《勾股定理的逆定理》的教學反思08-18

    勾股定理的逆定理應用探究08-20

    勾股定理說課稿04-18

    《勾股定理》的說課稿01-18

    高三數學教案《二項式定理》08-22

    數學勾股定理教案04-28

    勾股定理的教學反思04-22

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      中文字字幕乱码无线精品精品 | 色偷偷精品免费视频 | 亚洲综合一区二区 | 久久国产精品-国产十精品 中文字幕视频综合网 | 亚洲国产人成中文字幕 | 在线看片免费人成视频久试看 |